

	
3GPP TSG-SA5 Meeting #142-e 	S5-222087
e-meeting, 4 - 12 April 2022
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	32.158
	CR
	DraftCR
	rev
	-
	Current version:
	16.5.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	Rel-16 CR 32.158 Clarify clause Design patterns for partially updating a resource

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S5

	
	

	Work item code:
	TEI16, REST_SS
	
	Date:
	2022-03-25

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	The subject matter definitions are slightly underspecified as to a few aspects and require some clarifications to produce fully disambiguous definitions.

	
	

	Summary of change:
	The definitions are clarified and disambiguated.

	
	

	Consequences if not approved:
	Underspecified definitions could lead to interoperability issues.

	
	

	Clauses affected:
	6.3, 6.3.1 (new), 6.3.2 (new), 6.3.3 (new),

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	First modification

[bookmark: _Toc532836879][bookmark: _Toc27559719][bookmark: _Toc36039464][bookmark: _Toc90547096]6.3	Design patterns for partially updating a resource
6.3.1	Introduction
HTTP PUT allows to replace (overwrite) a complete resource on the MnS Producer with the new representation in the request body. It cannot be used for partial updates of a resource.
For partial updates of a single resource HTTP PATCH (RFC 5789 [11]) shall be used. With PATCH, a set of changes to be applied to the target resource is described in the request message body. The set of changes carried in the message body is called patch document. The format of the patch document is identified by its media type. RFC 5789 [11] does not define any patch format, only the PATCH method.
The HTTP PATCH method is atomic, as per RFC5789 [11]. The MnS Producer shall apply the entire set of changes atomically and never provide (e.g., in response to a GET during this operation) a partially modified representation. If the entire patch document cannot be successfully applied, then the MnS Producer shall not apply any of the changes. PATCH thus has transaction semantics.
For JSON, IETF has defined two patch formats for the use with the HTTP Patch method: JSON Merge Patch (RFC 7396 [12]) and JSON Patch (RFC 6902 [13]). The usage of these patch formats is described in the following clauses.
6.3.2	JSON Merge Patch
RFC 7396 [12] specifies a simple patch format in JSON called JSON Merge Patch. It allows to describe a set of modifications to be applied to the target resource representation. JSON Merge Patch works at the level of name/value pairs. The received patch document is merged into the target resource representation. The media type of the patch document is "application/merge-patch+json".
Three types of patches are described in RFC 7396 [12]:
1)	Replacing the value of an already existing name/value pair by a new value.
2)	Adding a new name/value pair.
3)	Removing an existing name/value pair.
The target resource is identified by the target URI. The target URI shall have no query and no fragment component. The target resource must exist, otherwise the error status code 404 (Not Found) shall be returned.
The "id" of the resource shall be present in the patch document and shall be identical to the "id" of the patched resource in the request URI. This ensures uniformity of resource representations in message bodies, though, strictly speaking, the presence of the "id" in the patch document is redundant.
JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array value (an array with all present items) with a new value (an array with all new items). It is not possible to change individual items in an array or to add/delete individual items.
[image:]
Figure 6.3.2-1: Flow for partially updating a resource with JSON Merge Patch
The procedure flow is as follows:
1)	The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry the JSON Merge Patch document describing a set of modifications to be applied to the target resource.
2)	The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
JSON Merge Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This limitation is introduced, because child resources (of one object class) are represented as items of an array that is a property of the target resource (alongside with the attributes of the target resource), and JSON Merge Patch does not allow to modify individual array items. With JSON Merge Patch, only the complete array value with the representations of all child resources (of one class) could be replaced. Note that child resources can have child resources as well. The patch document would hence need to include the representations of all descendant resources. This is very inefficient and against the principle of PATCH to provide the changes only.
Assume an "XyzFunction" resource has no attribute "attrA" yet, then the following PATCH request creates it.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "abc"
 }
}

The following subsequently executed PATCH request replaces its value with "def".
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/merge-patch+json

{
 "id": "XYZF1",
 "attributes": {
 "attrA": "def"
 }
}

6.3.3	JSON Patch
The JSON Patch format is specified in RFC 6902 [13]. The patch document is a JSON array. Each array item is a JSON object describing a modification to be applied to the target resource. The modifications shall be applied to the target resource sequentially in the order they appear in the array. The media type of JSON Patch is "application/json-patch+json".
Each modification is defined by three properties: The operation ("op"), the identification of the secondary resource within the target resource to be manipulated ("path") and a value ("value") that is not present when removing a secondary resource. When moving or copying an existing value, the "value" property is absent and a "from" property is present instead. The value of the "from" and "path" property is a JSON Pointer in string representation as defined in Section 5 of RFC 6901 [14].
In contrast to JSON Merge Patch, JSON Patch allows to modify individual items of an array. Array items are identified based on their position (index) in an array. The first item has the index "0". The "-" character is used by the operations "add" and "move" to index the end of the array for appending a new array item. Its use in any other operation is forbidden.
The target URI identifies the resource to be modified. As for JSON Merge Patch, the target URI shall have no query and no fragment component. The target resource must exist, otherwise the error status code 404 (Not Found) shall be returned.
[image:]
Figure 6.3.3-1: Flow for partially updating a resource with JSON Patch
The procedure flow is as follows:
1)	The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry a JSON Patch document describing a set of modification instructions to be applied to the target resource.
2)	The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
As JSON Merge Patch, also JSON Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This is because JSON Patch can address items in an array only based on the position of the item in the array, and not based on an identifier independent from the position of the item in the array. A patch document could hence not address descendant resources of the target resource based on their "id". This is prone to conflicts in multi-client scenarios, where the position of resource items in an array can change due to the concurrent creation or deletion of resource items in the same array. Risk mitigation would require complex ETag calculations in the resource hierarchy.
The following example adds a new attribute "attrA" to an "XyzFunction".
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "add",
 "path": "/attributes",
 "value": {
 "attrA": "abc"
 }
 }
]

The following example replaces its value with "def".
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1
Host: example.org
Content-Type: application/json-patch+json

[
 {
 "op": "replace",
 "path": "/attributes/attrA",
 "value": {
 "attrA": "def"
 }
 }
]

HTTP PUT allows replacing only the complete resource. For partial resource updates HTTP PATCH (RFC 5789 [11]) shall be used. The set of changes to be applied to the target resource is described in the request message body (patch document). The format of the patch document is identified by its media type.
RFC 7396 [12] specifies a simple format in JSON (JSON Merge Patch) allowing to describe a set of modifications to be applied to the target resource's content. JSON Merge Patch works at the level of name/value pairs contained in a JSON object. The media type is "application/merge-patch+json".
Three types of patches are described in RFC 7396 [12]:
1)	Replacing the value of an already existing name/value pair by a new value.
2)	Adding a new name/value pair.
3)	Removing an existing name/value pair.
JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array. It is not possible to change items in an array or to add new items.
When individual items of an array shall be manipulated or items shall be added to arrays at specific positions, JSON Patch as described in RFC 6902 [13]) should be used as patch format. The media type of JSON Patch is "application/json-patch+json". The target URI identifies the resource to be modified. Secondary resources of the target resource to be manipulated are identified in the JSON patch document using JSON Pointer [14].
The JSON Patch document is a JSON array with each item being a JSON object specifying one suboperation. Suboperations shall be applied sequentially in the order they appear in the array, as defined in Section 3 of RFC 6902 [13].
According to RFC 5789 [11], Section 2 patches shall be applied atomically. Either all changes specified in the patch document are applied or, if at least one change cannot be applied, no change shall be applied.
[image:]
Figure 6.3-1: Flow for partially updating a resource
The procedure flow is as follows:
1)	The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body carries a JSON Patch or JSON Merge Patch document describing a set of modification instructions to be applied to the target resource.
2)	The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

	End of modifications

image1.png
MnS Consumer

| 1. PATCH .. fresource(PartialResourceRepresent

MnS Praducer

ation) !

12200 0K

(ResourceRepresentation) or 204 No

Content !

MnS Consumer

MnS Praducer

