3GPP TSG-SA5 Meeting #141-e
S5-221486
e-meeting, 17 – 26 January 2022
Source:
SA5 chair

Title:
Forge process update of clause 23.4 and 23.9 in SA5 Working Procedures
Document for:
Approval

Agenda Item:
5.1
1
Decision/action requested

Approve the contribution
2
References

[1]
S5-221010 SA5 Working Procedures
3
Rationale

The Forge process Step 3 needs to be clarified regarding what happens after the SA plenary, as well as the DraftCR related Forge process.
4
Detailed proposal

Update the Forge process clause 23.4 and 23.9 according to the revision marks below.

< First Change>
23.4
3GPP Forge process for CR

…

…

Step 3: Agreement of the contributions, after the SA meeting

· ASAP after the technical part of the SA plenary is closed (normally at the end of the SA meeting the first Friday of the plenary week), the SA5 chair announces which SA5 CRs were approved, including a link to the official SA report or folder with doclist showing the official status of all SA documents.
·
· If some SA5 CRs were not approved by SA, the Code Moderator creates a new integration branch according to the approved CRs.

·

· The fully merged integration branch shall be made ready by the Code Moderators 7 days after the technical part of the SA plenary is closed.
· Code Moderator submits integration merge requests to merge code from integration branch to corresponding release branch

Note: Rebase locally may be needed to solve potential conflict. Some examples are listed below.

Example 1: rebase release branch to integration branch
git fetch origin

git checkout "origin/Rel-16"

git checkout -b "Integration-rel16-SA5-136" "origin/Integration-rel16-SA5-136"

git rebase -i "origin/Rel-16" "Integration-rel16-SA5-136"

<fix conflicts locally as part of the interactive rebase>

git push -f origin "Integration-rel16-SA5-136"

Example 2: solve conflict on release branch, for example:

git fetch origin

git checkout "Integration-rel16-SA5-136"

git checkout -b "origin/Rel-16" "origin/Rel-16"

git merge --no-ff "Integration-rel16-SA5-136"

<fix conflicts locally as part of the interactive merge>

git push origin "Rel-16"

Example 3: solve conflict in new branch mainly to mitigate impact between YAML/YANG
1)
Create a completely new branch based on the latest release branch.

2)
Pull it to a local tracking branch and switch to it

3)
Delete ALL impacted and useless YAML/YANG files from new branch

4)
Copy ALL impacted YAML/YANG files from integration branch to the new branch

5)
Commit, push

6)
Create MR to merge the new branch to release branch

· Code Moderators send the updated code files to the Code Master (MCC) by email. The Code Master checks that all updated files were received for all the approved CRs. Code Master copies all changed code lines into the corresponding TS annexes. The code master shall always copy each code file “as a whole” avoiding line-by-line copying which may accidentally change some characters of the code, e.g. invisible spaces. The Code Master sends the preliminary TSs to the Code Moderator for checking before it is announced to SA5 that the CR implementation for the TS is ready.
· Code moderator checks and confirms the consistency of the codes in TS and integration branches. If they are different, with support of code moderator, code master fixes the issue in either TS (if it's caused by copy-paste Forge code to TS) or Forge release branch (if it's caused by code merge to release branch)

· Code Master merges the integration merge requests, ensures that commits are squashed, and the original branch should be kept for several months.
· Code Master creates a Tag on the latest commit of release branches to reflect codes agreed in SA meeting

Note: the naming rule of the tag branch is: Tag_Release No_SA_Meeting No, e.g. Tag_Rel16_SA91, Tag_Rel17_SA91
· Code Master or SA5 leader announces the readiness of latest release branch and Tag for the SA meeting.

· Code Master removes all CR branches of the previous SA5 meetings.
Note 1: Integration branches could be clean up periodically or after each SA meeting.
Note 2: Suggest branch owner deleting test branches if they are not used anymore. Code master may clean up the Forge branches periodically. The branch owner should inform code master or make notes in top level readme file if they want to persist some branches.

< Next Change>
23.9
DraftCR Forge process
The author who creates the real CR from a DraftCR shall also create the Forge branch for it, similarly as what is described in clause 23.4 Step 0. The Forge branch must contain identical code changes to the real CR and must validate correctly. If this is not the case the CR should be rejected.

The real CR shall be merged into the release branch similarly as what is described in clause 23.4 Step 2
·
SA5 Working Procedures
1/24

