- 2 -
SG2-TD093R1/PLEN
	[bookmark: dnum][bookmark: dtableau][bookmark: dtitle1][image:]
	INTERNATIONAL TELECOMMUNICATION UNION
TELECOMMUNICATION
STANDARDIZATION SECTOR
[bookmark: dstudyperiod]STUDY PERIOD 2017-2020
	SG2-TD093R1/PLEN

	[bookmark: dsg]
	
	STUDY GROUP 2

	
	
	Original: English

	[bookmark: dmeeting]Question(s):
	7/2
	Virtual, 8-19 November 2021

	[bookmark: ddoctype]TD

	[bookmark: dsource]Source:
	Editor, X.786

	Title:
	Revised baseline text for X.786 (ex. X.rest-ics): "Guidelines for implementation conformance statement proformas associated with REST-based management systems" (for consent)

	[bookmark: dpurpose]Purpose:
	Discussion

	Contact:
	GUO Shaoyong
Beijing University of Posts and Telecommunications(BUPT)
China
	Tel: 	+86 10 61198090 ext. 8710
Fax: 	+86 10 62283412
Email: syguo@bupt.edu.cn

	Contact:
	WANG Zhili
Beijing University of Posts and Telecommunications (BUPT)
China
	Tel:	+86 10 61198090 - 8726
Fax: 	+86 10 6228 3412
Email:	zlwang@bupt.edu.cn

	Keywords:
	Representational State Transfer (REST), Implementation Conformance Statement (ICS), Conformance Testing.

	Abstract:
	This document provides the revised text of draft Recommendation X.786 (X.rest-ics): “Guidelines for implementation conformance statement proformas associated with REST-based management systems”. It provides the overview and concepts of conformance testing of REST-based interfaces, it describes the containment relationship of element described in the Open API Specification (OAS), designs the support tables that are needed for the Implementation Conformance Statement (ICS) proformas, provides the guidelines for completing ICS proformas, and illustrates some examples of REST-based interface ICS proformas.
The main changes in this version contains adding two references, and other changes are editorial, which is carried out after the Q7/2 meeting held in November 10, 2021.

AAP Summary:
Recommendation ITU-T X.786 provides guidelines for implementation conformance statement (ICS) proformas for REST-based interface systems. It provides an overview and constructions for the OpenAPI Specification (OAS), and provides several proformas (tables) for each OAS syntax component to be used in REST-based interfaces. Instructions on how to complete the columns in the conformance tables are also provided. Examples of REST-based interface ICSs are provided in appendices.

Draft Recommendation ITU-T X.786 (ex. X.rest-ics):
Guidelines for implementation conformance statement proformas associated with
REST-based management systems
1	Scope
[bookmark: _Toc326325064][bookmark: _Toc292879055][bookmark: _Toc340564576][bookmark: _Toc339965767][bookmark: _Toc341261699]This draft Recommendation provides the guidelines for REST-based Interface Implementation Conformance Statement (RIICS) proformas and the specification of these proformas. The RIICS is a statement made by an implementer to claim conformance to a REST-based interface definition. This Recommendation provides the concepts of conformance testing of REST-based interfaces, describes the containment relationship of the YAML language elements, designs the support tables that are needed for the Implementation Conformance Statements (ICS), and provides the guidelines for completing ICS proformas.
2	References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
[ITU-T Q.rest819]		Recommendation ITU-T Q.rest819 (2021): REST-based management services.
[ITU-T X.290] 		Recommendation ITU-T X.290 (1995), OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – General concepts.
[ITU-T X.291]		Recommendation ITU-T X.291 (1995), OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – Abstract test suite specification.
[ITU-T X.296]		Recommendation ITU-T X.296 (1995), OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – Implementation conformance statements.
[ITU‑T X.724] 		Recommendation ITU-T X.724 (1996), Information technology - Open Systems INterconnection - Structure of management information: Requirements and guidelines for implementation conformance statement proformas associated with OSI management.
[ITU-T X.785]		Recommendation ITU-T X.785 (2021): Guidelines for the definition of REST-based management objects and management interfaces.
[RFC 3339]	IETF RFC 3339 (2002): Date and Time on the Internet: Timestamps.
[RFC 3986]	IETF RFC 3986 (2005): Uniform Resource Identifier (URI): Generic Syntax.
[RFC 6838]	IETF RFC 6838 (2013): Media Type Specifications and Registration Procedures.
[RFC 7231]			IETF RFC 7231 (2014): Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content.
[RFC 3986]			IETF RFC 3986 (2005): Uniform Resource Identifier (URI): Generic Syntax.
[RFC 46278259]			IETF RFC 82596901 (200617), The JavaScript Object Notation (JSON) Data Interchange Format (JSON)The application/json Media Type for JavaScript Object Notation (JSON).

[bookmark: _Hlt488122288][bookmark: title][bookmark: _Toc341261700][bookmark: _Toc326325065][bookmark: _Toc339965768][bookmark: _Toc292879056][bookmark: _Toc340564577]3	Definitions
[bookmark: _Toc326325066][bookmark: _Toc341261701][bookmark: _Toc292879057][bookmark: _Toc339965769][bookmark: _Toc340564578]3.1	Terms defined elsewhere
This Recommendation uses the following terms defined elsewhere:
3.1.1	abstract test case [ITU-T X.290]: A complete and independent specification of the actions required to achieve a specific test purpose, defined at the level of abstraction of a particular Abstract Test Method, starting in a stable testing state and ending in a stable testing state. This specification may involve one or more consecutive or concurrent connections.
NOTES:
1 The specification should be complete in the sense that it is sufficient to enable a test verdict to be assigned unambiguously to each potentially observable test outcome (i.e. sequence of test events).
2 The specification should be independent in the sense that it should be possible to execute the derived executable test case in isolation from other such test cases (i.e. the specification should always include the possibility of starting and finishing in the “idle” state).
3.1.2	executable test case [ITU-T X.290]: A realization of an abstract test case.
3.1.3	ICS proforma specification [ITU-T X.296]: The specification which provides a complete ICS proforma.
3.1.4	(ICS (proforma)) item [ITU-T X.290]: A row in an ICS (proforma) table.
3.1.5	(ICS (proforma)) question [ITU-T X.290]: The question to be answered in the intersection of an ICS item and either a support column (i.e. “Is this item supported in the context applying to this table and column?”) or supported values column (i.e. “What values are supported for this item in the context applying to this table and column?”) in an ICS proforma table.
3.1.6	ICS template [ITU-T X.296]: A template which is to be used as the basis for developing an ICS proforma.
3.1.7	(support) answer [ITU-T X.290]: An allowed entry in the support or supported values columns for an item in an ICS, in answer to an ICS question.
3.1.8	status (value) [ITU-T X.290]: An allowed entry in the status column for an item in an ICS proforma table.
3.1.9	test case [ITU-T X.290]: An abstract or executable test case.
NOTE – In general the use of the word “test” in Recommendations X.290 to X.296 will imply its normal English meaning. Sometimes it may be used as an abbreviation for abstract test case or executable test case. The context should make the meaning clear.
[bookmark: _Toc339965770][bookmark: _Toc326325067][bookmark: _Toc341261702][bookmark: _Toc340564579][bookmark: _Toc292879058]3.2	Terms defined in this Recommendation
This Recommendation does not define any new terms.
[bookmark: _Toc341261703][bookmark: _Toc339965771][bookmark: _Toc292879059][bookmark: _Toc326325068][bookmark: _Toc340564580]4	Abbreviations and acronyms
This Recommendation uses the following abbreviations and acronyms:
API	Application Programming Interface
HTTP	Hyper Text Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
ICS	Implementation Conformance Statement
IT	Information Technology
IUT	Implementation Under Test
JSON	JavaScript Object Notation
OAS	Open API Specification
REST	REpresentational State Transfer
RIICS	REST-based Interface Implementation Conformance Statement
UI	User Interface
URI 	Unified Resource Identifier
URLI 	Uniformied Resource IdentifierLocation
YAML	YAML Ain't a Markup Language
[bookmark: _Toc339965772][bookmark: _Toc340564581][bookmark: _Toc326325069][bookmark: _Toc341261704][bookmark: _Toc292879060]5	Conventions
[bookmark: _Toc518445882][bookmark: _Toc504303348][bookmark: _Toc524507205][bookmark: _Toc326325070][bookmark: _Toc340564582][bookmark: _Toc341261705][bookmark: _Toc526836486][bookmark: _Toc524490650][bookmark: _Toc526640510][bookmark: _Toc339965773][bookmark: _Toc518447234]A few conventions are followed in this Recommendation to make the reader aware of the purpose of the text.
Examples of JSON and YAML schema are included in this Recommendation. The JSON/YAML schemas are written in a 10 point courier typeface:
	A JSON schema example
	{
 "title": "root",
 "items": {
 "title": "array item"
 }
}

	A YAML schema example
	SomeType:
type: object
properties:
 attr1:
 type: string
 attr2:
 type: string
 enum:
 - e1
 - e2

6 Overview of conformance testing for REST-based management system interface
REST-based technologies have been widely used in the IT industry. Recommendations [ITU-T X.785] and [ITU-T Q.res819t] have defined a REST-based management paradigm, which provide the guidelines for using the REST technology in network management interfaces.
Conformance relates an implementation to a standard. It states in which way systems, implemented with respect to a standard, can vary without errors occurring in their cooperation. If an implementation fulfills these requirements, then it is conform to the standard. The check of the statements is the conformance test. The starting point is the definition of conformance requirements in implementation independent interface specifications on the bases of an identification of reference points. A management interface specification should define conformance reference points at which an object must be tested to check if it fulfills a set of conformance criteria or not. During the test, a number of stimuli and events are observed and evaluated at these conformance points. Management interface specifications should include conformance statements which identify conformance reference points at every interface of the specified objects. Because in general the information flow between two system components is realized through several reference points, the conformance test has to take into consideration:
a) the test of such information flow at each reference point; and
b) the test of consistency between the combinations.
So, a coordinated test at all identified reference points is necessary.
7 REST-based management interface ICS proformas
OpenAPI Specification (OAS) is used to define REST interfaces for REST-based systems (in JSON/YAML schema language, see [RFC 46278259] and [b-OAI-OAS3] for more details). The RIICS proforma shall express the following OAS features such as server, paths, operations, requestBodies, responses, data types and so on. This clause first introduces the OAS features associated with the interface implement conformance test requirements, and then specifies the RIICS proforma according to these features.
7.1	OAS overview
Systems that interact through a REST interface mainly exchange data through HTTP messages. As long as the transmitted HTTP message conforms to the REST interface definition, the implementation of the interface conforms to the agreement of both parties, which also meets the implementation conformance requirements of the REST interface.
Figure 1 showillustrates an example of OpenAPI Map, which shows the relationship among some OpenAPI syntax elements.
[image:][image:]	Comment by WangZhili: this figure is redrawn.
Figure 1 An OpenAPI Map example
OAS is the guiding standard of REST interface definitions. Some OAS syntax elements are closely related to the REST interface implementation conformance statements, while others are not. With reference to HTTP message structure, some OAS syntax elements can be picked up into a subset S in which OAS syntax elements are closely related to REST interface implementation conformance statements (called subset for ICS). According to OAS, syntax elements can be organized into a tree structure. As a result, OAS syntax elements in subset for ICSset S can also be organized into a tree structure. OAS syntax elements in subset for ICSset S and their containment and association relationship can be illustrated as in Figure 2.

Figure 2 – Containment relationship of OAS syntax elements in subset for ICS
7.2	Guidelines for specification of RIICS proformas
Proforma specifications shall follow the style as documented in the following clauses. Proforma specifications shall provide the information required by this Recommendation.
There are three levels of documentation pertaining to RIICS, namely:
1)	guidelines or recommendation tools for the production of RIICS proformas;
2)	the RIICS proforma, which is associated with a standard related to REST-based network management and is to be completed by a supplier of the implementation;
3)	the completed RIICS prepared by a supplier of the implementation as part of a conformance claim to a standard related to REST-based network management.
7.2.1	General instructions for RIICS proforma specification
This Recommendation provides instructions to construct REST-based management system ICS proforma specifications. RIICS proformas include ten sub proformas: path support proforma, operation support proforma, parameter support proforma, requestBody support proforma, response support proforma, header support proforma, content support proforma, dataType support proforma, callback support proforma and tag profile. All of these proformas, described in the following clauses, are in a tabular form and are similar to the proformas specified in [ITU‑T X.724]. Appendices I and II provide examples of RIICS proformas specification, which are to be filled in by a supplier of an implementation.
The following common notations, defined in [ITU-T X.291] and [ITU-T X.296], are used for the "Status" value column in this Recommendation:
	m	Mandatory
	o	Optional
	–	Not applicable or out of scope
NOTE – The notations "m" or "o" are prefixed by a "c:" when nested under an optional item of the same table.
The following common notations, defined in [ITU-T X.291] and [ITU-T X.296] are used for the "Support" answer column:
	Y	Implemented
	N	Not implemented
	–	No answer required
	Ig	The item is ignored (i.e., processed syntactically but not semantically)
The RIICS proforma specification is formed by copying clauses 7.2.2, 7.2.3, 7.2.4, 7.2.5, 7.2.6, 7.2.7, 7.2.8, 7.2.9, 7.2.10 and 7.2.11, completing the tables except for the "Support" and "AdditionalInfo" columns. RIICS proforma shall provide tables for OAS syntax elements which are not only defined in REST interface specificationdefinition, but also contained in the subset for ICS. To form an RIICS from an RIICS proforma, the supplier of the implementation shall fill in the "Support" and, if appropriate, "AdditionalInfo" columns of all the tables in the RIICS proforma.
7.2.2	Path support proforma
The purpose of the proforma for path support is to provide a mechanism for a supplier of an implementation who claims conformance to a path specification to provide conformance information in a standard form.
The path support proforma is given in Table 7-1:
Table 7-1 – path support table
	Index
	SubIndex
	PathIdentifier
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field is made up of a consecutive number for readers of the RIICS to refer to each support table. Each support table is given a unique number as table index, which is also a part of the table name, according to the containment relationship of OAS syntax elements defined in the REST interface definition specificationfile. All the path items in a path support table are given the same index as the table index.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each path item. Each path defined in athe REST interface definition specificationfile is given a unique number as its sub-index.
–	The "PathIdentifier" field is the absolute name of the path, which is actually part of the Uniform Resource Identifier (URI)L.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this path.
–	For each path, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this path is supported or not.
7.2.3	Operation support proforma
The purpose of the proforma for operation support is to provide a mechanism for a supplier of an implementation who claims conformance to an operation specification to provide conformance information in a standard form.
The operation support proforma is given in Table 7-2:
Table 7-2 – operation support table
	Index
	SubIndex
	OperationID
	HTTPMethod
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent path to which this operation belongs. All the operation items in an operation support table are given the same index as the table index.
–	The "SubIndex" field is the unique reference of the operation.
–	The "OperationID" field is to be filled in withindicates the operation name.
–	The "HTTPMethod" field indicates the request method of the operation. Its value complies with the provisions of HTTP1.1 protocol.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this operation.
–	For each operation, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether an operation is supported or not.
7.2.4	Parameter support proforma
The purpose of the proforma for parameter support is to provide a mechanism for a supplier of an implementation who claims conformance to a parameter specification to provide conformance information in a standard form.
The parameter support proforma is given in Table 7-3:
Table 7-3 – parameter support table
	Index
	SubIndex
	Parameter
Name
	Parameter
Position
	AllowEmpty
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent operation to which this parameter belongs.
–	The "SubIndex" field is the unique reference of a parameter.
–	The "ParameterName" field is the absolute name of the parameter.
–	"ParameterPosition" field specifies the position of the parameter. Possible values are "query", "header", "path" or "cookie".
–	The "AllowEmpty" field sets the ability to pass empty-valued parameters. This is valid only for query parameters and allows sending a parameter with an empty value.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this parameter.
	In addition, Attributes related to parameter serialization rules can also be filled in this field.
–	For each parameter, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this parameter is supported or not.
7.2.5	RequestBody support proforma
The purpose of the proforma for requestBody support is to provide a mechanism for a supplier of an implementation who claims conformance to a request body specification to provide conformance information in a standard form.
The requestBody support proforma is given in Table 7-4:
Table 7-4 – requestBody support table
	Index
	SubIndex
	RequestBodyName
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent operation of this request body.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each request body.
–	The "RequestBodyName" field is the absolute name of the request body.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this request body.
–	For each request body, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this requestBody is supported or not.
7.2.6	Response support proforma
The purpose of the proforma for response support is to provide a mechanism for a supplier of an implementation who claims conformance to a response specification to provide conformance information in a standard form.
The response support proforma is given in Table 7-5:
Table 7-5 – response support table
	Index
	SubIndex
	HTTPStatusCode
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent operation of this response.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each response.
–	The "HTTPStatusCode" field displayshows the HTTP status code indicating the status of the executed operation. The available status codes are defined in [RFC 7231].
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this response.
–	For each response, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this response is supported or not.
7.2.7	Header support proforma
The purpose of the proforma for header support is to provide a mechanism for a supplier of an implementation who claims conformance to a response header specification to provide conformance information in a standard form.
The header support proforma is given in Table 7-6:
Table 7-6 – header support table
	Index
	SubIndex
	AttributeName
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent response of this header.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each header attribute.
–	The "AttributeName" field is the name of an attribute in the response header.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this header attribute.
–	For each header attribute, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this header attribute is supported or not.
7.2.8	Content support proforma
The purpose of the proforma for content support is to provide a mechanism for a supplier of an implementation who claims conformance to a content specification to provide conformance information in a standard form.
The content support proforma is given in Table 7-7:
Table 7-7 – content support table
	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent syntax element of this content, and according to Figure 2, the parent syntax element can be either a requestBody, a response, or a header.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each content.
–	The "MediaType" field specifies the media type of transmitted data.Values of this field should be in compliance with [RFC 6838].
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this content.
–	For each content, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this content is supported or not.
7.2.9	DdataType support proforma
The purpose of the proforma for dataType support is to provide a mechanism for a supplier of an implementation who claims conformance to a data type specification to provide conformance information in a standard form.
The dataType support proforma is given in Table 7-8:
Table 7-8 – dataType support table
	Index
	SubIndex
	Name
	Schema
Type
	Data
Type
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent syntax element of this data type (in schema).
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each data type.
–	The "Name" field shows the name of the data type.
–	The "SchemaType" field is used to describe the association between the data type and other data types. There are three optional values for this column: object.property, array.item, or null.
–	The "DataType" field represents the basic type of a data type. This attribute is primitively taken from the definition of data type in JSON/YAML Schema and adjusted to the OpenAPI specification. The fillable values are null, string, boolean, number, integer, object and array.
–	The "Format" field is used to defineindicate inthe detailed the data type being used.
–	The "Constrains" field records the constraints on the data type, such as default value, maximum value, minimum value, maximum length, minimum length and so on.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this data type.
–	For each data type, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this data type is supported or not.
7.2.10 Callback support proforma
The purpose of the proforma for callback support is to provide a mechanism for a supplier of an implementation who claims conformance to a callback specification to provide conformance information in a standard form.
The callback support proforma is given in Table 7-9:
Table 7-9 – callback support table
	Index
	SubIndex
	EventName
	AdditionalInfo
	Status
	Support

	
	
	
	
	
	

where:
–	The "Index" field specifies the index of the parent syntax operationelement of this callback.
–	The "SubIndex" field is made up of a consecutive number for readers of the RIICS to refer to each callback.
–	The "EventName" field shows the name of the callback event.
–	The "AdditionalInfo" field is used to provide a space for the implementer to add more specific information about this callback.
–	For each callback, if it is mandatory, the "Status" field should be filled with "m"; if it is optional, the "Status" should be filled with "o".
–	The "Support" field is used for suppliers to claim whether this content is supported or not.
7.2.11	Tag profile
In thea REST interface definition filespecification, the Tag object is used to classify operations. In RIICS proforma, tag profile makes REST interface elements easiery to be grouped and navigatedbrowse and retrieve.
The tag profile is given in Table 7-10:
Table 7-10 – tag profile
	Index
	TagIdentifier
	PathSubIndex
	PathIdentifier
	OperationIndex
	OperationID

	
	
	
	
	
	

where:
–	The "Index" field in the tag profile specifies the index of theis always filled with "–" tag, which is a number.
–	The "TagIdentifier" field shows the name of the tag.
–	The "PathSubIndex" field indicates is the index of the path whose operation is marked by the tag.made up of a consecutive number for readers of the RIICS to refer to each tag.
–	The "PathIdentifier" field indicates the name of the path whosecorresponding to the operation is marked by the tag.
–	The "OperationIndex" field indicates the index ofhas the same format as Index and SubIndex, and corresponds to the sub-index of the operation marked by the tag, which should have the same value of the “Subindex” field in the corresponding operation support table of the same operationID.
–	"OperationID" field has indicates the name of the same value as the "OperationID" attribute of the operation marked by the tag.

[bookmark: _Toc344425883][bookmark: _Toc344420899]8	Instruction for completing the RIICS proformas
This clause gives the instructions for completing each column defined in clause 7.2.
[bookmark: _Toc395862411][bookmark: _Toc344420900][bookmark: _Toc344425884][bookmark: _Toc408558303]8.1	Definition of supported
A capability is said to be supported if the IUT is able to realize the specified functionality.
8.2	The "Index" column
Located in the leftmost column of each row,. The "Index" column is used to uniquely identify all support tables in the RIICS proforma. The numbering is made up of consecutive numbers separated by character ".", which exhibits the containment relationship between OAS syntax structureelements of a specific REST interface definition. The containment relationship can be referred to in clause 7.1.
As the basis of index number recursion, the "Index" column is filled with "–" when the item is a tag or one of the topmost path syntax elements in OAS syntax tree. Otherwise, for each item in RIICS proforma, the "Index" column specifies the super-clause item of the item by copying the value of the “SubIndex” column of the super-clause item.
8.3	The “SubIndex” column
The "“SubIndex"” column is used to uniquely identify all possible implementation details within the RIICS proforma. It has a similar meaning and the same format as the "Index" column.
The subindex number is constructed with a sequence as follows:
a)	a reference to the super-clause of the item;
b)	the separating character ".";
c)	a unique number.
For each row, the "Index" column is a reference to its super-clause item, while the "“SubIndex"” column identifies the item itself.
The above rules are also applicable for the "PathIndex" and "OperationIndex" column.
8.4	The "Support" column
The "Support" column shall be completed, by the supplier or implementer, to indicate the level of support, provided by the implementation, for each item. The available selections for this field are listed in clause 7.2.1.
The following are the guidelines for completing this field:
a)	If an item is claimed as "supported", all the mandatory items it contains must also be supported. Otherwise, the "Support" column can just be filled with 'N'.
b)	If the "Status" column of an item is filled with '-', the only selection for the corresponding "Support" column is '-'.
c)	In the RIICS proforma tables, every item marked with 'm' should be supported by the IUT.
8.5	The "Additional information" column
The "Additional information" column may contains additional information provided by suppliers not contained anywhere else. To achieve RIICS for each proforma there may be some important and necessary information that is not or cannot be contained in any column of the row. In such cases, suppliers can complete this field with this information.
[bookmark: _Toc344425889][bookmark: _Toc344420905][bookmark: _Toc408558308][bookmark: _Toc395862416]8.6	The "PathIdentifier" column
The value will be filled in the "PathIdentifier" column of the "path support proforma" is part of an URLI in string format, which should comply with the standard [RFC 3986] specification.
[bookmark: _Toc344425890][bookmark: _Toc344420906][bookmark: _Toc408558309][bookmark: _Toc395862417]8.7	The "OperationID" column
The "OperationID" column in the "operation support proforma" can be used to identify and distinguish interface requests in a REST interface definitionspecification. The OperationID must be unique among all operations described in an RIICS proforma.
[bookmark: _Toc408558310]8.8	The "HTTPMethod" column
The "HTTPMethod" column in the "operation support proforma" records the name of request methods in string format, such as "GET", "POST", "UPDATE", "DELETE", etc. The value to be filled in this column must conform to the definitions in the HTTP1.1 standard [RFC 7231].
[bookmark: _Toc408558311][bookmark: _Toc344420907][bookmark: _Toc344425891][bookmark: _Toc395862418]8.9	The "ParameterPosition" column
Thise "ParameterPosition" column in the "parameter support proforma" shows the location of parameters. Possible values are "query", "header", "path" or "cookie", which correspond to query parameters, request header parameters, path parameters and cookie parameters respectively.
[bookmark: _Toc408558312][bookmark: _Toc344425892][bookmark: _Toc395862419][bookmark: _Toc344420908]8.10	The "AllowEmpty" column
The "AllowEmpty" column in the "parameter support proforma" sets the ability to pass empty-valued parameters. This column is valid only for query parameters and allows sending a parameter with an empty value. The Ddefault value is "false".
[bookmark: _Toc344420909][bookmark: _Toc408558313][bookmark: _Toc395862420][bookmark: _Toc344425893]8.11	The "HTTPStatusCode" column
The "HTTPStatusCode" column in the "response support proforma" indicates the name of the response. Each HTTP status code corresponds to a response message, so it can be filled in this column with the HTTP response status code as the name of the HTTP response. The possible status code values can be found in [RFC 7231].
8.12	The "AttributeName" column
The "AttributeName" column in the "header support proforma" records the name of the attributes in the response header. The values of this column are not case sensitive. The media type of the transmitted data will be defined in the "Content support proforma" in the RIICS proforma, so when the attribute name in the response header is "Content-Type", the attribute will be ignored.
8.13	The "MediaType" column
The "MediaType" column in the "content support proforma" specifiesd the media type of the transmitted data. The value of the media type must conform to the definition in [RFC 6838].
8.14	The "SchemaType" column
The "SchemaType" column in the "dataType support proforma" is used to describe the association between the data type represented by this row and other data types.
There are three optional values for this column:
a) [bookmark: _Hlk71574303]When the row of data is an attribute of an object, this column is filled with "object.property".
b) When the row of data is an item in an array, this column is filled with "array.item".
c)	This column is left emptynot populated when the data in this row is independent of other data types.
8.15	The "DataType" column
The "DataType" column in the "dataType support proforma" represents the basic type of a data type. This column is taken from the definition of data type in JSON/YAML Schema, and adjusted according to the OpenAPI specification. The fillable values are "null", "string", "boolean", "number", "integer", "object" and "array".
8.16	The "Format" column
The "Format" column in the "dataType support proforma" indicates the data format of a data type. The fillable values in this column can be found in the following table:
Table 8-1 – basic data types
	type
	format
	Descriptions

	integer
	int32
	signed 32 bits

	integer
	int64
	signed 64 bits (a.k.a long)

	number
	float
	single precision floating point real number

	number
	double
	double precision floating point real number

	string
	
	an unbounded list of normal characters

	string
	byte
	base64 encoded characters

	string
	binary
	any sequence of octets

	boolean
	
	The value can be true(1) or false(0).

	string
	date
	aAs defined by full-date - [RFC 3339]

	string
	date-time
	aAs defined by date-time - [RFC 3339]

	string
	password
	aA hint to UIs to obscure input.

8.17	The "Constrains" column
The "Constrains" column in the "dataType support proforma" is used to identify other constraints on a data type, such as default, maximum, minimum, maximum, minimum, etc. This column will be populatedfilled with zero or more key-value pairs in string format and separated with semicolons ";". The format is like "key1=value1; key2=value2; …".

Appendix I

Examples of REST-based interface ICS proforma specification
I.1 YAML definition example
This clause will provides an YAML interface definition example, based on which the example RIICS proformas will beare illustrated. The following is an example of a REST interface definition:
Table I.1 -1 An example of a REST interface definition
	openapi: 3.0.3
info:
 title: TestCase
 version: 1.0.0
tags:
 - name: PhysicalNetwork
 - name: VirtualNetwork
paths:
 /pn:
 get:
 tags:
 - PhysicalNetwork
 operationId: getPN
 responses:
 '200':
 description: success
 content:
 application/json:
 schema:
 type: object
 properties:
 pnName:
 type: string
 '404':
 description: PN not found
 content: {}
 '405':
 description: Validation exception
 content: {}
 /vn:
 get:
 tags:
 - VirtualNetwork
 operationId: getVN
 parameters:
 - name: vnID
 in: query
 required: false
 schema:
 type: string
 responses:
 '200':
 description: success
 content:
 application/json:
 schema:
 type: object
 properties:
 vnName:
 type: string
 headers:
 'Content-Length':
 schema:
 type: string
 post:
 tags:
 - VirtualNetwork
 operationId: postVN
 requestBody:
 content:
 application/json:
 schema:
 type: object
 properties:
 vnName:
 type: string
 responses:
 '200':
 description: success
 callbacks:
 vnCallback:
 '{$vnCallback}':
 post:
 requestBody:
 description: Callback payload
 content:
 application/json:
 schema:
 type: integer
 format: int32
 responses:
 '200':
 description: success

I.2 RIICS proforma example
The RIICS proforma examples will be provided in this clause, based on the YAML interface definition provided in I.1.
1. tag profile

	Index
	TagIdentifier
	PathIndex
	PathIdentifier
	OperationIndex
	OperationID

	1.
	"PhysicalNetwork"
	2.1
	"/pn"
	2.1.1
	"getPN"

	2.
	"VirtualNetwork"
	2.2
	"/vn"
	2.2.1
	"getVN"

	
	
	
	"/vn"
	2.2.2
	"postVN"

 2. path support table

	Index
	SubIndex
	PathIdentifier
	AdditionalInfo
	Status
	Support

	
	2.1
	"/pn"
	
	m
	

	
	2.2
	"/vn"
	
	m
	

2.1 operation support table

	Index
	SubIndex
	OperationID
	HTTPMethod
	AdditionalInfo
	Status
	Support

	2.1
	2.1.1
	"getPN"
	"get"
	
	m
	

2.1.1 response support table

	Index
	SubIndex
	HTTPStatusCode
	AdditionalInfo
	Status
	Support

	2.1.1
	2.1.1.3.1
	"200"
	
	m
	

	2.1.1
	2.1.1.3.2
	"404"
	
	m
	

	2.1.1
	2.1.1.3.3
	"405"
	
	m
	

2.1.1.3.1 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.1.1.3.1
	2.1.1.3.1.2.1
	"application/json"
	
	m
	

2.1.1.3.1.2.1 dataType support table

	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1
	
	
	"object"
	
	
	
	m
	

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1.1
	"pnName"
	object.property
	"string"
	
	
	
	m
	

2.1.1.3.2 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.1.1.3.2
	2.1.1.3.2.2.1
	
	
	
	

2.1.1.3.3 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.1.1.3.3
	2.1.1.3.3.2.1
	
	
	
	

2.2 operation support table

	Index
	SubIndex
	OperationID
	HTTPMethod
	AdditionalInfo
	Status
	Support

	2.2
	2.2.1
	"getVN"
	"get"
	
	m
	

	2.2
	2.2.2
	"postVN"
	"post"
	
	m
	

2.2.1 parameter support table

	Index
	SubIndex
	ParameterName
	ParameterPosition
	AllowEmpty
	AdditionalInfo
	Status
	Support

	2.2.1
	2.2.1.1.1
	"vnID"
	"query"
	true
	
	o
	

2.2.1 response support table

	Index
	SubIndex
	HTTPStatusCode
	AdditionalInfo
	Status
	Support

	2.2.1
	2.2.1.3.1
	"200"
	
	m
	

2.2.1.3.1 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.2.1.3.1
	2.2.1.3.1.2.1
	"application/json"
	
	m
	

2.2.1.3.1.2.1 dataType support table

	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.2.1.3.1.2.1
	2.2.1.3.1.2.1.1
	
	
	"object"
	
	
	
	m
	

	2.2.1.3.1.2.1
	2.2.1.3.1.2.1.1.1
	"vnName"
	object.property
	"string"
	
	
	
	m
	

2.2.1.3.1 header support table

	Index
	SubIndex
	AttributeName
	AdditionalInfo
	Status
	Support

	2.2.1.3.1
	2.2.1.3.1.1.1
	"Content-Length"
	
	m
	

2.2.2 requestBody support table

	Index
	SubIndex
	RequestBodyName
	AdditionalInfo
	Status
	Support

	2.2.2
	2.2.2.2.1
	
	
	m
	

2.2.2.2.1 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.2.2.2.1
	2.2.2.2.1.1
	"application/json"
	
	m
	

2.2.2.2.1.1 dataType support table

	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.2.2.2.1.1
	2.2.2.2.1.1.1
	
	
	"object"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.1
	"vnName"
	object.property
	"string"
	
	
	
	m
	

2.2.2 response support table

	Index
	SubIndex
	HTTPStatusCode
	AdditionalInfo
	Status
	Support

	2.2.2
	2.2.2.3.1
	"200"
	
	m
	

2.2.2 callback support table

	Index
	SubIndex
	EventName
	AdditionalInfo
	Status
	Support

	2.2.2
	2.2.2.1
	"vnCallback"
	
	m
	

2.2.2.1 path support table

	Index
	SubIndex
	PathIdentifier
	AdditionalInfo
	Status
	Support

	2.2.2.1
	2.2.2.1.1
	"{$vnCallback}"
	
	m
	

2.2.2.1.1 operation support table

	Index
	SubIndex
	OperationID
	HTTPMethod
	AdditionalInfo
	Status
	Support

	2.2.2.1.1
	2.2.2.1.1.1
	
	"post"
	
	m
	

2.2.2.1.1.1 requestBody support table

	Index
	SubIndex
	RequestBodyName
	AdditionalInfo
	Status
	Support

	2.2.2.1.1.1
	2.2.2.1.1.1.2.1
	
	
	m
	

2.2.2.1.1.1.2.1 content support table

	Index
	SubIndex
	MediaType
	AdditionalInfo
	Status
	Support

	2.2.2.1.1.1.2.1
	2.2.2.1.1.1.2.1.1
	"application/json"
	
	m
	

2.2.2.1.1.1.2.1.1 dataType support table

	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.2.2.1.1.1.2.1.1
	2.2.2.1.1.1.2.1.1.1
	
	
	"integer"
	"int32"
	
	
	m
	

2.2.2.1.1.1 response support table

	Index
	SubIndex
	HTTPStatusCode
	AdditionalInfo
	Status
	Support

	2.2.2.1.1.1
	2.2.2.1.1.1.3.1
	"200"
	
	m
	

[bookmark: _Toc344420989][bookmark: _Toc344425896][bookmark: _Toc408558318][bookmark: _Toc395862425]

Appendix II

An example showing "types support proforma" specification
(This appendix does not form an integral part of this Recommendation.)
II.1 YAML definition example
This clause will provides an YAML interface definition example, based on which the example RIICS proformas will beare illustrated. This example focuses on showing the content of the "dataType support proforma". The omitted parts are the same as those already shown in I.1.
Table II.1 -1 An example of a REST interface definition
	openapi: 3.0.3
info:
 title: TestCase
 version: 1.0.1
tags:
 - name: PhysicalNetwork
 - name: VirtualNetwork
paths:
 /pn:
 get:
 tags:
 - PhysicalNetwork
 operationId: getPN
 responses:
 '200':
 description: success
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/physicalNetwork'
 ……
 /vn:
 get:
 ……
 post:
 tags:
 - VirtualNetwork
 operationId: postVN
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/virtualNetwork'
 responses:
 ……
 callbacks:
 ……
components:
 schemas:
 device:
 type: object
 properties:
 deviceID:
 type: string
 deviceName:
 type: string
 physicalNetwork:
 type: object
 properties:
 deviceList:
 type: array
 items:
 $ref: '#/components/schemas/device'
 virtualNetwork:
 type: object
 properties:
 vnID:
 type: integer
 vnName:
 type: string
 format: byte
 pnCovered:
 $ref: '#/components/schemas/physicalNetwork'

[bookmark: _Toc408558320][bookmark: _Toc395862427]II.2	RIICS proforma example
The RIICS proformas arewill be provided as an example in this clause, based on the example YAML interface definition provided in II.1. Only two dataType support proformas are shown in this section, and other proformas are all same as those in I.2.
2.1.1.3.1.2.1 dataType support table
	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1
	"physicalNetwork"
	
	"object"
	
	
	
	m
	

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1.1
	"deviceList"
	object.property
	"array"
	
	
	
	m
	

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1.1.1
	"device"
	array.item
	"object"
	
	
	
	m
	

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1.1.1.1
	"deviceID"
	object.property
	"string"
	
	
	
	m
	

	2.1.1.3.1.2.1
	2.1.1.3.1.2.1.1.1.1.2
	"deviceName"
	object.property
	"string"
	
	
	
	m
	

2.2.2.2.1.1 dataType support table
	Index
	SubIndex
	Name
	SchemaType
	DataType
	Format
	Constrains
	AdditionalInfo
	Status
	Support

	2.2.2.2.1.1
	2.2.2.2.1.1.1
	"virtualNetwork"
	
	"object"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.1
	"vnID"
	object.property
	"integer"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.2
	"vnName"
	object.property
	"string"
	"byte"
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3
	"pnCovered"
	object.property
	
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3.1
	"physicalNetwork"
	object.property
	"object"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3.1.1
	"deviceList"
	object.property
	"array"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3.1.1.1
	"device"
	array.item
	"object"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3.1.1.1.1
	"deviceID"
	object.property
	"string"
	
	
	
	m
	

	2.2.2.2.1.1
	2.2.2.2.1.1.1.3.1.1.1.2
	"deviceName"
	object.property
	"string"
	
	
	
	m
	

Bibliography

	[b-OAI-OAS3]
	OpenAPI Initiative, OpenAPI Specification Version 3.0.0 (2017), http://spec.openapis.org/oas/v3.0.0.

image1.GIF

image2.png
O summary

QO description

get- O

put-©

QO openapi post-©

info-Q delete ()

servers Q options)

Lpath}-O
paths-O head O
O Ax-

OpenAPI 3.0 O components QO patch-©

security © trace Q

tags O servers ©Q

externalDocs © parameters ()
o Ax- O Ax-

O Sref

image3.png
summary
description

get

put

post
delete

options

head
patch
trace

servers

OpenAPI 3.0

parameters

Ay

Sref

components

externalDocs

image4.emf
Path

Operation

Parameter

Schema

Tag

Response

RequestBody

Content

Header

Callback

1 1

0..1

0..*

1

1..*

0..*

1..*

1

1..*

0..1 0..*

1 1

0..*

1 1

0..*

1..*

1

1

1

1

1

1

1

M1
M2
M3
M4
Path
<<构造型>>
参数

Operation
<<构造型>>
参数

Parameter
<<构造型>>
参数

M1
M2
M3
M4
Schema
<<构造型>>
参数

M1
M2
M3
M4
Tag
<<构造型>>
参数

Response
<<构造型>>
参数

RequestBody
<<构造型>>
参数

M1
M2
M3
M4
M1
M2
M3
M4
Content
<<构造型>>
参数

M1
M2
M3
M4
Header
<<构造型>>
参数

M1
M2
M3
M4

M1
M2
M3
M4
M1
M2
M3
M4
Callback
<<构造型>>
参数

M1
M2
M3
M4
M1
M2
M3
M4
1
1
0..1
0..*
1
1..*
0..*
1..*
1
1..*
0..1
0..*
1
1
0..*
1
1
0..*
1..*
1
1
1
1
1
1
1

M1
M2
M3
M4

M1
M2
M3
M4

