

- 2 -
3GPP TSG-SA5 Meeting #139-e 	S5-215016
e-meeting, 11 - 20 October 2021

Source:	TMF
Title:	Liaison Reply 3GPP LS S5-213522 to TM Forum on Intent Management
Document for:	Information, Discussion
Agenda Item: 5.3

Source:	TM Forum 	Meeting, date:	23rd June 2021 AN TL
Teams:	TM Forum Autonomous Networks Technical Architecture
Title: 	Liaison	Reply 3GPP LS S5-213522 to TM Forum on Intent Management
Date sent:	June 28, 2021
LIAISON STATEMENT
To:	3GPP: 3GPP Liaisons Coordinator, mailto:3GPPLiaison@etsi.org	SA:	SA5:	Name:			Volodymyr Malashnyak	E-mail Address: 	volodymyr.malashnyak@ericsson.com
	Reply 3GPP LS S5-213522 to TM Forum on Intent Management
Deadline:	None
Contacts:		
	Cecilia Ortega Lagos, 	TM Forum, Liaison Manager, 	Product & Portfolio Management		Tel: 	+1 973 944 5100	Email: cortegalagos@tmforum.org	

The TM Forum Autonomous Network Team thanks 3GPP SA5 for the liaison information provided in
3GPP LS S5-213522 to TM Forum titled:
LS to TM Forum on Intent Management
Feedback
The Autonomous Networks team has reviewed the SA5 liaison document and has the following comments:
Referring to your questions:
Question 1: Scope of TM Forum work on intent
The Autonomous Networks Team has progressed beyond the Work referenced in “IG1230 Autonomous Networks Technical Architecture v1.0.0”.
In answer to your questions:
· What is the scope of the TM Forum work related to definitions of the intent-driven management (as per cl.7.6 of IG1230), intent-driven API (as per IG1230, cl.7.5)?
· We intend to develop Intent-based APIs as per IG1230 Sec7.6.
· Currently, we are developing the Functional requirements for this family of APIs in IG1253 Intent in Autonomous Networks v1.0.0
· This is planned as a five-part document, of which three parts have just been published for member review.
· The available documents are attached to this document for SA5 review and feedback.
Question 2: TM Forum Intent driven management and API Deliverables.
· What are the main deliverables of this work, and when these are publicly available?
· In addition to the material in IG1230, we have just published IG1260 Autonomous Networks Project Deliverables Guide v1.0.0 - which sets out the published deliverables and the current plans for future deliverables.

Requested actions
Action 1:
TM Forum kindly asks 3GPP SA5 to take the above information into account in Release 17 and provide feedback on our IG1253 documents.
Action 2:
Please keep TM Forum informed of the progress of SA5 work related to intent-driven management.

Concluding Remarks
We look forward to your feedback and the opportunity to collaborate further.

With SA5 reviewing our documents on Intent and APIs and TM Forum doing the same with SA5 documents mentioned in this liaison S5-213522 and S5-213444, it may be valuable to hold an e-meeting / teleconference to discuss areas for alignment and possible joint development of Intent APIs.

Our API program is supported by automated tooling that allows the generation of API specifications from data schemas and associated testing Compatibility Tool Kits (CTK), Reference Implementations, and Postman Collections. We have successfully established joint development procedures and a framework for developing APIs with other SDOs. We are working with MEF to develop MEF extended versions of our interfaces with their MEF Payload, and we could share these experiences with SA5.

Regards,

Cecilia Ortega Lagos
TM Forum

Attachments:
IG1260 Autonomous Networks Project Deliverables Guide v1.0.0
IG1253 Intent in Autonomous Networks v1.0.0
IG1253A Intent Modeling v1.0.0
IG1253C Intent Life Cycle Management and Interface v1.0.0

image1.emf
IG1260_Autonomou

s_Networks_Project_Deliverables_Guide_v1.0.0.docx

IG1260_Autonomous_Networks_Project_Deliverables_Guide_v1.0.0.docx
[image:]

[image:] IG1260 Autonomous Networks Project Deliverables Guide

TM Forum Reference

Autonomous Networks Project Deliverables Guide

IG1260
Team Approved Date: 16-Apr-2021

Release Status: Pre-production	Approval Status: Team Approved
Version 1.0.0	IPR Mode: RAND

[bookmark: _Toc175037842][bookmark: _Toc278370026][bookmark: _Toc336283482][bookmark: _Toc467247665][bookmark: _Toc71208243]Notice

Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304

Parsippany, NJ 07054, USA

Tel No. +1 973 944 5100

Fax No. +1 973 998 7916

TM Forum Web Page: www.tmforum.org

Table of Contents
Notice	2
Table of Contents	3
List of Figures	4
1.	Introduction	5
2.	What is the Autonomous Networks Project?	6
3.	Getting Started	7
3.1.Business Architecture workstream	7
3.2.Technical Architecture workstream	7
4.	Project Deliverables	8
4.1.Published Deliverables	8
4.2.Planned Deliverables	9
5.	Member Whitepapers	13
6.	Contact the team	14
7.	Administrative Appendix	15
7.1.Document History	15
7.1.1.	Version History	15
7.1.2.	Release History	15
7.2.Acknowledgments	15

[bookmark: scroll-bookmark-1]

[bookmark: _Toc71208245]List of Figures

Figure 1. AN Project Deliverables	8

Figure 2. IG1253 Unified Intent Guide(s)	12

[bookmark: scroll-bookmark-3][bookmark: _Toc71208246]Introduction

TM Forum members, working in the collaboration project on Autonomous Networks, have produced, and are progressing, a series of guides, best practices, and standards. This short guide catalogs the published deliverables but also references the guides currently in development and those planned for publication later in the year.

[bookmark: scroll-bookmark-4][bookmark: _Toc71208247]What is the Autonomous Networks Project?

Going from automation to autonomy is both a business and technology challenge that will need some straightforward implementation and integration patterns to achieve self-operating autonomous networks. These concepts and patterns must be agreed upon and adopted by all the stakeholders in the larger AN ecosystem. TM Forum established the Autonomous Networks Project to start this work.

As stated in our AN Vision guide (IG1193), Autonomous Networks will:

· Provide fully automated Zero-X (zero wait, zero touch, zero trouble) innovative, critical network/ICT services for vertical industries users and consumers.

· Support Self-X (self-serving, self-fulfilling and self-assuring) network/ICT infrastructures and services for enabling digital transformation of vertical and telecom industries through the full lifecycle of operations.

· Offer disruptive services for innovative user experience, mission critical services based on fully automated lifecycle operations and self-organizing, dynamic optimized resources.

· Comprise a simplified network architecture, virtualized components, automating agents and intelligent decision engines to create intelligent automated business/network operations for the closed-loop of new digital business.

[bookmark: scroll-bookmark-5][bookmark: _Toc71208248]Getting Started

The table below lists the leadership team for the AN Program and also the workstreams in which the program is organized.

		Project Role

		Name

		Company

		Program Director

		Aaron Boasman-Patel - VP, AI and Customer Experience

		TM Forum

		Project Manager

		Alan Pope, Collaboration Manager

		TM Forum

		Subject Matter Expert

		Dave Milham, Chief Architect

		TM Forum

		Project Sponsor

		Christian Maître

		Orange

		Workstream Leaders

		AN Business Architecture

		Dong Sun

		Futurewei

		AN Technical Architecture

		Kevin McDonnell

Yuval Stein

		Huawei

TEOCO

[bookmark: scroll-bookmark-6][bookmark: _Toc71208249]Business Architecture workstream

The Business Architecture (BA) workstream focused on business requirements and AN framework - and as such represents the business need and solution to Users and CSPs. It is developed per the AN Vision (IG1193) and define the overall business requirements, services, framework, AN levels, key business capabilities, E2E full lifecycle of AN operations and provides example use cases to illustrate the usage of AN. It serves as an input to the detailed work in the Technical Architecture (TA) workstream, as well as the baseline to the regularly published AN white paper and the SDO industry collaboration efforts.

[bookmark: scroll-bookmark-7][bookmark: _Toc71208250]Technical Architecture workstream

The Technical Architecture (TA) workstream details how the TM Forum AN Framework can help realize these future autonomous networks. The AN TA builds upon the AN Framework (while also leveraging other TMF frameworks as ODA, eTOM, SID, and Open API program) to propose an evolutionary path towards the mechanisms that are required to deliver a layered architecture (operational layers and autonomous domains), one that decouples integration complexity (intent) and leverages autonomic closed control loops to realize self-operating capabilities.

[bookmark: scroll-bookmark-8][bookmark: _Toc71208251]Project Deliverables

The AN project deliverables combine to form a Blueprint - a series of guides and standards that together form the steps to taken to achieve the AN vision. This AN Blueprint is organized into 3 subject areas 1) Vision, 2) Business Architecture and 3) Technical Architecture (See Figure 1. below).

[image:]

[bookmark: _Toc71207285]Figure 1. AN Project Deliverables

[bookmark: scroll-bookmark-9][bookmark: _Toc71208252]Published Deliverables

		Document

		Deliverable

		Description

		Version

		Workstream

		IG1193

		Cross-Industry Autonomous Networks – Vision and Roadmap.

		This document aims to share the vision and roadmap of autonomous networks, including the motivation, vision, new ecosystem, collaboration and business models, overarching framework and autonomous levels, roadmap and industry collaboration. It is intended to serve as the general guideline for pertinent work streams and work items, including user stories and use cases, business requirements/metrics and architecture, technical architecture and interface/APIs specs, PoCs/catalyst projects, testing and verification, as well as industry collaboration. Moreover, it will be used as the baseline for the marketing plan, campaign, social events and public whitepaper on behalf of the TM Forum and member companies.

		1.0.0

		ALL

		IG1218

		Autonomous Networks – Business requirements & architecture.

		This document provides business requirements and business architecture of services and infrastructure supported by Autonomous Networks, including the user requirements per user stories, key business capabilities and architecture, and related key metrics for measuring autonomous levels, as well as new business models of production, ecosystem, and collaboration.

		1.1.0

		BA

		IG1229

		Guiding Principles for building and measuring Autonomous Network Solutions v1.0.0

		This document outlines a set of guiding principles to help support the design, build, and measurement of an autonomous network (AN) solution. The principles are varied: some are high level to guide solutions design, whereas others address more granular issues regarding contextual, cultural, and pragmatic aspects of an implementation.

		1.0.0

		TA

		IG1230

		Autonomous Networks Technical Architecture v1.0.0

		One of the main drivers for automation in communications service providers’ (CSPs’) networks is the urgent need to reduce complexity so that they can lower operating costs. This is especially important as networks become software-defined and 5G is deployed. Even more importantly, CSPs must automate their networks and operations to deliver rapid service adaptation and deployment, with the dual objectives of improving customer satisfaction and increasing revenue. A new TM Forum project is addressing the complex business issues surrounding both, along with solving technical challenges.

		1.0.0

		TA

[bookmark: scroll-bookmark-10][bookmark: _Toc71208253]Planned Deliverables

		Ref#

		Deliverable Name

		Description

		Version

		Work stream

		Release

		Planned Publication Date / Sprint

		New or Updated

		IG1218

		AN Business Requirements and Framework

		This document provides business requirements and details of AN Framework.

		2.0.0

		BA

		R21.5

		2H 2021 - Sprint 4

		Update

		IG1218A

		Autonomous Networks Use Cases

		CSP Use cases as informative document in BA workstream

		1.0.0

		BA

		R21.5

		2H 2021 - Sprint 4

		New

		IG1218B

		Autonomous Networks Best Practices (CMCC)

		CSP operations best practices as informative document in BA workstream

		1.0.0

		BA

		R21.5

		2H 2021 - Sprint 4

		New

		IG1230

		Autonomous Networks Technical Architecture v1.1

		Minor revisions and updates.

		1.1

		TA

		R21.0

		2Q 2021 - Sprint 3

		Update

		IG1251

		Autonomous Networks Reference Architecture

		A normative architecture with identified reference points that builds on the context of parent deliverable AN TA IG1230. This document focuses on the architecture within the scope of AN Framework scope and describes the architectural principles and requirements the informs the architecture.

		1.0.0

		TA

		R21.0

		2Q 2021 - Sprint 3

		New

		IG1252

		Autonomous Networks Levels Guide

		A guide on using AN Level evaluation methodology. A common understanding of the levels of autonomy within an autonomous network - a way to indicate the maturity of the network autonomy, so that CSPs can first focus on the important features that should be prioritized to achieve a desired level of autonomy in their networks.

		1.0.0

		TA

		R21.0

		2Q 2021 - Sprint 3

		New

		IG1253

		Intent in Autonomous Networks

		A suite of guides that explains how the concept of intent can be used to specify the interactions between autonomous domains within the AN Framework.IG1253: Intent in Autonomous Networks (parent guide)

· IG1253A: Intent Ontology

· IG1253B: Intent Handling Scopes and Information Models

· IG1253C: Intent API and Life Cycle Management

· IG1253D: Intent Handling Capability Management

· IG1253E: Using Unified Intent - Use Cases, Scenarios and Examples.

Figure 2 below shows this suite of guide

		1.0.0

		TA

		R21.0 and R21.5

		2Q/3Q 2021 - Sprint 3/4

		New

		IG1259

		Study of Telecom Industry Intent Meta-Modeling Approaches

		This study explores the approaches followed by different standardization organizations for intent meta-modeling and highlights the readiness, relevance of use, and the context of usage of these techniques relative to the ontology based approach taken in IG1253.

		1.0.0

		TA

		R21.5

		3Q 2021 - Sprint 5

		New

		IG1254

		Control Loop Mechanism Guide

		Guide documenting Self-X capabilities realized by the AN technical architecture. Include details a new Closed Loop Definition Language - a machine-readable and machine-readable descriptor for designing closed loops for use within and across AN platforms and domains.

		1.0.0

		TA

		R21.5

		4Q 2021 - Sprint 6

		New

		TMF921

		Intent Management API Suite

		A formal API standard for the Intent APIs developed as part of the IG1253 guide and other catalyst inputs.

		1.0.0

		TA

		R21.5

		4Q 2021 - Sprint 6

		New

		The following guides are planned for late 2021/early 2022 and as such are not yet formally numbered.

		TRXXX

		Intent ABE added to SID (Information Framework GB922)

		A focused model covering the Intent Expression model with context for how existing parts of SID can be used in Intent expressions and outcomes

		1.0.0

		TA

		

		4Q 2021

		New

		TMFXXX

		Control Loop API

		Depends on progress of higher level Closed Loop guide

		1.0.0

		TA

		

		4Q 2021

		New

		TRXXX

		Control Loop Model

		A focused model covering closed loop as managed entity model.

		1.0.0

		TA

		

		1Q 2022

		New

[image:]

[bookmark: _Toc71207286]Figure 2. IG1253 Unified Intent Guide(s)

[bookmark: scroll-bookmark-11][bookmark: _Toc71208254]Member Whitepapers

		#

		Name

		Author

		Date

		Link

		1

		Autonomous Networks: Empowering Digital Transformation for Smart Societies and Industries

		Member Whitepaper

Contributors from 23 companies

		05 Oct 2020

		Link

Article

		2

		Autonomous Networks: Empowering Digital Transformation for the Telecoms Industry

		Member Whitepaper

Contributors from 7 companies

		15 May 2019

		Link

[image:]

AN Whitepaper 2.0 had contributions from 23 companies.

[bookmark: scroll-bookmark-12][bookmark: _Toc71208255]Contact the team

· Aaron Boasman-Patel - VP, AI and Customer Experience

· Ian Turkington, VP, Architecture and APIs

· David Milham, Chief Architect

· Alan Pope, Collaboration Manager

[bookmark: scroll-bookmark-13][bookmark: _Toc71208256]Administrative Appendix

[bookmark: scroll-bookmark-14][bookmark: _Toc71208257]Document History

[bookmark: scroll-bookmark-15][bookmark: _Toc71208258]Version History

		Version Number

		Date Modified

		Modified by:

		Description of changes

		1.0.0

		30-Apr-2021

		Alan Pope

		Final edits prior to publication

		

		

		

		

[bookmark: scroll-bookmark-16][bookmark: _Toc71208259]Release History

		Release Status

		Date Modified

		Modified by:

		Description of changes

		Pre-production

		30-Apr-2021

		Alan Pope

		Initial release

		

		

		

		

[bookmark: scroll-bookmark-17][bookmark: _Toc71208260]Acknowledgments

This document was prepared by Kevin McDonnell (Huawei) on behalf of the TM Forum AN Project.

TM Forum 2021. All Rights Reserved.

© TM Forum 2021. All Rights Reserved. Page 16 of 16

image1.png

image2.png

image3.png

image4.png

image5.png

image2.emf
IG1253_Intent_in_Au

tonomous_Networks_v1.0.0.docx

IG1253_Intent_in_Autonomous_Networks_v1.0.0.docx
[image:]

[image:] IG1253 Intent in Autonomous Networks v1.0.0

TM Forum Introductory Guide

Intent in Autonomous Networks

IG1253
Team Approved Date: 28-May-2021

Release Status: Pre-production	Approval Status: Team Approved
Version 1.0.0	IPR Mode: RAND

[bookmark: _Toc175037842][bookmark: _Toc278370026][bookmark: _Toc336283482][bookmark: _Toc467247665][bookmark: _Toc73947893][bookmark: _Toc73947972]Notice

Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

[bookmark: _Hlk57117974][bookmark: _Hlk57108552]181 New Road, Suite 304

Parsippany, NJ 07054 USA

Tel No. +1 862 227 1648

TM Forum Web Page: www.tmforum.org

Table of Contents
Notice	2
Table of Contents	3
List of Figures	8
List of Tables	9
Executive Summary	10
Introduction	11
1.	Document overview	12
1.1.	Scope and purpose	12
1.2.	Overview	12
2.	Motivation for intent	13
2.1.	Fully manual operation:	13
2.2.	Operation with automated execution	13
2.3.	Adaptive automation towards autonomy	15
2.4.	The purpose of intent	16
3.	Definition of Intent	17
3.1.	History of intent definition	17
3.2.	Definition of intent	17
4.	Properties of intent	20
4.1.	Declarative goals and utility: the wanted state	20
4.2.	Composible and additive	21
4.3.	Persistent and lifecycle managed	21
4.4.	Infrastructure agnostic and portable	21
4.5.	Measurable and grounded in data	22
5.	Expressiveness of intent	23
5.1.	SLA negotiations and agreement	23
5.2.	Delivery of user services	24
5.3.	Behavior of resource services	24
5.4.	Regulatory and legislative requirements	25
5.5.	Solution Bias	25
5.6.	Limit Risk Taking	26
5.7.	Common sense	26
5.8.	Communicate and escalate to humans	27
5.9.	Customer and resource value	28
5.10.	Default or minimum requirements	28
6.	Categorization of intent	30
7.	Principles of intent driven operation	32
7.1.	Intent Management function	32
7.2.	Intent reporting	33
7.3.	Intent in the autonomous network framework (ANF)	33
8.	Intent life-cycle	36
9.	RACI of intent and intent handling	38
9.1.	RACI for intent lifecycle management tasks	41
9.2.	RACI of intent handling capability management	45
10.	Intent handling interface	46
11.	Intent handling scope	48
12.	Intent handler capability management	51
12.1.	Intent handling profile	51
12.2.	Intent handler registration and discovery	52
13.	Modeling of intent objects and reports	54
13.1.	Model federation	55
13.2.	Cross SDO model federation	56
13.3.	Modeling standards and techniques	57
13.4.	Model Federation example	59
14.	Intent related closed loops	61
14.1.	Real-time control with intent	61
15.	Intent from natural and domain specific languages	63
15.1.	Modeling intent originating from domain specific languages	65
16.	Implementation aspects of intent management	68
16.1.	Concerns addressed through intent versus implementation	68
16.2.	Conflict detection and resolution	69
16.3.	Intent expressing the wanted ideal system state	70
17.	Future work	71
18.	Appendix A: Terms & Abbreviations Used within this Document	72
18.1.	Abbreviations & Acronyms	72
19.	Appendix B: References	73
20.	Administrative Appendix	74
20.1.	Document History	74
20.1.1.	Version History	74
20.1.2.	Release History	74
21.	Acknowledgments	75
21.1.	Guide Lead & Author	75
21.2.	Main Contributors	75
21.3.	Additional Inputs	75

[bookmark: scroll-bookmark-1][bookmark: scroll-bookmark-2]

[bookmark: _Toc73947895][bookmark: _Toc73947974]List of Figures

Figure 1. Intent management function	29

Figure 2. Example intent driven operation within the autonomous networks framework	31

Figure 3. Intent lifecycle phases	33

Figure 4. Parties involved in management of internal and external intent.	38

Figure 5. The intent handling management service and interface	43

Figure 6. Example intent handling scope	45

Figure 7. Multiple example intent handling scopes	46

Figure 8. Example profile of an intent handler.	48

Figure 9. Intent handler registration and discovery	50

Figure 10. Control loops related to intent driven operation	58

Figure 11. Intent interpretation on the periphery of autonomous networks	62

Figure 12. Introduction of intent interpretation	63

Figure 13. Various sources of intent	64

[bookmark: _Toc73947896][bookmark: _Toc73947975]List of Tables

Table 1. RACI assessment of intent driven operation	40

Table 2. RACI assessment of intent handling capability management	43

[bookmark: _Toc73947897][bookmark: _Toc73947976]Executive Summary

This document provides the proposal of the TM Forum Autonomous network project about intent based operation.

The role of intent in autonomous network is to communicate requirements, goals, constraints, and preferences to an autonomous system. This knowledge allows the system to evaluate the state of the controlled infrastructure and the utility of actions. It enables a level of autonomy, where the system can adapt its behavior and generate new solutions rather than just following human defined recipes and policies.

We introduce the intent management function as architectural building block for intent based operation. There will be multiple instances of intent management functions within an autonomous system with distinct sets of responsibilities. Intent management functions receive intent, make decisions about suitable actions to improve the intent fulfillment, control the execution of these actions and report on the progress.

Intents are knowledge objects with a life cycle that is actively managed by intent management functions. An intent management function in the role of intent owner creates intent to define and communicate requirements to other sub-systems and domains. Intent management function in the role of intent owners receive intents and operate the domain they are responsible for accordingly.

Intent owners and handlers participate in intent life cycle management through the intent interface. It is introduced as intent handling management service produced by the intent handler and consumed by the intent owner. The intent interface is solely concerned with life cycle management tasks of intent objects. It does not contain use case or domain specific aspects directly. Those would be contained within the intent objects.

This document proposes the modeling of intent objects as knowledge graphs. An intent common model specifies domain independent generic modeling artifacts such as the intent class and expectation class. Intent objects contain a set of expectations, which are distinct and diverse types of requirements allowing to address all relevant concerns.

The intent modeling proposal recommends using intents from a federation of models. While the intent common model contains general and domain independent aspects any number of intent expansion and intent information models can be used. They are specific to a domain of intent handling and therefore define what the intent handler of that domain needs to understand and what the intent objects addressing this domain can express.

The proposed model federation is an invitation to other work groups and standards organizations to collaborate towards a consistent set of intent standards. The idea is that intent extension and information models can be defined independently of TM Forum by any organization and work group. They would define the additional expressiveness needed in their chosen scope and domain. Adding these intent extensions into the federation of models keeps domain specific intent objects compatible with each other in the sense that common and domain independent interfaces and life cycles can be re-used. We try to avoid incompatible intent standards enforcing diverse and therefore costly implementations of management processes and interfaces.

This document is the main overview covering all proposed aspects of intent driven operation. Detailed proposals and examples of major sub-topics is provided through supplementary documents. The intent modeling is covered by IG1253A, and the intent life cycle and interface is covered by IG1253C. Further supplementary documents will come in future releases.

[bookmark: scroll-bookmark-3][bookmark: _Toc73947898][bookmark: _Toc73947977]Introduction

This document proposes a technical framework for realizing intent based operation within autonomous networks. This includes the definition intent and the introduction of operation principles. The document covers key topics, such as modeling of intent, life cycle management of intent objects, the interface to communicate and manage intent as well as architectural considerations for building an autonomous network driven by intent.

[bookmark: scroll-bookmark-4][bookmark: _Toc73947899][bookmark: _Toc73947978]Document overview

[bookmark: scroll-bookmark-5][bookmark: _Toc73947900][bookmark: _Toc73947979]Scope and purpose

The purpose of IG1253 is to document and define intent driven operation according to the work in the Autonomous Networks project. This includes a definition of intent as well as the role of intent in of autonomous operation and the operational principles it implies. Furthermore, this set of documents will define the interface and API for communicating intent, the life-cycle management of intent objects, and the modeling principles of intent.

[bookmark: scroll-bookmark-6][bookmark: _Toc73947901][bookmark: _Toc73947980]Overview

IG1253 is a set of documents in which each individual document defines a separate aspect of intent driven operation:

IG1253 - Intent in Autonomous Networks
This is the main overview document. It contains a description of general definitions and operation principles. The sub-documents A-E contain deeper views into some key topics.

IG1253A - Intent Modeling
This document defines the modeling of intent objects as ontology graphs. It introduces the concept of model federation based on a central intent common model and separate domain specific intent extension and intent information models. This document then defines the central and domain independent intent common model.

IG1253B - Intent Extension Models (future release)
This document adds to the model federation defined in IG1253A by proposing domain specific intent extensions and intent information models.

IG1253C - Intent life cycle management and Interface
This document defines the life cycle of intent including the roles and responsibilities within the life-cycle. It then defines the interface and API used to execute the life-cycle management operations. This includes methods for communicating, modifying, and removing intent objects, as well as negotiating intent content.

IG1253D - Intent handler scope and capability management (future release)
This document defines a registration and discovery mechanism about capabilities and scope of operation of distinct intent handler interfaces.

IG1253E - Use cases and examples (future release)
This document is a collection of use cases with detailed examples that demonstrate how to apply the principles and use the models and interfaces defined in the IG1253 set of documents.

[bookmark: scroll-bookmark-7][bookmark: _Toc73947902][bookmark: _Toc73947981]Motivation for intent

In recent years intent has become a widely discussed topic that is now considered to be essential for introducing automation and zero-touch autonomous operation. But why is intent given such a prominent place? What is its role and what does it add to the infrastructure and interfaces that was missing before? In order to analyze this, it helps to look back into the processes and tasks of manually operated infrastructure.

IG1252 [6] defines levels of autonomy and it proposes a methodology for assessing a systems capability with respect to autonomous operation.

[bookmark: scroll-bookmark-8][bookmark: _Toc73947903][bookmark: _Toc73947982]Fully manual operation:

Manual operation refers to a team of human technicians, who have the task of operating system, networks or infrastructure. They are involved in two essential tasks: intelligent decision and execution of actions. Intelligent decision refers to the process of collecting relevant information, analyzing the situation and planning suitable operational actions expected to improve the state of the operated system or network. Technicians, who are doing this, typically have a broad range of knowledge and information available to base their decisions on. They have access to extensive technical information such as the state of the systems and networks they operate as expressed by measured KPI and metrics. Furthermore, they also know what customers have ordered and therefore what level of service needs to be delivered to users.

The operations team of technicians has also quite a lot of contextual information that potentially impacts their decision. For example,, they know the strategy and goals of the company they work for and the related business policies. This allows them, for example, to prioritize based on customer importance. They also know the budget situation of their unit which translates in allowed resource usage. Also, the goals and targets of their unit and priorities set by management will influence their decisions substantially. This will then result in prioritizing one action over another one as it is expected to better meet the business strategy and its related goals and targets.

Execution would be the implementation of these tasks in the infrastructure. Typically, this refers to tasks such as changing configuration data, replacing hardware or upgrading the network. These actions can mean an immediate reaction to solve an acute issue. They might also constitute a consolidated action plan targeting mid and long term improvements.

[bookmark: scroll-bookmark-9][bookmark: _Toc73947904][bookmark: _Toc73947983]Operation with automated execution

The first approach towards autonomous operation is the introduction of automation. This refers to a system that is able to automatically execute a process without human involvement in every step and ideally without human involvement at all. Policies have a key role in realizing this level of automation. A policy is in this respect a rule or decision tree. It is initiated when a defined pre-condition or event applies, and it delivers an action or action plan that is then executed. The input to a policy-based decision is typically the technical the state of the system including the specifications of what customers have ordered. In general, all data and information systems are available to be used in policies, including inventories, analytics insights and measured KPI.

It is important to understand that a policy determining an action plan after being initiated from observation is not equivalent to the intelligent decision in manual operation. It is rather the automated execution of a pre-determined recipe. The developers, who have written the policies made all decisions at design time. They analyze the situations the system might be in and what a suitable action plan for each situation would be.

The policy developers need to define the conditions for invoking a policy. These are based on observable indicators, such as measured KPI or analytics insights. The invocation conditions allow the automated system to identify the situation and context the policy was made for. Furthermore, policy developers define the policy as an automated analysis and decision process. Typically, this is expressed through executable workflows including decision trees or sets of rules. When writing a policy, the policy developers has the same information and knowledge available like the technician in manual operation.

In operation, the automated system would invoke the execution of the right policy according to the situation conditions. This arrives eventually at an action to be executed. Policy-driven systems therefore automate the execution at run-time while the intelligent decision is still mostly human driven. The point of decision was moved to design time, while in life operation the automated system would apply the policies as behavior recipes.

This level of automation has already clear advantages with respect to lead time of fulfillment after a service order and 24/7 attention of the system with immediate reaction. This has already the potential to significantly increase the service quality and decrease the cost of operation. On the other hand, this automation also has limitations. The most significant limitation comes from the capability to adapt to changes and situations that were not explicitly considered at design time. In these situations, the automated system does not know what to do and must escalate for human support.

New situations can come from two direction. First, external environmental factors such as changing user behavior can constitute new system states. But also factors the operator directly controls can become new situations for the underlying automated infrastructure. Typical examples are the introduction of new products or new customizations of existing ones. Whenever a new situation occurs that was not explicitly foreseen at design time of the policies that control the automated processes, the automated system would fallback to at least partial human support. Keeping the system capable of staying fully automated in the new situation, would imply an adaptation of policies. The policy developer would introduce a future automated response to this new and similar situation.

In future networks, we expect diverse and customized service offerings based on technologies such as virtualization and slicing. In such environments a manual process for making all decisions and adaptations might not be capable enough to meet business demands. Especially lead-time in fulfillment as well as assurance might require further automation targeting automated adaptation.

Machine learning is often positioned as a technique to automate the way a technical system adapts its behavior. A typical machine learned model is either used to implement analytics and therefore deliver insights to be consumed by policy logic, or it implements the policy by directly making decisions and determining suitable actions. This means the model can be a direct replacement of a manually designed policy. In any case, these types of machine-learned models are the result of statistics driven optimization processes and therefore follow evidence from data and observation. However, using machine learned policies in automated processes does not necessarily lead to a higher degree of autonomy.

Machine learning can be an excellent way to implement policies based on evidence seen in data, but the outcome of machine learning is still fully determined by human input and human intelligent decisions. Humans define cost and utility that makes the models converge as wanted. Humans also label training samples and therefore explicitly tell the wanted outcome the model is supposed to learn. In this respect, observed human behavior can also be direct input and then the preference is implied. In any case it is still human intelligence that ultimately determines what decisions and actions machine learning-based policies produce.

[bookmark: scroll-bookmark-10][bookmark: _Toc73947905][bookmark: _Toc73947984]Adaptive automation towards autonomy

A key goal of autonomous networks is to lessen the need for human involvement. Policy-driven operation as discussed in chapter 2.2 allows leaving most standard and repetitive execution tasks to the automated system. Human supervision is always required to capture those exceptional cases where the automated system requires their direct involvement. Other than that, the human workforce would be able to shift their focus on tasks that still require their intelligence. They can, for example, do business planning, develop strategies, engage with customers, and define products and product customizations. The automated operation needs to follow these human decisions. This means that all artifacts that enable and control the automation must be kept up to date to ensure that the automation follows the revised strategies and is able to operate the new products. This might involve the modification of workflows, adaptation of policies and potentially re-training ML models with new data or revised utility definitions.

Utility is an important concept for autonomous systems. It refers to knowledge about what makes an outcome or situation preferential. This refers to preference in a global context. An action might be preferable because it helps to reach a goal, but a utility definition addresses the question if the action and therefore also the goal are addressing the right overall concerns and needs. Understanding utility allows the system to judge potential results and all goals defined and actions proposed to reach it. It enables the system to adapt its internal instrumental goals if needed. It allows to not only determine preferential actions that fulfill a goal, but it allows to reason about which goals are the most advantageous to pursue.

Transitioning the system from automation towards increasing degrees of autonomy would mean that more tasks become automated. This includes the tasks needed to keep the automated system aligned with business utility and strategies. The system would gradually take over the intelligent decision-making and therefore determine and adapt its operational solutions on its own and without human involvement. It would not just follow human-designed recipes but make new recipes itself if needed. A system like this would be able to determine if an action or plan is preferential or not and if it would improve or degrade the operational state with respect to a broad range of concerns. A system like this can then evaluate if a recipe for action is suitable even if the situation is new. It would have the knowledge to determine what actions would be preferential in the new situation. This requires that system has access to all relevant goals, requirements, and targets as well as constraints. The system would use knowledge about utility in its automated processes and adapt its behavior accordingly. Goals, requirements, constraints, and utility need to be presented to the system in a way that an automated logic can use them to arrive at potentially different, but suitable decisions and actions. These are automated reasoning processes that adapt the system behavior automatically and to follow human determined and continuously changing requirements, goals and constraints.

[bookmark: scroll-bookmark-11][bookmark: _Toc73947906][bookmark: _Toc73947985]The purpose of intent

The discussion in the previous sections has identified an essential enabler needed for autonomous operation: the automated system must know its requirements, goals, and constraints. The system can only adapt and follow business needs if it knows them. The autonomous system needs to know what it is expected to achieve by the service provider, who employs the autonomous system and the service provider's customers, who are served by it. This includes knowledge about expectations including hard requirements, but also about preferences and priorities.

Knowledge about these topics can change dynamically because it ultimately originates from dynamic concerns such as service provider strategy and customer need. The autonomous system always needs to be kept up to date about their expectations. Only by knowing the expectations the autonomous system has a chance to meet them.

Furthermore, this knowledge must be presented to the system in a way that enables automated reasoning processes to translate them into adapted system behavior. This means, knowledge about the expectations towards the system need to be formally expressed, communicated, and managed.

The purpose if intent is to define and communicate knowledge about expectations to a system in a way that allows automated processes to reason about it and derive suitable decisions and actions.

Intent is, in this respect, the knowledge element for communicating expectation. It allows the autonomous system to know requirements, goals and constraints that are the foundation for all action. It is the reason for a policy to prefer one possible action over other options. Intent is the foundation for prioritizing decisions and optimization actions. Intent determines a customer's needs and the service provider's contractual obligations. It enables exploration of potential solution options and evaluation of actuation strategies in order to find one that delivers the best available business result. Intent driven operation refers to models, interfaces and architectures for managing this knowledge and operate a system accordingly.

The knowledge of intent enables automation of intelligent decisions that were still entirely human driven in systems with automated execution. It allows evaluating situations the system is in and prioritize actions that transition the system's operation strategy into a preferable direction. Intent allows to communicate what is preferable and what needs to be avoided. It allows the receiving system to understand what it is expected to achieve. It introduces a notion of utility. It allows the source of intent to communicate its utility model. This enables intelligent judgment about the situations the autonomous system observes and actions it plans to do. The system is effectively able to determine the utility of its solution options. It can judge if its polices produce preferential outcomes and modify them if not. An intent driven system is therefore able to not just blindly follow human-determined solution recipes. It can modify them and make its own.

While using, intent is a necessary prerequisite for implementing advanced levels of autonomous operation through self-adaptation capabilities, intent is also already useful in automated execution and policy-driven operation. The use of intent does not preclude the use of policy based systems. Here, intent can be used to determine policy triggers and its detailed expectations can be consumed in decision trees that lead to actions. This means a developer can diversify policies by considering changing requirements and goals.

[bookmark: scroll-bookmark-12][bookmark: _Toc73947907][bookmark: _Toc73947986]Definition of Intent

[bookmark: _Toc73947908][bookmark: _Toc73947987][bookmark: scroll-bookmark-13]History of intent definition

Intent was first introduced around 2015 in the context of SDN controllers. At that time IETF defined intent as

“… an abstract, high-level policy used to operate the network” [1].

This definition implies a strong relationship between intent and policy. The guiding idea is that intent directly translates into choosing the right policy that then operates the system accordingly. The chosen policy is, in this respect, a pre-defined recipe for the set of requirements chosen by the given intent. This automation strategy means that every selectable variant of requirements must be matched with a policy available in the system. Intent is therefore an expression of chosen requirements that are tightly coupled with a matching policy for controlling its fulfillment within the automated operational processes and therefore its implementation with the controlled resources.

In the meantime, the understanding of intent has evolved, and this is reflected in a more recent definition of intent by IETF from 2020. Intent is now defined as

“… a set of operational goals that a network should meet and outcomes that a network is supposed to deliver, defined in a declarative manner without specifying how to achieve or implement them” [2].

As policies determine the actions taken by the system, they are considered part of the implementation. By excluding explicitly any specification of how to achieve or implement an operational goal, the newer definitions of intent explicitly excludes mandating policies. It also excludes mandating hard-coded logic or artifacts such as rules and workflows that define decision trees and decision-making processes. Intent is therefore purely the specification of requirements and goals separated from all implementation artifacts.

In the Autonomous Networks Project at TM Forum, we propose to move forward with a conceptual understanding of intent following the definition from IETF in 2020 [2]. This proposal enforces a strict separation between intents being purely an expression of requirements and other implementation artifacts of any kind.

[bookmark: scroll-bookmark-14][bookmark: _Toc73947909][bookmark: _Toc73947988]Definition of intent

The definition of intent proposed by the Autonomous Networks Project follows the analysis and findings presented in Chapters 2 and 3.1:

“Intent is the formal specification of all expectations including requirements, goals, and constraints given to a technical system”

This definition is inspired by and compatible with the definition IETF has published in 2020 [2]. The definition associate’s intent with goals, requirements and constraints provided in a declarative way. Intent constitutes and expresses knowledge about these concerns and enables sharing this knowledge between the originator and receiver of the intent.

Furthermore, this definition excludes all imperative implementation and solution aspects form the intent itself. Intent is therefore purely an expression of what needs to be achieved or avoided or what outcome is more or less preferred, rather than indicating how and by which strategies and actions this can be realized. In this respect, artifacts such as policies, workflows, rules, decision trees and other ways to express and implement a solution strategy, make decisions and execute actions are still very much-needed to realize intent driven autonomous systems. They are however strictly separated from the intent expression. This understanding of intent implies implementation of intent driven operation that strengthens important system design concepts such as a strong separation of concerns between sub-systems with full encapsulation of solution implementations.

The notion that intent is a specification of expectation reflects the viewpoint of humans as external supervisors of the autonomous system. They expect the system to fulfill their needs. The system has to meet their expectations and intent is the expression of their needs. Intent can in this respect originate directly from humans. These humans are, for example, customers or operator personnel using intent to directly communicate with the autonomous system through intent, and they expect the system to meet these intents utilizing the underlying infrastructure and its resources in a suitable way.

Furthermore, intent is also generated internally within the autonomous system. It is used between the sub-systems and system layers to influence details of their specific wanted behavior and thus contribute to the overall fulfillment of human expectation. Intent coming from external sources into the autonomous system constitute the terminal goals of the system as a whole. The autonomous system would then derive instrumental goals reflecting a solution strategy and the detailed needs and concerns involved implementing this strategy and ultimately achieving its terminal goals. Internally used intent is an expression of these instrumental goals and a mechanism to distribute them to the responsible sub-systems. The goal breakdown is typically applied in multiple steps transforming global terminal goals into its localized and detailed consequences. Intent is the way to express these goals on every detail level and with every granularity needed. This also means that internal intents are always used in the context of and can be traced back to those intent, which directly express human needs. Therefore, also internal intents express expectation. The communication and management of intent is a central topic of IG1253. It is covering multiple aspects such as a generic system architecture of intent driven operation, life-cycle of intent as knowledge objects and the establishment of control loops steered by intent. IG1253C introduces the interface to communicate and manage intent as part of lifecycle management processes.

While intent might originate from human input or being created by automated processes within the autonomous system, it is typically received by a technical system. Intent is usually not meant to be consumed or acted upon by a human receiver. Nevertheless, Intent might also be used by the system to delegate tasks to humans for execution. The details of using intent this way or if alternatives, such as the use of a dedicated domain specific language would be preferential for these use cases will be explored in future work. Also, in cases when the autonomous system breaks and a human team need to take over, humans would need to act on the intents. But this would be considered an exceptional situation rather than usual operation.

Humans might have formulated intent, and they might monitor the automated operation including intents being used between sub-systems. In this respect it is preferential that the methods and techniques chosen to express intent are reasonably intuitive for a human to read and understand. On the other hand, it is a system receiving the intent and automatically operate based in it. This is a challenging task, and it is therefore highly important that the chosen techniques and models for intent expression facilitate a practical implementation of a technical system with automated processes able to translate intent into solution strategies and operational actions.

This points at one of the most important aspects of intent definition: the use of formally defined models. This means intent would be expressed with formally defined and complete semantics and vocabulary. There must not be ambiguity in the meaning of intent. The sender and receiver of intent must be in perfect agreement about its interpretation. And it must be possible to derive this agreement entirely from formally specified and complete semantics in the underlying common and information models. If interpretation of an intent cannot be derived from the formal modeling, the consequence would be that human consultation is needed to clarify ambiguities. This would violate autonomy. In the worst case ambiguity might lead to diverging interpretations of the same intent by multiple involved systems causing unwanted and incorrect system behavior. It is therefore essential that intent follows formal models that comprehensively and unambiguously cover all needed expressiveness. The proposed intent modeling approach is described in Chapter 13 and specified in detail in IG1253A.

In this respect, intent driven on natural language and other domain specific languages is not in scope of IG1253. Especially natural language is inherently ambiguous and needs interpretation considering context and shared assumptions. We acknowledge however that there are use cases and good reasons for formulating intent by using natural and domain specific languages. Their usage in relation to intent operation and modeling defined in IG1253 is discussed in Chapter 15.

[bookmark: scroll-bookmark-15][bookmark: _Toc73947910][bookmark: _Toc73947989]Properties of intent

[bookmark: scroll-bookmark-16][bookmark: _Toc73947911][bookmark: _Toc73947990]Declarative goals and utility: the wanted state

Following the definition of intent presented in Chapter 3.2, an intent object is a collection of distinct expectations. They express a variety of requirements, goals and constraints. An individual intent may contain a variety of different expectations. For example, the expectation to deliver a service to users would contain functional and non-functional aspects of the service itself and the targeted usage scenario. It can include minimum performance levels as well as usage limitations such as geographical availability. All these aspects are considered in intent modeling to be distinct expectations.

Intent is solely declarative in the sense that it only specifies wanted outcomes versus outcomes that need to be avoided. This can include quantitative specifications. For example, a goal can be set by defining target values or value ranges using KPI and metrics. Depending on the targeted scope and subject of the intent, the definition can be high-level and abstract, or it can be technical and detailed. For example, a business level intent can specify the need to make a financial gain from autonomously managed SLAs. In this context a detailed target can be set, such as a required margin of 10%. An example of a lower level technical intent would be to guarantee a minimum latency on a particular network link.

Both examples specify a wanted outcome or state without specifying how to reach it. It is entirely up to the intent receiving system to find a strategy and plan actions that would achieve what the intent is asking for. This implies a level of encapsulation in which the system implementing the needed operation processes does not expose these processes through its interface. This means an intent driven order does would only specify what is needed and not also triggered the process that implements how this is achieved. It is purely a decision of the system that receives the intent to decide how to act and which processes need to be invoked to fulfill the requirements. This is a significant difference between intent driven operation and other typical interfaces in telecommunication. Telecommunication interfaces often explicitly invoke processes, which are exposed and implemented by distinct functions and services.

Intent does not imply the start of a process, because this is considered imperative prescription of what to do. All imperative specifications are explicitly excluded from being part of an intent object. Imperative specifications would include actions that need to be taken or avoided. Also, implying to invoke specific processes or workflows are imperative specifications. This includes mechanism such as policy triggers. All these specifications are not part of an intent expression. They are conceptually excluded and consequently not covered by intent modeling. Intent rather only communicates knowledge about requirements and leave the decision what processes to invoke to the intent receiving system.

As intent leaves the actions to be taken entirely open, the receiving autonomous operation system has in principle a great amount of freedom to apply already known strategies to develop and explore new solutions. Enabling this is a key property of the intent driven operations mechanism. It is therefore ideal if intent expresses utility. Utility refers to knowledge about what properties of an outcome are preferential and which are not. This is not just setting a goal that the autonomous system shall reach. It allows evaluating if reaching these particular goals is actually the best solution of if another goal would lead to a better overall result. Utility knowledge therefore enables self-reflective operation with the capability to adapt system behavior autonomously.

[bookmark: scroll-bookmark-17][bookmark: _Toc73947912][bookmark: _Toc73947991]Composible and additive

An autonomous system that operates a complex and shared domain would need to fulfill multiple requirements. This includes to reach a potentially large number of goals, obey a complex set of constraints and consider preferences. This constitutes a pool of requirements the autonomous system is operating against.

Intent are knowledge objects that define a set of these requirements. Setting an intent therefore means to add to the pool of requirements. Deleting an intent means to remove requirements from the pool. The intent mechanism therefore manages the global requirements of an autonomous system as changing its requirements implicitly alters the system behavior.

Intent and the additional requirements expressed by it can originate from many sources. This means that they might overlap or even contradict. This cannot be avoided on the level of intent, because even contradicting requirements and goals are still valid and express an important concern of another system or a human user. This means the autonomous system operating based on intent would need to be able to prioritize based on utility. It might also not be able to fulfill all its requirements at once in all situations.

[bookmark: scroll-bookmark-18][bookmark: _Toc73947913][bookmark: _Toc73947992]Persistent and lifecycle managed

Intents are knowledge objects that communicate requirements, goals and constraints as well as preferences. This means using intent establishes a requirement the receiving system has to fulfill. This requirement stays valid until it is removed by deleting the intent. Intent objects therefore have a lifecycle that is actively managed. The intent interface defines the procedures for executing this lifecycle management. The intent lifecycle is explained in detail in Chapter 8, and it is the base of the intent interface defined in IG1253C.

This also means that the use of intent includes assurance aspects. Intent defines not only what to deliver, but also what to assure. In this respect and intent is not done, for example when it is first fulfilled by meeting its requirements. Intent implies that the requirements stay fulfilled until the intent is removed.

[bookmark: scroll-bookmark-19][bookmark: _Toc73947914][bookmark: _Toc73947993]Infrastructure agnostic and portable

Intent as defined in this document is a key mechanism used in the communication between the layers in the autonomous networks framework (ANF). Furthermore, it is used in the interaction between autonomous domains. This means, intent will need to cross the borders of major sub-systems and platforms, where often solutions from different system vendors are used and required to interact flawlessly. This need is addressed by defining a common interface for intent lifecycle management as well as a common modeling approach of intent objects. Modeling of intent is described in Chapter 13 and specified in detail in IG1253A and a future IG1253B once it is released.

[bookmark: scroll-bookmark-20][bookmark: _Toc73947915][bookmark: _Toc73947994]Measurable and grounded in data

An intent is only useful if all aspects it specifies can be observed. A system can only control what it is able to measure. This means that a system that operated based on intent would require to be connected to data and knowledge sources. This includes, for example, metrics and KPIs being measured, aggregated and calculated or analytics functions providing insights to the system.

As intent can change dynamically, the receiving system might need to adapt and measure whatever the intent is expressing. This is mainly imposing a limitation on the allowed range of intent expression. Intent can only be handled successfully if the receiving system has the means to observe whatever the intent is stating. The implementation of autonomous systems might differ considerably with respect to the range of intent expressions it can operate based on its capability to measure and observe. This is addressed through intent handler capability management as discussed in Chapter 12.

[bookmark: scroll-bookmark-21][bookmark: _Toc73947916][bookmark: _Toc73947995]Expressiveness of intent

Every concern relevant to an operator or their customers or other involved parties, such as government regulators, can directly or indirectly constitute intent. From the point of view of the autonomous system, intent is all it needs to know about the concerns of relevant external parties so that it operate and serve them as expected or as close to their expectations as possible. This chapter discusses use cases for using intent. This includes the concerns of involved parties and what knowledge intent would need to express in order to provide sufficient input to the autonomous network. It also includes the needed expressiveness for intent used internally within the autonomous network to coordinate the contributions of its sub-systems in meeting the original expectations.

This chapter provides examples for needed intents mainly in the context of telecommunication services, network operation and business concerns of network operators and their customers. In this chapter we mainly present typical examples from this range of use cases. They are used as inspiration and guidance for technical proposals of IG1253, but they do not constitute an exclusive or complete list of use cases and concerns intent is used for. Extension and use in further domains is explicitly encouraged and also considered in the proposals and the resulting technical solution.

We expect that higher degrees of autonomy and the implied reduced involvement of humans in the operation will cause a gradual shift of concerns from human to machine operation. This will consequently imply that further expressiveness is required by intent to communicate the specific goals and requirements related to that concern. Also, extension of autonomous operation into new domains will lead to further concerns to be addressed by intent.

[bookmark: scroll-bookmark-22][bookmark: _Toc73947917][bookmark: _Toc73947996]SLA negotiations and agreement

Network operators are in the business of selling services to their customers. This typically involves a contract in the form of an SLA stating all agreed functional and nonfunctional properties of the service as well as the terms of compensation including penalties in case of contract breach. An autonomous system for customer engagement might include partly or fully automated negotiation and acceptance of contracts.

A possible scenario would be that both, the operator and its customer have fully automated systems for SLA contracting. These systems automatically create offers, determine if the offer would fulfill the needs and negotiate compensation. Humans are not directly involved in the process of contract negotiation, but they can use intent to steer the process by setting goals and constraints. In an alternative scenario only the operator's system is automated, and it communicated with the customer's personnel through self-service frontend.

The operators would use intent to steer the contracting on their side of the negotiation. These are intent given to the autonomous contract management and customer engagement system to steer its behavior. The operator's concern expressed by intent could, for example, be to make a financial gain. The intent used for this can formulate a goal for automated contracting about the expectation that it generate a financial margin with the contracts it accepts. A financial margin across all contracts would be the measurable metric used for setting this goal. This intent would then be input for generating service offers and in the logic for accepting proposals by the customer.

[bookmark: scroll-bookmark-23][bookmark: _Toc73947918][bookmark: _Toc73947997]Delivery of user services

After the operator and its customer have agreed on the details of a service, an autonomous network would utilize the resources of the operator's infrastructure to deliver these services. In order to do this, the autonomous network needs to know what shall be delivered to which group of users and if there are special limitations and concerns to consider. Intent would for example be used between the operator's contract management system and the autonomous operation system. This is the interface between business operation and service operation in the Autonomous Networks Framework. Intent would typically need to express the following:

Functional requirements: Specify, for example, which services need to be delivered and what function do they need to provide to the user.

Non-functional requirements: These are typically targeed regarding performance, availability and user experience. KPI and metrics would be used to express them.

Constraints and inter-dependencies: Are there any special concerns or requirements that a solution would need to obey. For example, privacy and security concerns of the customer might need to be addressed considering through multi tenancy and security levels. Another example would be that for legal reasons all data and service instances need to stay in a particular geographical location.

[bookmark: scroll-bookmark-24][bookmark: _Toc73947919][bookmark: _Toc73947998]Behavior of resource services

An essential task of operational process within a service provider would be to break down higher level requirements expressing business needs into deployments and configurations of technical assets such as resources and services. For example, software instances need to be deployed following a target topology, network functions need to be connected to each other with sufficiently configured channels and the entire setup need to be assured involving measurement of KPI, analytics and detection of issues.

Intent can be used to steer this level of operation with increasing levels of technical details. These intents are on a lower level in the operation software stack. But they are very similar to the intents used to describe requirements for user services. They would express what needs to be delivered. This would be an expectation towards a sub-system, rather than the service provider and its autonomous network as a whole. These intents can also express non-functional requirements and constraints and inter-dependencies. The difference is that artifacts and metrics used in lower level operation are not directly accessible to the customer or its users. They represent the means by which the autonomous network satisfies customer needs, but these details are not exposed to the layers above and the customer. In other words, customers would only see the services they have ordered and the properties they have directly agreed to, but not the lower layer details of how their services are realized.

This indicates that intent is typically used in a hierarchical way where the intent of user services is broken down into intent about resource services and the behavior of the underlying infrastructure. The autonomous networks framework models this by distinguishing business intent, service intent and resource intent. Please note that there can be more than three layers of intent being used in a practical autonomous system.

A user might have ordered a communication service with agreed throughput and latency. These are the KPI about the direct user experience and these are stated in the intent about the service. In the autonomous operation this service might be realized by selecting and deploying network function in a datacenter and by setting up network slices to interconnect the network functions. An intent about resource services would describe the deployment requirements of the network function instances as well as the required latency and throughput of the involved network slices. These are the KPI targets needed from the involved resources the system needs to deliver the experience KPIs agreed with the user.

[bookmark: scroll-bookmark-25][bookmark: _Toc73947920][bookmark: _Toc73947999]Regulatory and legislative requirements

It is the mission of regulators to set and enforce rules in the market they oversee. Service providers must follow these rules to avoid penalties and keep licenses. Intent can be the mechanism to directly distribute and communicate the rules from the regulator to all service providers. In this scenario the regulator actively participates in intent driven operation. The respective reports on intent fulfillment from the service provider to the regulator can then be interpreted as compliance statements. The regulator becomes an intent using third party next to the operator and the customer. As regulatory requirements are legally binding and globally applicable they imply utility with a broad scope and high importance.

The direct participation of the regulator in intent driven operation introduces the ability to react quickly and change market rules dynamically. A possible use case would be exceptional cases of reaction to disasters in which the service providers might need to temporarily change service prioritization. Using automatically distributed intent considerably reduces the reaction lead time.

In another scenario the regulator is not directly encoding intent, but intent can still be used to configure and steer the autonomous operation within a service provider domain. It would be the service provider itself creating the intent driven on the regulatory rules. As the service provider is accountable to meet the rules it is therefore its responsibility to follow up on changes and modify intent accordingly. This is typically a manual process that introduces delays. But usually rule changes are announced in advance with a clear deadline for implementing new rules. So, the service provider would have sufficient time to review and adapt.

Nevertheless, intent being used would allow the autonomous network to directly access regulatory rules. The rules would be formulated in a way a machine can read and reason about them. Thus, the autonomous network can consider regulatory aspects in all its solution decisions and actuation. Regulatory rules become yet another set of requirements to follow. Like other intent regulatory rules would therefore be considered within all autonomous operational processes. This mechanism would keep the autonomous network compliant to legal requirements and regulatory rules.

[bookmark: scroll-bookmark-26][bookmark: _Toc73947921][bookmark: _Toc73948000]Solution Bias

Prioritization and optimization within operations processes follows a bias introduced through requirements and goals as well as the available actions and solution strategies. This means, what a system prioritizes and chooses to do and the outcomes it produces is ideally only going into a wanted direction. However, this cannot be guaranteed. Models and policies might contain errors or reflect the opinion of the human developer and data scientist, who has produced them. And this opinion might not be a full match with the service providers goals and values. In machine learning there might also be bias in training samples, which then constitute bias in the resulting models.

Depending on the market and business environment of the service provider, certain bias might not be significant, but it can also bear a huge risk. For example, if a service provider is exhibiting social, racial or religious bias in the way their autonomous network decides and behaves, this service provider might not be perceived favorably with significant impact on business results. Detecting unwanted bias in the behavior of the autonomous network and eliminating this bias is therefore a critical business capability of a service provider. This typically requires putting policies and models in place, which are able to detect bias in operation including techniques to measure it.

Intent can play the role of steering operational decision-making by introducing requirements on bias. Techniques and metrics introduced to measure bias are the tools available to formulate a respective goal expression. Using this intent as additional requirement in intent handling would make bias awareness part of all operational processes. It would imply that all decisions and actions and their respective consequences would be checked against all intent and thus also the bias avoidance requirements.

This mechanism also allows introduction of special attention to types of bias with raised sensitivity in the local market.

[bookmark: scroll-bookmark-27][bookmark: _Toc73947922][bookmark: _Toc73948001]Limit Risk Taking

Every operational action being done or not bears a certain risk to disrupt operation and failure to deliver agreed services. In manual operation the assessment of risk associated with an action is one of the most important tasks. It not only refers to the risk of action failing or not delivering the promised impact, but also to the consequences this single action might have on the network and operator business as a whole. Humans are usually good at considering a broad spectrum of consequences and therefore avoid too risky action strategies while finding a balance between risk versus potential gain and utility of the action.

An autonomous system needs to perform similar risk assessments and consider them in their decisions and actions. At least this would be recommended for systems with broader scopes and authority to perform nontrivial tasks with potentially huge impacts.

One way of limiting risky actions would be to explicitly limit the options available to the autonomous system through rules or policies. This requires however that it is possible to formulate comprehensive rules considering all situations. Explicit limits might also inhibit potentially very preferential actions. Especially in systems with higher degrees of AI, a tight frame of limitations counteracts the AI ability to find new solutions.

If a system is able to determine and manage risk, the service provider might still want to determine the allowed level of autonomous risk taking. Practically higher risk might be allowed if at the same time the potential gain is similarly huge. Thus, the system needs indication for how to do a tradeoff between expected gain and imposed risk. Intent can be the mechanism the service provider is using to formulate respective requirements and constraints. For example, metrics for risk assessment can be used to formulate respective expectations.

[bookmark: scroll-bookmark-28][bookmark: _Toc73947923][bookmark: _Toc73948002]Common sense

Humans have common sense and machines do not. This refers to a common understanding and agreement about what are right and wrong action and preferences. This common understanding means that requirements and best practices are followed, even if they are not explicitly communicated. For example, to a human it is common sense to operate a network and delivering services to customers while reducing the number of resources needed. Humans understand the overall need for the operator to make financial gain, they understand that resources are a cost factor and that therefore keeping resources usage optimized has a positive effect on the overall goals.

An autonomous system does not have common sense. It can only consider explicitly stated dependencies and goals. If a goal, such as saving of resources is important, and usually it is, then the system needs to be told explicitly to make the right choices in its solution strategies and actions. There are typically two ways to reach the right behavior. These requirements are built into the code or policies of the autonomous system. This way a developer has considered all relevant common sense and therefore also all resulting actions of the system consider it. This corresponds to operation with automated execution as discussed in Chapter 2.2.

Alternatively, the concerns that typically constitute common sense can be expressed as intent and become explicit goals. For example, intent can set a goal on resource saving. A good metric for expressing this goal would be needed to avoid misinterpretation. It is for example not a good idea to set a goal on delivering services with the least resources. Not delivering the service at all would then become an attractive option. A better metric would be to maximize resource utilization. This refers to resources being reserved and actually used. The rationale is that it is a good idea to use resources as long as they are productive and contribute to satisfying customer needs and generate income.

This discussion shows that common sense can be introduced using intent. It also shows that requirements and goals need to be introduced with full awareness of their interpretation by the system and if they imply also unwanted outcomes or make them look more preferential.

[bookmark: scroll-bookmark-29][bookmark: _Toc73947924][bookmark: _Toc73948003]Communicate and escalate to humans

Service providers need to be kept informed about the performance of their autonomous operation. This would allow them to identify shortcomings and take actions. They might for example invest into the infrastructure to counteract frequent resource shortages, or they might order improvement of AI models and policies to be developed. Ultimately, the human personnel needs to know when the autonomous system is failing, and they need to step in and take over the operation at least partly.

Intent reports are a basic mechanism to achieve that. They allow establishing continuous reporting about each intent and its operational status and success. The exact conditions for reporting are in this respect additional expectations required within the intent itself. It allows specification of what and when to report. This reporting mechanism can be combined with frontends for intuitive presentation and therefore allow already continuous and detailed information.

Another way the system can interact with the human workforce would be for escalations. This refers to situations where the autonomous system detects that it needs human input to operate. This can for example be the case if the system is missing essential information and it wants to request clarification. Another example would be that the system did not find a suitable action to mitigate a problem automatically. It would escalate this situation to the attention of a human technician. An escalation might also be chosen if all available actions are considered too risky and human approval is needed.

Setting conditions for escalating or for asking human approval can be subject to intent. The service provider can therefore use intent to steer the wanted interaction. Setting these conditions for example based on metrics for risk and gain assessment allows to precisely limit autonomous risk taking and only bring significant topics and situations to the attention of the human workforce.

This mechanism based on intent for setting the escalation and approval conditions would also allow the gradual assignment of more authority to fully automated operation. Starting with strict rules that bring a lot of decisions to human approval the system might prove itself by consistently proposing good solutions. Based on this the service provider can choose to offload more situations to fully autonomous operation.

[bookmark: scroll-bookmark-30][bookmark: _Toc73947925][bookmark: _Toc73948004]Customer and resource value

Service providers usually differentiate their customers. Not all customers and not all users are equal. Some might have premium contracts promising better experience and priority, while others have chosen a more budget friendly option that comes with lower guaranteed levels of experience. This differentiation is important for the decisions and actions of an autonomous system.

Intent can be used to convey priority. This can be done implicitly by distinguishing services for the respective user groups and assigning different requirements and goals in the intents for the services. It is also possible to introduce explicit categorization of user service levels, for example by distinguishing silver, gold and platinum services or customers.

Typically, the categorization of customers and users follows the business value of their contracts. This would be handled primarily on business operation level, where all financial aspects of the service contracts and SLA are managed. Service and resource operation are not involved although they need to make decisions accordingly. Adding indications of relative customer value or service value into the intents would be an expression of utility. It can help in operational decisions and especially if prioritization is needed to optimally use limited resources.

Similarly, resources have a business value, and they should be assigned so that the income they generate exceeds the total costs of use and ownership. Also, here intent can help to convey business considerations and priorities to the decision-making in lower layers or the operations stack.

Customer value as well as resource value are examples of metrics that can be used in intents to provide hints about the optimal operational state.

[bookmark: scroll-bookmark-31][bookmark: _Toc73947926][bookmark: _Toc73948005]Default or minimum requirements

The service provider might want to set minimum requirements for operation. These are meant to be globally applied to all services provided. These can be functional or non-functional requirements. For example, the service provider might choose a marketing strategy to distinguish itself through security. A concrete action to back up this claim would be that all network links are encrypted.

Intent can be used to introduce this requirement into the autonomous network operation. It is a global default. This means that it applies to all delivered services irrespective if their service specific intent requires it or not. This global requirement forces to autonomous network to only consider solutions that include encryption.

An example of a global non-functional intent would be the setting of a minimum availability requirement for services. This would force fulfilling service intent by choosing more reliable deployment options even if they are more expensive.

[bookmark: scroll-bookmark-32][bookmark: _Toc73947927][bookmark: _Toc73948006]Categorization of intent

Categorization of intent helps humans to understand the meaning of intent content and the context in which the intent is used. It indicates who as created the intent and for what reason it is sent to a particular sub-system, system layer or autonomous domain. Intent types and categories are labels to summarize the intent use and content. A business operations type of intent is a business operations intent, because it uses business level terminology and metrics to formulate the expectation details and because it is given to an intent management functions with a responsibility scope of business operations.

The system, which receives an intent, operates based on the detailed requirements and goals expressed within and through a set of expectations. Explicit intent typing is a summary of the same information. An intent type would therefore at best contain redundant but incomplete information. It does not imply any additional meaning that is not yet represented better and more detailed by the given expectations. Intent handler logic would be built solely based on the expectation expressions.

Also, distribution of intent to the right handlers by matching handler capability with wanted intent expressiveness cannot be based on intent types. A detailed match between the level supported expectation and information objects is required to control compatibility of the intent with handler capability.

For these reasons, the proposals of IG1253 do not introduce intent types. In particular, the models that specify intent expressiveness do explicitly avoid sub-classes of the intent class and properties for assigning types and categories to intent objects. It is however possible to mention types in comments within intent objects. However, comments are solely for human guidance and documentation and are not processed by intent handlers as part of their operational processes.

While intent types are not recommended being part of the formal modeling of intent objects, we recommend introducing them as a tool to describe the autonomous system. In this respect the autonomous networks framework distinguishes business intent, service intent and resource intent. This categorizes intent being used between and within the major architectural layers of an autonomous network. For example, a business intent is in this respect any intent that carries requirements, goals and constraints targeted at functions and tasks within the business layer.

There are multiple dimensions for categorizing intent. Intent can address certain concerns and therefore target a specific functional domain. Intent expressing requirements for automated contract negotiations in BSS is certainly different than intent imposing radio coverage requirements in RAN management. What distinguishes these examples are the information models used to express expectations. The information models are domain specific which gives the intent a natural scope and implies a type.

Depending on which aspect and concern to describe and discuss a different set of intent categories might be used. An intent can therefore have multiple types at once coming from different dimensions of categorization.

Here are a few examples of dimensions of intent categorization. The list can be extended as needed:

1. By targeted responsibility scope
This can be the domain and layer in the autonomous network framework, or it can be the intent handling scope as introduced in Chapter 11.

2. By concerns addressed with intent. Multiples are possibly addressed by a single intent at once.
Examples: Service delivery, resource behavior, regulatory compliance, …

3. By origin type
This categorization is derived from the category of the intent source. For example, the type of entity that created the intent: Human or another system.

4. By origin role
The role of the entity the intent originates from: product manager, customer, user, technician, …

5. … the list can be extended as needed …

Intent objects are a collection of distinct expectations. This means a single intent can potentially address many concerns at once and therefore partially meet the conditions of several intent categories.

The dimensions and categories can be extended if needed for explaining further aspects of the operation. There is already sophisticated work on intent types and categories done by other work groups and organization. Their proposal is often based on domain expertise. We propose to use these proposals of intent categorization as needed as long as intent typing is not introduced in the models for creating intent objects.

[bookmark: scroll-bookmark-33][bookmark: _Toc73947928][bookmark: _Toc73948007]Principles of intent driven operation

[bookmark: scroll-bookmark-34][bookmark: _Toc73947929][bookmark: _Toc73948008]Intent Management function

We introduce the intent management function as the entity that operates an autonomous system by using intent. It can assume the role of an intent owner or intent handler or both according to intent life-cycle management and interface as defined in Chapter 8 and IG1253C.

[image:]

[bookmark: _Toc73947813]Figure 1. Intent management function

Figure 1 introduces the intent management function. Without implying a specific implementation, we assume that intent management functions operate based on knowledge, make decisions about actions to be taken and has the means to execute the chosen actions.

Knowledge refers to knowing the operational goals and requirements as specified by intent. The intent management function is an endpoint of the intent interface through which it received the intent it is supposed to handle, thus base its operational decision and actions on.

Knowledge also means knowing the state of the system or domain for which an instance of the intent management function has the responsibility to operate. While intent specifies the wanted state to be in, measurements and analytics results determine the current state. The decision of the intent management function is mainly about closing the gap between the current measured and wanted state.

The intent management function decides about suitable actions needed to fulfill the intent. The chosen action plan can involve the definition of further intent used to communicate requirements and goals to other sub-systems. This means an intent management function can act by defining intent. In this case this instance of the intent management becomes an intent owner. It can however also act through conventional interfaces for example by invoking processes or changing system configuration. The actuation of the intent management function would then implement all needed interfaces. This means that an intent management function interacts with and relies on other functions of the domain it operates. This domain responsibility makes instances of the intent management function highly contextual. They have a defined and exclusive scope of responsibilities. The scoping of intent handling is further discussed in Chapter 11.

[bookmark: scroll-bookmark-35][bookmark: _Toc73947930][bookmark: _Toc73948009]Intent reporting

Intent reports are exchanged between intent management functions for reporting on status and success of intent handling. Intent management function can have the role of intent handler or intent owner. Intent objects are created by the intent owner and sent to the intent handler. The intent handler operates based this intent and reports back to the intent owner about progress and success. The roles of intent management functions are discussed in further detail in the context of intent life cycle management in Chapter 8.

Intent reports are therefore knowledge objects that always correspond to an intent. If an intent is sent by an intent owner to an intent handler, the intent handler will start sending reports back to the owner. This means for each individual intent object there will be a sequence of reports directly related to this intent.

Intent reports are pushed by the reporting intent handler rather than being pulled by the intent owner. When and why to create reports is determined by conditions defined within the intent through reporting expectations. The intent handler has access to detailed state information and measurements of the domain or system it operates. This means only intent handlers can detect if an intent is violated. Therefore, only a push mechanism for reporting would allow immediate reporting of major events such as intent degradation. While intent owners define through intent objects what operational aspects are relevant, an intent handler would use its domain knowledge to report on these aspects and only on these aspects. Intent handlers are in this respect knowledge aggregator and relevance filter for the intent owners.

Intent reports also play a role in the intent life-cycle management. They also communicate handling status and progress. Communication from the owner about setting, modification or removal of intent is answered with an intent report. In this respect the intent report also carries information about handler decisions such as acceptance or rejection of intent and the rejection reason.

The intent management function that has sent the intent is the receiver of the associated reports. Although intent reports are pushed by the intent handler, the receiver of the report has full control of the reporting. It specifies the reporting conditions through the intent. If additional or less reporting is needed, the intent owner can modify the intent and the reporting expectations within. The intent handler would adjust its reporting accordingly.

[bookmark: scroll-bookmark-36][bookmark: _Toc73947931][bookmark: _Toc73948010]Intent in the autonomous network framework (ANF)

The intent management function is a generic architectural component for the realization of an autonomous network’s framework. All intent is created, managed and operated by intent management functions and through the intent interface. Thus realizes an intent overlay across architectural layers and throughout autonomous domains.

[image:]

[bookmark: _Toc73947814]Figure 2. Example intent driven operation within the autonomous network’s framework

Figure 2 shows an example of multiple intent handling functions with their individual responsibility scopes. Note that the arrow representing the intent interface is bi-directional in this picture. This includes the direction of intent setting as well as the direction of intent reporting between intent management functions. All methods proposed on this interface are discussed in detail in Chapter 10 and IG1253C.

In this example there is one intent handling function in business operation. It receives its intent from contract and order management. This intent might originate from SLAs, and it reflects the contractual obligation towards a customer and the needs of the respective users. While contract and order management might be an automated system that generates intent, further intent can come directly from human personnel of the customer. Also, the operator's personnel can inject further intent directly into the autonomous system. Human intent setting would be done through respective frontend. In this example we show customer and business portals. Both are human interface frontend allowing direct or indirect intent specification by humans.

In the service operation layer, this example shows three distinct intent management function. An OSS intent manager receives all intent for service operation coming from the business operations layer. This intent manager then decides the service operation processes needed. It breaks down the received goals and requirements into suitable instrumental goals. These are then distributed to sub-domains of service operation as intent. Here two sub-domains are shown: Orchestration and Network management. However, this is only meant to be an example of the principles of intent driven operation. In a real-world autonomous network, there are more and potentially different domains and layers from the ones shown here.

Resource operation consists of multiple autonomous domains. Using the intent mechanism, it is possible that service operation interacts with each autonomous domain through intent. Typically, intent management functions within service operation would decide what goals and requirements each autonomous domain needs to fulfill. These are the instrumental goals of service operation. These goals are reflected in a set of distinct, but coordinated intent objects, each targeting the intent handler within an autonomous domain.

Please note that intent is not only used between the layers of the Autonomous Networks Framework, but also between autonomous domains, within the layers. Please also note that in this respect autonomous domains do not only subdivide resource operation, but also separate responsibility scopes of intent driven operation within Service and Business operation layers.

[bookmark: scroll-bookmark-37][bookmark: _Toc73947932][bookmark: _Toc73948011]Intent life-cycle

Intents are distinct knowledge objects with separate life-cycle. This life-cycle is managed by intent management functions. Each instance of an intent management function can assume the following lifecycle management roles:

Intent Owner
The intent owner is the origin of intent. If has created the intent object and it is responsible to manage its lifecycle. This includes changing the intent content if needed and finally removing the intent object. Only an intent management function in the role of an intent owner is allowed to create, modify or remove the intent.

Intent Handler
The intent handler receives an intent object and operates the domain it is responsible for accordingly. Intent handlers do not modify intent, but they can reject it. However, once accepted they are obliged to fulfill the requirements and goals as well as possible based on the resources and solutions it has available. Intent handlers report back to the intent owners about the handling status and success.

Every intent object has exactly one owner and one handler. The relationship between multiple intent owners and handlers is discussed in further detail in IG1253C.

The intent lifecycle consists of the following phases:

[image:]

[bookmark: _Toc73947815]Figure 3. Intent lifecycle phases

Detection:

In the detection phase the intent owner identifies if there is a need to define new or change/remove existing intent to set requirements, goals, constraints. An intent management function has its own terminal goals to fulfill. It would break its terminal goals down into a suitable set of detailed instrumental goals. Typically, these instrumental goals need to be fulfilled by other functions and domains and therefore they need to be not only defined but distributed to suitable handlers throughout the autonomous system. This is what the intent owner is doing using intent. In the detection phase the intent owner can react to changes in its own terminal goals or to changes in the fulfillment in its instrumental goals. In this respect the intent owner will need to collect information about the goals' fulfillment. Intent reports coming from handlers are one source for this information. Through intent reports the intent owner is able to react on intent handling success. In any case it is task of an intent owner to assure the fulfillment of its terminal goals and the first step is to detect if any changes are needed in its instrumental goals and therefore in the intent objects it owns.

Investigation:

in the investigation phase the intent owner finds out what intents are feasible. This has two aspects: first, it needs to find suitable intent handlers that have the right domain responsibilities and support the intent information the owner wants to define. Intent handler capability management and detection would be used for this process.

The other aspect of investigation would be finding out if the wanted intent is realistic. This means, if the intent handler would be able to successfully reach the wanted goals and meet the requirements. This depends on the current resource situation and state of the system and can vary over time. Typically, the feasibility of intent is done through a guided negotiation process between the intent handler and intent owner. The owner can explore what the handling result of a wanted intent would be, what would be the best result the handler can achieve, or what would be the most challenging requirements, the aspiring intent handler can offer to fulfill.

Definition:

At the end of the investigation phase the intent owner knows what is possible and which handlers can be used. By combining this information with the needs that were identified in detection, the intent owner can now decide and plan all needed intents. In the definition phase the intent owner formulates the intent it needs to use, and it creates the respective intent objects.

Distribution:

In the distribution phase the intent owner contacts an intent handler in order to send a new intent or modify or change an existing one. This way the intent owner acts on the plan it has made in definition phase. In this phase an intent management function becomes intent handler by receiving new intent. The intent handler decides if it can accept the intent. If not, it would send a report with the rejection reason back to the owner. While this finishes the life-cycle of this particular intent object, the intent owner can start over with detection to create a new plan. If the intent handler accepts the intent, it starts operating based on it.

Operation:

Each intent an intent management function handles constitutes yet another set of goals and requirements to be considered in its decisions and actions. Intent handlers operate their domain of responsibility according to the given intent. They also report back to the owner about status and success while continuously reacting to intent fulfillment threads. Intent reports would be evaluated by the intent owner as part of its detection process, which leads to the next iteration of the intent life cycle.

[bookmark: scroll-bookmark-38][bookmark: _Toc73947933][bookmark: _Toc73948012]RACI of intent and intent handling

We use a responsibility assignment matrix [4] to discuss the roles and responsibilities of intent driven operation. We propose to follow the RACI model and its role distinction for tasks. While RACI models were originally designed to describe tasks and roles in human executed processes, we extend and apply the same model to describe entities within an autonomous network. In this chapter we focus on the tasks and entities involved in intent driven operation.

R = Responsible (also recommended)
Those who do the work to complete the task. There is at least one role with a participation type of responsible, although others can be delegated to assist in the work required.

A = Accountable (also approver or final approving authority)
The one ultimately answerable for the correct and thorough completion of the deliverable or task, the one who ensures the prerequisites of the task are met and who delegates the work to those responsible. In other words, an accountable must sign off (approve) work that responsible provides. There must be only one accountable specified for each task or deliverable.

Accountability is linked to liability. A party that is accountable for the actions done to perform a task is liable for the effects and consequences these actions have. This means a party can only be accountable if it can be liable in the legal sense. This is a necessary property of any party to be considered accountable according to the RACI model. Legal persons such as corporations can therefore be accountable. Individual persons can be accountable only if they are in a position that implies liability. Some management positions can have this property of the person being personally liable. Persons in positions that do not directly imply liability for their actions can therefore not be accountable in the sense of a RACI model. They are typically allocated in a hierarchy with a person or organization above them, which is liable.

Machines and autonomous systems are never legally liable and can therefore can never be accountable for a task. Accountable entities assign responsibilities for tasks, and they might have assigned responsibility to other persons or to an autonomous system. This means, that responsibility can be handed down in a hierarchy and shared when a task is subdivided into sub-tasks and therefore the responsibility for the task is sub-divided into a set of responsibilities for the sub-tasks. These responsibilities are assigned to one or multiple individual entities. Accountability always stays with the person or organization that is liable and has oversight over all delegated responsibilities no matter if they were delegated to other persons or autonomous systems.

C = Consulted (sometimes consultant or counsel)
Those whose opinions are sought, typically subject-matter experts; and with whom there is two-way communication.

In a technical infrastructure one entity with the responsibility for a task might utilize the services of other entities as needed. This can be an information or data service delivering input needed to perform the task. Also, policies can be consulted as part of a decision process the responsible entity performs. Furthermore, a person can be consulted by an autonomous system as part of the process through a frontend.

In this respect a consultation activity can be broken down into sub tasks and therefore implies a set of sub-tasks with distinct responsibilities. For example, the insights of an analytics function can be important for performing a task. The entity with the responsibility of the task would therefore consult the analytics function about this insight. On the other hand, creating the insight is a process that can be broken down into a set of tasks with associated responsibilities. In this respect it matters for the RACI analysis what level and scope of functional decomposition is chosen to describe the system. In this chapter the analysis is done to describe intent management and the main tasks associated with intent owners and intent handlers.

I = Informed (also informee)
Those who are kept up-to-date on progress, often only on completion of the task or deliverable; and with whom there is just one-way communication.

When assigning RACI roles to the technical entities involved in intent handling, informing is interpreted as sending information on the results of a task or sub-task to a party whose own responsibilities depend on it. For example, when an intent handler has done actions towards intent fulfillment, it will inform the intent owner about the results.

A RACI model is typically used to describe and discuss the roles of human actors with respect to tasks in a process. Here we propose to extent the scope of RACI models to also include automated entities such as the intent management function in the role of intent owners and/or intent handler. In this respect it is important to capture the relationship between the human workforce and autonomous systems, how they share RACI roles and how they interact with each other in taking these roles.

The beneficiary of intent is the person or entity (legal person) whose concerns and needs are addressed by the intent. They are the entities benefiting from the intent. There are many parties that can be considered to be beneficiaries, for example:

· Customers of the service provider
Customers and associated end users benefit, because intent expresses and communicates their needs with respect to services that need to be delivered and their detailed agreed characteristics. This is typically legally controlled through contracts including SLA or frame agreements. Their details are expressed as intent and combined with intent directly provided through self-service portals.

· Service provider shareholders
The owners of network operators and service providers are beneficiaries of the intent the service providers use for steering the operation of their infrastructure and network. They benefit from services being delivered with cost optimized resource usage while receiving compensation for fulfilling the contractual obligations. Intent is in this respect a tool to steer the more or less automated systems into the direction of a preferential business result and return of investment.

· Legislator and Regulator
For example a market regulator might use intent towards the operator to enforce legal requirements. Compliance to regulation constitutes their benefit.

· Other parties or interest groups

Further entities can become beneficiaries if they have a concern to be satisfied by the operator. This concern might then either be expressed explicitly as intent or it is communicated in a different way, but influences the intents being used within operation.

The service provider or operator is the central acting party for intent driven operation. It receives intent from beneficiaries. These intents are external if they are coming from a party outside of the administrative domain of the service provider.

A service provider with an autonomous or semi-autonomous network employs a human workforce in combination with automated or autonomous systems. Intent is used to communicate the concerns of the operator to its partly human partly autonomous workforce. This intent is internal. It is primarily expressing the service provider's concerns and needs. One concern is typically to fulfill the needs of external beneficiaries. Consequently, internal intent reflects external intent. Additionally, internal intent distributes inherent concerns of the operator, such as its business goals, strategies and policies.

In this environment of business and legal relationships, the service provider is accountable for all tasks within the administrative domain it controls. This implies that the service provider is liable for the effects and consequences caused by the actions being done by any entity within this domain. These actions are executed by the personnel the service provider employs or the autonomous systems utilized and assigned tasks. The service provider is therefore accountable for intent driven operation with all involved actions and effects they might have on beneficiaries. This is the case for all external intent received and accepted by the service provider as well as for all internal intent the service provider uses to steer the underlying infrastructure. The service provider is accountable for all positive and negative outcomes including also collateral and unintended side effects.

In this respect the service provider must trust that the intents received by external parties are correct and complete and therefore reflect the needs of the beneficiaries accurately. The beneficiaries take the role of intent owners in this relationship while the service provider is the intent handler. The beneficiaries are therefore accountable and responsible for correctly performing the tasks of an intent owner. This means they are accountable for the tasks involved in defining the intents and therefore liable if the intent they send is not correct. Nevertheless, the service provider is accountable also for concerns that are not explicitly stated by intent. For example, legal compliance always applies and can also not be overruled by externally received intent.

In terms of the RACI model, the service provider's personnel is responsible for tasks of intent driven operation including its sub-tasks. We propose to extent this notion of responsibility and therefore the scope of the RACI model to autonomous technical systems. An autonomous system can therefore be directly the responsible entity for a set of tasks. This means, while accountability for tasks is always assigned to a person or legal person, the responsibility can be assigned to human individuals and teams as well as autonomous systems.

Intent primarily targets the behavior of autonomous systems operating a technical infrastructure. It impacts the utilization of typically common and limited resources. This means that actions done for the task to fulfill the intents associated with one beneficiary can impact the outcomes for other beneficiaries. The accountable party is liable for these side effects. It is therefore an important aspect for the responsible parties to consider negative side effects when executing their tasks. Intent defined by the accountable entity can be used to steer this process.

An autonomous system is usually under human supervision. This refers to a person or team responsible to monitor the autonomous system and ready to step in. This might be needed, if the autonomous system for example does not fulfill intents, takes too risky decisions or misses out on optimization opportunities. The human team can apply a range of actions. They might re-configure the autonomous system, potentially by adding intent to shift its behavior. Artifacts such as policies, applications, models or data might be missing although needed or the use cases the system is asked to operate. In this respect ML models might get out of sync with reality and data scientist need to step in and tune or re-train the model with new data. This would be enabled by well-defined and efficient AI governance processes including monitoring and explainability. Ultimately the human team might also completely take over and operate manually if no other action works.

The autonomous system and the human team monitoring and maintaining it can be seen as a unit with respect to intent driven operation. They share the responsibility for a set of tasks, but with variable allocation between the autonomous systems and the human technician. In normal operation the autonomous system is the sole responsible entity for operational tasks, while the human concentrates on monitoring correct operation. In exceptional situations, for example if the autonomous system fails in its tasks or if it requires assistance and approval, the split of responsibilities shifts. The autonomous system might escalate tasks to the human, or the human might seize responsibility for some tasks. In extreme cases the human technician might choose to completely take over all operational tasks if necessary.

Within an intent driven autonomous system the intent management function in the role of intent handler as introduced in chapter 8 is the responsible entity for intent driven autonomous operation. It receives intent and it involves other functions in the operation. It is also responsible for performing the intent reporting task.

[bookmark: scroll-bookmark-39][bookmark: _Toc73947934][bookmark: _Toc73948013]RACI for intent lifecycle management tasks

Intent driven operation is realized by instances of the intent management function by performing intent lifecycle management through the intent handling management service (aka. intent interface). This chapter discusses the classification of major tasks involved in intent lifecycle management and assignment of RACI roles.

[image:]

[bookmark: _Toc73947816]Figure 4. Parties involved in management of internal and external intent.

Figure 4 shows the parties involved in tasks for intent driven operation. Beneficiaries build a relationship with the service provider by acting as external intent owners considering the service provider as intent handler. The overall administrative domain of the service provider is subdivided into autonomous domains including autonomous multiple layers of intent usage. All tasks involved in intent driven operation through intent lifecycle management are distributed to intent management functions in intent owner and intent handler roles. The tasks involved and associated assignment of RACI roles are shown in Table 1.

Humans and other functions than intent management functions can be involved in the operation processes, but only as consulted or informed parties. For example, in usual operation humans are only in a consulting role. This usually refers to the personnel of the service provider using an autonomous system to operate and a human team to supervise the system. The autonomous system might choose to escalate and seek assistance from them when needed. Only in exceptional cases, such as failure of autonomous operation the responsibility for tasks in intent management would be reassigned to humans. Table 1 discusses normal operation in which operational tasks and in particular the tasks of intent management are assigned to the intent management function.

Humans also monitor the autonomous system. Tasks associated with monitoring are not part of intent handling and therefore not in scope of this discussion.

[bookmark: _Toc73947857]Table 1. RACI assessment of intent driven operation

		Intent LCM phase

		Task

		Human

		Intent owner

		Intent handler

		Other management functions

		Detection

		

		C

		R

		C

		C

		

		Monitor operational state (intent handlers and infrastructure)

		-

		R

		C

		C

		

		Identify the need to change intent

		C

		R

		-

		-

		Investigation

		

		-

		R

		C

		C

		

		Investigate intent options

		-

		R

		C

		C

		

		Feasibility assessment

		-

		I

		R

		C

		Definition

		

		-

		R

		-

		-

		

		Decide which intent details to use

		-

		R

		-

		-

		Distribution

		

		-

		R

		I

		I,C

		

		Register intent handling capability profile

		-

		-

		R

		I

		

		Select intent handler

		-

		R

		-

		C

		

		Communicate intent

		-

		R

		I

		-

		

		Assess and accept intent

		-

		I

		R

		C

		Operation

		

		C

		C,I

		R

		C

		

		Monitor operational state
(underlying Infrastructure)

		-

		-

		R

		C

		

		Detect deviations

		-

		-

		R

		C

		

		Plan action

		C

		C

		R

		C

		

		Execute action plan

		-

		-

		R

		C

		

		Report handling status

		-

		I

		R

		C

R: Responsible, C: Consulted, I: Informed, -: not involved

Intent driven operation within an autonomous network is driven by the intent management function. The intent lifecycle determines the distinct tasks involved in the operation. These tasks are split mainly between an intent management function in the role of intent owner and an instance in the role of intent handler. The intent lifecycle is introduced and discussed in Chapter 8.

Next to the intent management functions there are other management functions participating in the operation and also humans might get involved. Table 1 summarizes the assessment or roles according to the RACI model.

Please note, that this assessment is done from the perspective of a single intent instance. In general, and with multiple intents involved intent management function can assume multiple roles. For example, an intent owner for one intent can be the handler of other intents. In these scenarios these other intents the intent manager instance handles will play a major role in the decisions about the intent it owns. A separate assignment of RACI roles would apply to each distinct intent object separately.

Detection phase

The responsibility for tasks in the detection phase lies with the intent owner.

Intent handlers contribute through intent reporting. Other management functions also contribute if needed for example with analytics insights and measurement of KPI. This means intent handlers and other management.

Functions are consulted in the task of monitoring the system state.

The intent owner is responsible to identify if new intent or changes to existing intent is needed. The intent owner is ideally making this decision autonomously, buy it has the option to consult with humans if needed.

Investigation phase

The intent owner drives the investigation and is therefore the responsible entity. This investigation is mainly about asking intent handlers if they can successfully handle the wanted intent and what would be the result if this intent would be given to the handler. The owner explores options and consults intent handlers. One significant task in this process is the assessment of potential intent fulfillment success within an intent handling scope and with the available resources. The intent handler is responsible for this task. This task is enabling the intent handler to be consulted in the overall investigation phase. The intent owner will be informed about the results.

Other management functions might get consulted by the intent handler if needed in the feasibility assessment.

Definition phase

Based on the information gathered in detection and investigation, the intent owner would select one of the investigated options and creates intent objects accordingly. This phase and all its associated tasks are in the responsibility of the intent owner.

Distribution phase

In the distribution phase the intent owner is responsible for the task of communicating the intent created in the definition phase to the intent handler. Consequently, the intent handler is an informed party. In return the intent handler informs the intent owner if it accepts the intent. The intent handlers is responsible to do so and to perform all necessary assessment and evaluation tasks potentially consulting with other management functions.
A key task in the distribution process is the selection of a suitable intent handler based on intent handling profile. This is a process enabled by the intent handler registry. It is the responsibility of each intent handler to inform the intent handler registry about its intent handling capability profile. The intent handler registry is consulted by the intent owner when performing intent handler selection. Intent handler capability profiles and the intent handler registry are introduced and discussed in more detail in Chapter 12.

Operation phase

In this phase the underlying infrastructure is operated to fulfill the intent. The tasks of the operation phase are therefore primarily in the responsibility of the intent handler.
The intent handler needs to monitor the state of the underlying infrastructure. It is gathering all needed information by consulting with other management functions, such as inventories, data management systems and analytics functions.

The intent handler then needs to identify the reason to act derived from a discrepancy between the monitored state of the system and the wanted state defined by intent. Other management function might be consulted for this task.

The intent handler would plan suitable actions to improve the fulfillment of intent. If would consult with other management functions is needed. They can help to propose actions, predict their potential impact, or evaluate their feasibility. If needed, the intent handler might also consult with the intent owner or directly with humans about the preference of alternative action plans.

Ultimately the intent handler has decided how to act and will execute the actions. The intent handler is responsible for the execution as a whole. This might involve multiple sub-tasks other management functions are responsible for. With respect to the overall responsibility of the intent handler these other management functions are therefore informed or consulted depending on the details of the actions involved.

The intent handler is also responsible to report intent handling status and inform the intent owner about it.

[bookmark: scroll-bookmark-40][bookmark: _Toc73947935][bookmark: _Toc73948014]RACI of intent handling capability management

Instances of the Intent management function participate in tasks for intent handling capability management. The analysis of these tasks according to RACI is shown in Table 2.

[bookmark: _Toc73947858]Table 2. RACI assessment of intent handling capability management

		Task

		Human

		intent owner

		Intent handler

		Intent handler registry

		Register intent handling capability profile

		-

		-

		R

		I

		Select intent handler

		-

		R

		-

		C

		

		

		

		

		

R: Responsible, C: Consulted, I: Informed, -: not involved

Intent handlers are responsible to register themselves in the Intent handling registry. The intent handling registry therefore becomes the informed party. This is done through the intent handler registration MnS as described in chapter 10.

The intent owner needs to identify and select suitable intent handlers as part of their task within the intent lifecycle management. The intent owner is responsible for this task and the intent handler registry is consulted about the intent handler capability profiles. These tasks are performed using the intent handler discovery MnS described in chapter 12.

[bookmark: scroll-bookmark-41][bookmark: _Toc73947936][bookmark: _Toc73948015]Intent handling interface

The intent handling interface is the means of communication between two intent management functions. One of them is in the intent handler role and the other in the intent owner role. This interface and its methods are closely related to the phases and tasks within intent lifecycle management.

This chapter provides a summary of the intent interface. IG1253C contains a more in depth discussion of the interface with detailed examples about the communication procedures. This proposal is inspired by the introduction of interfaces through management services as described by 3GPP in [5].

The intent handler interface is independent of use-cases, application domains and system layers. It is primarily concerned with managing the lifecycle of intent objects and related intent reports. All domain specific information would be encapsulated within the intent and subject to the modeling of intent. This domain independence immediately means that an implementation of the intent handling interface can be re-used for every intent management function irrespective of its intent handling scope.

[image:]

[bookmark: _Toc73947817]Figure 5. The intent handling management service and interface

Figure 5 shows the intent interface modeled as management service. More specifically, we introduce the intent handling management service. Consumers and providers of the intent handling MnS are both instances of an intent management function. The producer is an intent management function in the role of intent handler, while the consumer is an intent management function in the role of owner. These roles are assumed on a per intent basis. This means the same instance of an intent management function can be the producer of the intent handling MnS for some intent, while it is the consumer for other intent. It is however never both for any distinct intent object.

The intent handling MnS defines a couple of methods for communication. Mandatory methods need to be implemented by any intent management function. They represent the bare minimum of communication needs between intent handlers and owners.

Optional methods and the respective communication procedures address advanced features such as intent negotiation and owner/handler collaboration on prioritization. This is optional, because supporting them would require advanced capabilities of intent management functions, such as predictive and speculative models. Simple intent management function implementations would typically not have these capabilities due to cost of complexity or because they are not needed for the responsibility domain of an intent management function.

Mandatory Methods:
These methods need to be supported by every intent management function.

SET:
This method is used by an intent owner to communicate the new or modified intent to an intent handler.
This is how the intent owner communicates the needed intent. The handler would reply with an initial report. The handler can accept or reject the intent.

REMOVE:
This method is used to remove an intent object. This is how the owner of the intent object retires (delete) intent that is not needed anymore and informs the handler. The handler will send a final report in return and remove the intent from the set of requirements that determines its operational actions and decisions.

REPORT:
This method is used to communicate intent reports. It is initiated by intent handlers once they are required to report the intent handling status and success back to the owner of the intent.

Optional Methods and Procedures:
These methods can be implemented if needed. An intent management function can use the mechanism of intent handler capability management to announce its range of support.

JUDGE, PREFERENCE:
These methods allow a collaborative evaluation of proposed solutions. This is part of the operation phase within the intent life cycle. The handler asks the owner to judge alternative outcomes corresponding to alternative solution strategies and actions. This is done before these actions are executed. This way the intent handler achieves a better understanding of the intent owner's needs and priorities that were not apparent from the intent.

PROBE, ESTIMATE:
These methods allow to explore the potential handling results of an intent. The process is part of the investigation phase within the intent life cycle. It is initiated by the intent owner. It involves sending an intent object to the handler, asking the handler to not consider it in actual operation decisions and actions.. The handler shall rather just estimate what the outcome would be, if the intent would be really set by the owner. The handler would deliver its assessment in the form of a potential intent report. This can establish a process of negotiation between the intent owner and handler.

BEST, PROPOSAL:
By using these methods, an intent owner asks an intent handler for the best intent configuration it can successfully handle. The owner guides the handler by pointing at expectations to focus on with respect to required/prioritized value ranges.

[bookmark: scroll-bookmark-42][bookmark: _Toc73947937][bookmark: _Toc73948016]Intent handling scope

An instance of the Intent management function operates a system according to a clearly assigned responsibility for task. This refers to the set of responsibilities according to the RACI model as described in Chapter 9. In this respect implementations of intent management functions are not generic but specialized in the tasks they are responsible for. The scope of task responsibility typically matches clearly defined sub-system, ANF layers or autonomous domain borders. This means every sub-system or domain within an autonomous network has a unique instance of an intent management function with the responsibility to fulfill the intents targeting this domain. The range of tasks and borders of responsibilities are referred to as intent handling scope.

Every intent handling scope corresponds to exactly one instance of the intent management function. An autonomous network consists of multiple intent handling scopes and all of them together define the vertical and horizontal range of intent driven operation. Horizontal range refers to the number of operational domains on the same system layer that are automated through intent driven operation concepts. Examples are autonomous domains in resource operation, such as cloud, transport and ran management. Each of them can implement a dedicated instance of the intent management function and by that participate in intent driven automation.

Vertical range refer to further layering into sub-domains through nested intent handling scopes. This is achieved by splitting responsibilities into lower and higher level tasks and implement separate intent management functions. The higher level intent manager can then use intent to influence the lower level operation by defining its operational requirements and goals. This means Intent handling scopes can be nested creating internal hierarchy and subdivision in smaller scopes.

A clear definition of intent handling scopes and the tasks each distinct intent handler is responsible for is important to avoid conflicts between intent handlers.

[image:]

[bookmark: _Toc73947818]Figure 6. Example intent handling scope

Figure 6 shows an example of an intent handling scope. For this example, the intent handling scope of service orchestration and assurance is shown. This would be an example scope from the service operation layer. It refers to intents being used to communicate requirements of services to be delivered.

This example intent handling scope contains one intent management function. It receives service related intent, and it tries to comply to the intent utilizing and collaborate with other functions of the service operation layer. Applications and policies determine the decisions that can be made and processes that are available within this scope. An orchestrator function would be able to choose and allocate resources needed for realizing the service. There are catalogs of available service elements, inventories containing the currently instantiated resources and analytics functions that help to determine and interpret the system state.

[image:]

[bookmark: _Toc73947819]Figure 7. Multiple example intent handling scopes

Figure 7 shows multiple intent handling scopes. Each of them contains exactly one instance of an intent management function specifically implemented for the responsibilities needed within its scope. Further management functions of the autonomous network are assigned to the scopes if the function and service they offer is relevant for the tasks the respective intent management function has the responsibility for. The intent handling scope of order management for example.

The intent handling scope is one of the main capability properties to describe an instance of the intent management function. It summarizes its responsibilities and range of operation. Typically, the intent handling scope implies certain expressiveness and content that can be used in the intent targeting it. Intent handler capability management as introduced in chapter 12 introduces how these characteristics of intent management functions can be described and used in discovering suitable handlers for an intent and making sure that it will understand its content.

IG1253D will contain a collection of proposed intent handling scopes. This chapter demonstrates the concept. It will be revised and extended in future releases based on detailed use case studies and potentially cross SDO collaboration. In this respect the scoping of intent handling also plays an important role in the governance of work executed across SDOs and standardization work groups. The scope of a domain specific intent standard proposal ideally targets one or several intent handling scopes. It is in this respect explicitly allowed to define new intent handling scopes as needed. And it is encouraged to contribute them into the list and documentation of intent handling scopes in IG1253D. This would ensure that overlaps in scopes are discovered that they can be avoided.

[bookmark: scroll-bookmark-43][bookmark: _Toc73947938][bookmark: _Toc73948017]Intent handler capability management

Depending on their scope of operation and responsibilities, instances of the intent management functions needs domain specific implementations. This means intent management functions have unique capabilities. Aspects of intent handler capability are:

· Intent handling scope: The range of responsibility for operational tasks within a system domain or sub-system. By this information in the intent handling profile, an intent management function claims that it is the responsible entity for all intent targeting this scope.

· Intent interface support: The optional intent interface methods supported by this intent management function. This means that this intent management function has implemented also some of the more advanced and challenging processes implied by the optional interface methods.

· Intent expressiveness: The intent extension and intent information models understood within intent and intent reports. The intent management function claims that it can understand any intent if it is build using this set of intent common model versions and intent extension and intent information models. This naturally does not imply, that it will always be successful in fulfilling the intent, but it at least understands its meaning.

[bookmark: scroll-bookmark-44][bookmark: _Toc73947939][bookmark: _Toc73948018]Intent handling profile

An intent handler profile is an information object that describes these capabilities offered by an instance of an intent management function.

[image:]

[bookmark: _Toc73947820]Figure 8. Example profile of an intent handler.

Figure 8 shows an example intent handler profile. In this example the intent management function has the intent handling scope of "Slice Management". Furthermore, it supports the PROBE, BEST and PROPOSAL optional methods on the intent interface. And finally, the profile enumerates the models for intent expression this instance of an intent handler supports and understands.

This capability profile information is important for multiple tasks within the intent life cycle. It allows an intent owner to identify the intent handler instance that is responsible for the domain targeted by the wanted intent. It also determines which interface methods for intent feasibility and negotiation are available. And the knowledge about supported models allows to create an intent the wanted handler can understand.

Please note, that the list of supported models also contains the intent common model, although it is considered to be mandatory for every intent management function to implement. However, there might be multiple versions of the model and the intent handler profile allows defining, which are supported.

In the current proposal, the intent handler profile lists entire models as supported. It will also be possible to enumerate elements of each model that are supported or not. This will be covered in future work together with the detailed proposal for expressing intent handler profile knowledge objects.

[bookmark: scroll-bookmark-45][bookmark: _Toc73947940][bookmark: _Toc73948019]Intent handler registration and discovery

It was pointed out in chapter 8 that the information contained in intent handler profiles of one intent manager instance is instrumental to other intent managers when performing intent life cycle management. In this chapter we propose how these profiles are distributed.

Intent management functions register themselves with their intent handler profile at the intent handler registry. This is done through the intent handler registration management service produced by the intent handler registry and consumed by any intent manager. In this respect it is the responsibility of each intent management function to keep their profile information up to date. This can be needed for example if dynamically deployed artifacts such as policies or machine learned models introduce or remove capabilities.

[image:]

[bookmark: _Toc73947821]Figure 9. Intent handler registration and discovery

Figure 9 shows the interfaces involved in intent handling, intent handler registration and intent handler discovery.

The intent handler discovery management service allows to query the intent handler registry. This way intent owners can identify suitable intent handlers for the intents they want to create.

[bookmark: scroll-bookmark-46][bookmark: _Toc73947941][bookmark: _Toc73948020]Modeling of intent objects and reports

Intents were defined as being the requirements, goals and constraints that reflect needs and communicate them to the autonomous system. This is knowledge created by an intent management function and sent to another intent management function to be considered in autonomous operation. An individual intent object has a managed life cycle. Chapters 8 and 10 as well as IG1253C have defined the lifecycle phases and the interface through which the lifecycle management is performed. Intent modeling defines the expressiveness of intent. It introduces vocabulary and structures needed to encode the intent knowledge. Intent models define common semantics in order to enable to two parties to agree on the meaning of intent.

The intent model needs to provide sufficient expressiveness to cover all relevant use cases. Autonomous operation is in general a multi domain task. Consequently, intent models must provide domain specific and use case specific expressiveness. For example, intent on business level might express user requirements as well as goals on financial results. These intents would determine for example the outcomes of automated order and contract management. These are the responsibilities of the business layer and the intent used on that layer expresses matching requirements, goals and constraints. Another domain would have different responsibilities and therefore requires different expressiveness within the intent. For example, typical concerns of RAN management would be coverage, quality of service and availability on the level of individual cell sites and used resources. Intent targeting RAN would need expressiveness for these concerns. In this respect it is a clear goal of this document to define modeling in a way that allows extension into additional domains.

Although intent for different domains requires specific expressiveness it is a clear goal to avoid incompatible standards and interfaces being used in different domains. Conceptually all intent are very similar in their general structure and partly also in the needed expressiveness. For example, many intents need to specify something that need to be delivered. In some cases that can be a service, or a product as ordered by a customer. In other cases, it can be a network slice or a network function. It depends on the application domain and the corresponding intent handling scope, what exactly the thing is that needs to be delivered, but it is always the same kind of expectation and similar expressiveness.

Another example would be the definition of non-functional requirements. Often this is done by setting a target based on KPI. For example, intent related to services might require that service availability does not fall below 99.9%. An intent targeting a network slice might require a minimum available throughput of 1 mbps per user session. While the KPIs being used can differ significantly between domains, non-functional requirements are typically expressed by a numerical value that must be reached or exceeded to be compliant.

The conclusion is that intent modeling requires commonly needed expressiveness combined with domain specific details. It is a clear goal to avoid unnecessary divergence in intent standards and keep intent driven operation compatible across domains. The definition of common and domain independent intent lifecycle and intent interface is already targeting this goal of a common intent handling. Intent modeling can naturally not be kept domain independent, but it is still possible distinguish common and domain specific aspects and manage the needed models separately. This is addressed by proposing to use model federation.

[bookmark: scroll-bookmark-47][bookmark: _Toc73947942][bookmark: _Toc73948021]Model federation

Intent is in general highly domain specific. It must be able to express the requirements, goals and constraints from all domains participating in intent driven autonomous operation. Domains can be very different which reflects in expressiveness and information content of the intent objects they use and understand. BSS for example deals with artifacts and concepts close to customer and business needs, such as contracts, SLA, monetary compensation, customer value and service order. At the other end of the spectrum are highly technical domains, such as RAN, cloud or slice management. Requirements and goals here are often based on detailed technical metrics and KPI that reflect the state and performance of technical resources such as latency and throughput for traffic on a slice or the processing scale of network functions.

Next to technical diversity there is also an organizational one. The different layers and domains are subject to focused standardization efforts by multiple organizations and work-groups. This is where domain experts would define the models and standards according to the needs of their domain.

This diversity means that a single unified modeling effort to cover all intent is impractical and against good practice in the industry. On the other hand, there are concepts of intent driven operation that are domain independent, and it would be beneficial to keep the common aspects compatible. It would be a clear advantage to avoid incompatible and fractured standardization of the common aspects. This would lead to complex and costly implementation of adaptation solution.

We propose to introduce a model federation approach to intent modeling. This refers to the creation and expression of intent objects based on a set of distinct models. There will be generalized common models combined with domain specific extension.

The intent common model described in IG1253A is the only model in the federation of models that is mandatory. It is defining purely domain independent expressiveness leaving domain specific concerns to specialized intent extension and intent information models. Thus, a set of intent extension and intent information models defines domain specific extensions to the intent common model contributing domain specific vocabulary and semantics.

Model federation for intent modeling means that an intent object is always created by using a set of models. This set always contains the intent common model and it contains additional intent extension models and intent information models.

The use of the intent common model makes the intent compliant with the concepts of intent driven operation defined in IG1253. The use of intent extension and intent information models provide the domain expressiveness needed within an intent handling scope. In this respect each domain might require intents created with a different set of intent extension and intent information models.

The intent common model defines common modeling artifacts. It specifies for example the classes of intent and intent report. All intents are objects of the intent class. Furthermore, the intent common model defines the expectation class and related common properties. Expectation objects are distinct requirement expressions. For example, a delivery expectation object allows to specify a requirement to deliver something, for example a service, a function or a slice. A property expectation can be used to specify a requirement by setting a metric or KPI based target. These are examples of sub-classes of the expectation class. These classes and properties are introduced and discussed in greater detail in IG1253A.

Intent extension models can add domain specific modeling artifacts. It can, for example, add additional expectation. It is doing so by defining additional sub classes of the expectation class introduced by the intent common model.

Intent information models add vocabulary. For example, a KPI information model defines a set of KPI and the identifier the KPI is referred to. This can be used in a KPI based expectation expression. For example, the property expectation class from the intent common model would be combined with an KPI defined in a domain specific information model to create a domain-specific non-functional requirement.

We refer to a model as intent extension model if it is based on the intent common model and extends expressiveness by relating the new modeling artifacts it introduces to the common artifacts defined in the intent common model. Defining a new sub-class of expectation is doing exactly this. It creates a new type of expectation derived from a generic class of the intent common model.

We refer to a model as intent information model if it is independent of the intent common model or intent extension models. For example, an information model that is specifying all available KPI within a domain does not need to do so explicitly for use of the KPIs in extent expression. This means that already existing information models, which were created independently of intent based operation might be directly usable in intent expressions.

Intent objects are not explicitly typed. The use of certain expectations and the use of domain and use-case specific information models imply a certain purpose that corresponds to a type of intent. However, there is no need to explicitly make this type a part of the intent model. Typing of intent stays therefore a useful concept for documentation and human understanding but does not add semantics to the intent object. Therefore, the classes of intent and intent report do not have sub-classes.

IG1253A specifies the intent common model for intent and intent reports. IG1253B provides an initial set of domain specific extension and information models.

[bookmark: scroll-bookmark-48][bookmark: _Toc73947943][bookmark: _Toc73948022]Cross SDO model federation

Model federation for intent modeling as proposed by TM Forum Autonomous Networks introduces a lean governance and minimal central coordination of the models proposed to be used for expressing intent. We propose a common intent common model that defines the common and domain specific aspects of intent. Any SDO and workgroup can decide on its own to define intent extension models and information models to be used for intent based operation in that domain. There is no strict need for cross SDO approval or central coordination as long as the extensions to intent modeling are based on the common definitions and principles as defined in IG1253 and as long as the intent common model defined in IG1253A is considered a common foundation. The extensions must be done in a compatible way. It is explicitly not necessary to publish extension models through TM Forum or seek review or approval for these extensions from TM forum. Every SDO can use its own publication channels and processes. The only requirements for preserved compatibility are:

· Extension models are built against the intent common model defined in IG1253A. This is the common domain independent foundation of intent modeling. This can be done using the classes and properties already defined in the intent common model and referring to them in the definition of new artifacts. An example for this would be the definition of new sub-classes of expectations.

· Modeling artifacts that are potentially useful for multiple domains should be contributed into the intent common model rather than being kept in the domain specific intent extension model. This is not a requirement, but highly encouraged in order to avoid introducing multiple redundant artifacts that all address the same concern. This would be the part of the proposed model federation where good collaboration between SDOs is encouraged.

· Extension models do not introduce artifacts that contradicts the definition of intent, or the principles of intent based operation. For example, artifacts that allow imperative statements within intent would violate the definition that intent is purely a declarative expression of requirements, goals, and constraints without specifying how to achieve them. So, a general agreement on definition and concepts would be preferential.

The intent common-model is also designed to allow extensions into other industry domains than just telecommunication. This means intent can become the universal base for autonomous operation across classical industry borders. This would allow automation of truly cross industry use cases. This helps to manage for example the diversity in IoT and utility applications. Consequently, standardization fora and work groups from any industry with respective needs for intent driven operation would be invited to participate in the proposed federated modeling of intent.

[bookmark: scroll-bookmark-49][bookmark: _Toc73947944][bookmark: _Toc73948023]Modeling standards and techniques

Individual intents are knowledge objects represented and expressed in the form of ontology graphs. This means that any language able to specify ontology graphs is in principle suitable for expressing intent. We recommend however to base the intent modeling of the Resource Descriptor Framework (RDF) standard including the related RDF Schema (RDFS). These are stable standards with broad application in knowledge management scenarios. They were developed to formally express knowledge with machines and automated reasoning implementations as consumers.

intent driven operation relies on two central knowledge objects: intent and intent report. The discussion regarding modeling techniques, languages and base standards are valid for both.

It is important to note that an automated infrastructure, and therefore a software controlled machine, is the main recipient of intent. The chosen approaches to modeling should consider this and the availability of respective tools and technologies that can consume the models and build operation systems based on them.

UML is a popular modeling notation in telecommunication standards that was used successfully in many projects. However, UML models are usually used as communication tool targeting a human developer as recipient. They would implement interfaces, processes, and functions according to the models. This is a design-time use of the model, while intent objects are dynamically created and consumed at run-time. A machine is the recipient of intent and often an automated system is also the origin. As we are trying to introduce zero-touch autonomous systems, the goal would be to keep human involvement the operation processes as minimal as possible. For these reasons UML is not the primary choice for expressing intent.

Further consideration for the choice of modeling techniques and standards are:

Domain independence
The proposed intent mechanism is supposed to work across multiple industry domains and within one domain across all involved systems and sub-system. It is therefore not preferential to choose techniques that are applicable in a subset or even a single application domain. A base for intent modeling must therefore not contain domain specific constructs or assumptions. RDF/RDFS are generic standards for knowledge representation and therefore sufficiently domain independent.

Widely available standard with tool support
Intent modeling shall be based on stable and available standards. Ideally this means that there are already good tools available. This is the case for RDF. I tis also frequently used in knowledge management applications. Furthermore, graph databases and machine reasoning tools are often able to directly import RDF objects and work with its content.

Formal semantics for machine receivers
The standards and languages chosen as base for intent modeling shall allow defining complete formal semantics of knowledge objects. The receiver of intent is always an automated system that must be able to process the presented intent without being unclear of the presented semantics. This means two automated systems must not be in disagreement about the semantics. RDF allows defining knowledge graphs and this allows building ontologies able to sufficiently capture all needed semantics. However, it will be standards such as the intent common model and extension models that actually define the semantics of intent.

Definition of knowledge graphs
Intents are knowledge objects in the form of knowledge graphs expressing an ontology. The chosen base for intent modeling therefore needs to enable creating ontologies and knowledge graphs. Allowing to do this is the main purpose of the RDF standards.

Allowing federation of models
Intent shall work cross domain while still allowing specifying domain specific semantics. This is reached by using a federation of the generic intent common model and domain specific intent extension and intent information models. The chosen base standards for intent modeling must support modeling of objects using a federation of independently designed models. RDF allows mixing models in the creation of knowledge graphs, while keeping the constituent models within separate name-spaces. This capability is a key aspect for proposing RDF.

Modeling competence
Competence in the proposed base standards and techniques for intent modeling must be available. This means that these standards and techniques are already widely used, or competence can be built with reasonably low effort.

RDF and RDFS are a meta model for creating intent knowledge graphs. Most notably they define meta classes to for building class hierarchies and for establishing semantic relationships between objects through properties.

Other languages can be used in vendor specific implementations as long as they express intent as knowledge graphs in a way that is compatible with the proposed intent modeling concepts. This usually means that a translation into and from RDF is possible with reasonable effort.

The RDF infrastructure defines multiple formats and languages for serialization and interchange of intent objects. A frequently used format is TURTLE. In this document all examples are shown using TURTLE. It has a text based format that is usually easy to read and understand for technically trained persons. Furthermore, RDF modeled graphs can also be encoded in widely used formats such as XML, JSON or YAML.

[bookmark: scroll-bookmark-50][bookmark: _Toc73947945][bookmark: _Toc73948024]Model Federation example

The following example intent demonstrates how an intent can be formulated through a federation of multiple models.

@prefix imm: https://tmforum.org/2020/07/intent/@prefix tel: http://sdo1.org/TelecomConcepts/@prefix met: http://sdo1.org/metrics/version2/@prefix sli: http://sdo2.org/2021/03/SliceIntent/@prefix slk: http://sdo2.org/2019/SliceKPI/@prefix slm: http://sdo3.org/v1.1/SliceManagment/@prefix tim: http://sdo4.org/time/@prefix geo: http://sdo4.org/geography/@prefix cat: http://operator.com/Catalog/@prefix ope: http://operator.com/Inventory/

ope:ExampleIntent2021031100002 a imm:Intent ;

 imm:hasExpectation
 [a imm:DeliveryExpectation ;
 imm:target _:function ;
 imm:params [cat:amf]] ,

 [a imm:DeliveryExpectation ;
 imm:target _:slice ;
 imm:params [cat:SliceTypeA]] ,

 [a imm:MinMetricExpectation ;
 imm:target _:function ;
 imm:params [tel:subscribers 1000 ; met:availablility 99.9]] ,

 [a imm:MaxMetricExpectation ;
 imm:target _:slice ;
 imm:params [slk:latency 10]
] ,

 [a imm:AllocationExpectation ;
 imm:target _:function ;
 imm:params [imm:allocateIn geo:China]
] ,

 [a imm:PropertyExpectation ;
 imm:target _:slice ;
 imm:params [slm:sliceState [a imm:oneOf rdf:value slm:up, slm:available]]] ,

 [a sli:LinkExpectation ;
 imm:target _:slice ;
 imm:params [sli:connectingEndpointOf _:function]
] ,

 [a imm:ReportingExpectation ;
 imm:target ope:ExampleIntent2021031100002;
 imm:params [imm:regularReporting tim:hourly ; imm:eventReporting imm:intentViolation]
] .

In this example the intent object is build using multiple models. At the beginning of the intent object each used model is specified and a pre-fix is assigned. For examples metrics from version 2 of the metrics model defined by sdo1 would be identified by a combination of the metrics name as used in the model and a prefix that identifies the model. The prefixes constitute separate name spaces used together while still making every object globally unique.

This is an example intent defined internally within the domain of an operator with the domain operator.com.

All objects used in the intent expression with the prefix :imm are the intent common model as defined in IG1253. The intent common model is the root model for all intent definitions. It defines base classes for intent objects and its internal structure. It defines for example the class expectation. An expectation is a distinct type of requirement. An intent is then a set of different types/classes of expectation. The intent common model defines expectation classes that are generic and not domain or use case specific. This means, what they allow expressing is useful in many domains and constitutes a general pattern. For example, the expectation class MinMetricExpectation allows to establish a requirement based on metrics including KPI. Using KPI for expressing a quantitative target frequently used in many domains. The actual metrics and KPI used are domain specific. But not the fact of using KPI for this purpose.

Other models can be used to extent the expressiveness with domain specific extensions. For example, a standard about telecommunication metrics would introduce a KPI and define it in detail KPI. The intent model can now link to the standard and point to the KPI needed. For example, the slice latency referred to as slk:latency point to the latency metric from the slice KPI model as defined by sdo2.

Another possible extension would be the introduction of further classes of expectation. In the example above, the sli:LinkExpectation was used as defined in the slice intent model defined by SDO2. Here SDO2 is considered to be responsible to standardize slice management. Based on the intent common model a work group within SDO2 has created a domain specific extension to provide the expressiveness needed for intents concerning slices.

[bookmark: scroll-bookmark-51][bookmark: _Toc73947946][bookmark: _Toc73948025]Intent related closed loops

Intent is sent by an intent owner to an intent handler. In return the intent handler keeps the owner op to date about state and handling success with intent reports. This establishes a control loop between the intent handler and the intent owner.

[image:]

[bookmark: _Toc73947822]Figure 10. Control loops related to intent driven operation

The intent owner contains an inner loop that mainly corresponds to is tasks and phases in the intent lifecycle and the decisions it has to make according to its role. This inner loop therefore determines the owner's actions on the intent control loop. The decisions of the intent owner can depend on further loops it participates in. This can be intent driven if the owner has a double role as handler of another set of intent. But it is equally possible that the owner participates in loops that have no direct relationship to the intent mechanism.

The situation in the intent handler is similar. It contains an inner loop that is mainly driven by the intent control loop. In the handler's inner loop, it continuously analyses the state of the underlying infrastructure and decides on action plans and strategies to improve its intent fulfillment state. Actuation of the handler would be through further control loops. They can be intent driven of the handler decides to act by sending further intent, thus assuming an intent owner role for this intent. But action through participation in any other control loop is equally possible.

[bookmark: scroll-bookmark-52][bookmark: _Toc73947947][bookmark: _Toc73948026]Real-time control with intent

Intent handling typically involves many distinct activities within the handling control loop. For example, the system state needs to be collected through measurement and analytics. Furthermore, solution proposals and action plans would need to be generated and acted on. Also, formal obligations of the intent mechanism, such as the generation of intent reports would be executed. Many of the tasks in intent handling involve evaluation capabilities or even predictive models and assessment of alternatives. Complex processes like this can usually not be executed while at the same time meeting challenging real time requirements. System reaction times would stay on the level of best effort. If intent handling requires very low latency reaction times or if challenging real time requirements apply, the implementation of intent handling might follow a different approach.

Low latency control loop require simpler models that directly translate an observation into actions with as small intermediate steps as possible or possible with the available time budget. Extensive evaluations and exploration of alternatives are usually not possible.

Low latency requirements can be met if the intent handler interacts with one or several low latency real-time enabled control loops. The intent handler can act on intent by putting a specialized control loops in place. These control loops are designed to meet the real-time requirements by deciding and acting in a distinct closed loop without involving the intent handler in every decision and action. Intent handlers are not in the low latency loop and can therefore also not apply prioritization and action approval to each action. The intent handler needs to trust the implementation of the control loop to act in a preferential way. What the intent handler will do however, is to monitor the actions and check if they were preferential actions for the composition of intent present in the system. While the actions of the low latency control loop are not controlled directly by the intent handler, it would nevertheless monitor them and assess if they are the right actions. The intent handler would then act by configuring or even replacing the control loop if it finds that the current loop does not fulfill the intent.

[bookmark: scroll-bookmark-53][bookmark: _Toc73947948][bookmark: _Toc73948027]Intent from natural and domain specific languages

Intent specified and managed according IG1253 is not the only way to express and manage intent. There are many use cases where the use of other language for intent expression and methods for managing would be a better choice. For example, on the human-machine interface presenting and expressing intent using natural language or a domain specific language (DSL) made for this purpose can lead to a more immersive and intuitive experience for human users. This is particularly the case for users, who are not technically trained and not familiar with formal notations of models. These users should not be exposed directly to formal intent modeling. Other human users in the role of technicians, who oversee the autonomous systems for the operator might however prefer formal notation and require the clarity and precision it provides. The point is that humans are very diverse in their abilities, preferences and needs and this can be reflected with a range of languages and methods used.

In the context of this discussion we refer to intent expressed according to IG1253 as "formal intent" and intent expressed using other domain specific languages including natural language as "DSL intent".

The details of how DSL intents are encoded and managed are best defined by the party that specifies interfaces and interactions within a domain. This is typically an SDOs and work group specialized in the respective domains. Therefore, we consider the details of expressing and handling of DSL intent to be out of scope of the IG1253 set of specification documents. Nevertheless, this document acknowledges that interwork with DSL intent is required and its integration into autonomous network operation needs to be addressed.

This chapter proposes modeling of the touch-points between the use of formal intent and DSL intent. It is doing so without implying specific details in the modeling and expressiveness of DSL intent as well as the management functions and procedures involved.

The main idea is that DSL intent is used only on the periphery of the autonomous network. Inside the autonomous network intent is always expressed as formal intent according to IG1253 and this intent exclusively used between intent handlers and owners. Formal intent is always the reference for all intent handling. DSL intent is solely used for compatibility with external systems and interaction with human users, but never propagated directly to intent handlers. This is possible, because formal intent is defined in IG1253 with a model federation approach allowing it to cover the needed vocabulary and semantics of multiple domains.

DSL intent can be used by a human user or a technical system.
This would be a system designed and implemented without considering formal intent according to IG1253. A human-machine interface is typically realized through a frontend implementation for direct exposure of intent to human users. It offers presentation and editing capabilities according to the needs and abilities of the targeted human audience. While formal intent can be used directly also on this interface as there are standard formats for its direct editing and presentation, but other DSL for intent expression might be preferential depending on the targeted human audience. This interface is also not necessarily based on textual representation but can include other media such as audio and speech.

Other technical systems using DSL intent might be designed according to a broad range of other standards or system vendors' own specifications. Typically, the intent models used in these systems only cover the expressiveness as needed for domain the system is designed to operate in. An example for using domain specific intent would be an ordering system belonging to the customer using DSL intent to communicate the customer's needs to the operator's autonomous network.

DSL intent is used to express and convey requirements, goals, and constraints.
We consider that DSL intent complies with basic principles of intent driven operation. It only contains declarative requirements and goals according to the intent definition of IG 1253. This particularly means that it is free of imperative artifacts the prescribe actions or particular solutions.

DSL intent is used as part of a control loop
This means there is in general the need to communicate back to the entity the DSL originates from and provide feedback about the intent handling progress and status.

DSL intent is not necessarily free of ambiguity.
Ambiguity means that the semantics expressed by intent are not necessarily interpreted the same way by different systems. Usually this can occur if not all content of the intent is completely covered by standardized formal models. Natural language is a good example where a statement can be interpreted differently depending on context, situation and parties involved in the conversation. Correct understanding of a statement implies that originator and recipient have the same contextual knowledge and based on that agree on the statement's meaning. A human statement in natural language therefore assumes that the receiving system has respective models that match the context and meaning implied by the human and cover all its aspects. This typically requires that the system is able to distinguish who has made the statement and in which context. Misinterpretations of the statement are hard to avoid if any aspect relevant to the meaning gets lost between systems or is not covered by models and implementation. This also means that two systems receiving the same statement might not necessarily agree on its meaning. Only standardized and complete models would avoid this ambiguity.

Formal intent according to IG1253 is ambiguity-free, because all its expressiveness is covered by formal modeling. This means two systems sharing intent according to IG1253 will arrive at the same interpretation of its meaning. When dealing with potentially ambiguous DSL intent, this means that a single point of interpretation preferential. This interpretation and its representation as formal intent would then become the reference for all subsequent decisions and actions in autonomous operation. The single point of interpretation should also be logically allocated as close to the originator as possible to capture all needed contextual information. Furthermore, a sequence of multiple conversion steps with multiple intermediate domain specific languages should be avoided because every step bears the risk of losing partial meaning. Even small losses per conversion can accumulate and entirely distort the message. Figure 11 shows the use of DSL intent and how it enters IG1253 based autonomous network operation through intent interpretation.

[image:]

[bookmark: _Toc73947823]Figure 11. Intent interpretation on the periphery of autonomous networks

Also, on the interface that is using DSL and natural language there will most likely be a notion of owner and handler with distinct role in realizing intent management targeting intent driven operation. It is not in scope of IG1253 to define these details. This is naturally left to the domain specific specifications. In this document we only go as far as defining the entry point of DSL intent through an interpretation point.

[bookmark: scroll-bookmark-54][bookmark: _Toc73947949][bookmark: _Toc73948028]Modeling intent originating from domain specific languages

We propose to model the use of DSL intent through the generic management service "intent interpretation". As there can be multiple different domain specific languages we would consider that each of them is modeled through a distinct variant of the intent interpretation management service. Here we only imply that this management service exists, but not the detailed procedures on its interface or other details of its implementation. In this respect the intent interpretation management service is placeholder for any service interface used to define and manage intent that is not the formal intent according to IG1253 and therefore not managed through the intent handling MnS.

The producer of the intent interpretation MnS is referred to as Intent Interpreter. Its main role is to receive the DSL intent and translate it into a formal intent according to IG1253. The corresponding formal intent would then propagate further into the IG1253 compliant autonomous network for handling. Formal intent rather than the original DSL intent would be used directly for operation and intent handling.

[image:]

[bookmark: _Toc73947824]Figure 12. Introduction of intent interpretation

The intent interpreter produces formal intent from the DSL intent, and it needs to issue it into autonomous network operation. It would also need to receive intent reports and translate them back into the respective reporting formats and procedures specific to the DSL intent and its interface. This means that the intent interpreter becomes a consumer of the intent handling MnS. Consequently, it assumes the role of intent owner in the lifecycle management of the formal intent objects it has created from the DSL intent. It therefore becomes a proxy owner for the human or technical system the DSL intent actually originates from. However, the fact that it is a proxy owner and that the formal intent it provides originates from a DSL intent is entirely transparent to the intent handlers. From their perspective it is yet another owner, and they receive yet another intent.

The intent Interpreter is providing a suitable interface endpoint according to the needs and specifications of the DSL intent. This is captured by modeling it as a distinct management service. The detailed interaction procedures on this interface is defined externally and the implementation of the intent interpreter needs to provide a mediation between the interface procedures of DSL intent and the IG1253 intent interface.

Figure 12 shows how to model multiple sources of intent. Next to formal intent the picture also shows how to model natural language and DSL intent specified using another domain specific language.

Any DSL intent would be translated into formal intent through the intent interpreter. The intent interpreter assumes the role of intent owner for the formal intent. At this point all intent, no matter in which format it was originally provided would follow the specifications of IG1253. All intent would be lifecycle managed and handled through the intent handling MnS accordingly.

Figure 13 also shows the intent management function that handles intent from multiple sources and some of them did originally come from domain-specific intent through intent interpreter and proxy owner.

[image:]

[bookmark: _Toc73947825]Figure 13. Various sources of intent

Intent provided through legacy interfaces can in principle also be modeled with the approach presented here. However, these interfaces often mix requirement and goals with imperative aspects such as policy triggers or process invocations. Interfaces that meet this criterion need a separate analysis with respect to their coexistence and interwork with intent driven operation in Autonomous networks. This is out of scope for IG1253 for now but a topic that should be included at a later stage.

[bookmark: scroll-bookmark-55][bookmark: _Toc73947950][bookmark: _Toc73948029]Implementation aspects of intent management

[bookmark: scroll-bookmark-56][bookmark: _Toc73947951][bookmark: _Toc73948030]Concerns addressed through intent versus implementation

Requirements and constraints can be specified by intent or handled implicitly by the implementation logic of the autonomous system.

The behavior of an autonomous system is primarily determined by the implementation of decision and action taking logic. This includes hard coded logic, but also more dynamically changing artifacts with more flexible life-cycles. Examples for that are policies, rules or apps (e.g., rAPPs in ORAN). Also, machine learned models would fall into this category.

Implementation artifacts address implicitly many concerns and requirements already. In fact, these requirements are addressed at design time by a human system architect, developer or data scientist when implementing these artifacts. Deploying them into the autonomous system makes them available as solution capabilities.

Intent, by definition, does not include any imperative aspects that prescribe a particular solution. This means intent and any implementation logic that determines its handling are mutually exclusive.

Successful intent handling is always based on a good match between what an intent expresses and what the system implementation can do based on all its available solution components. Therefore, if intent cannot be handled successfully, the root cause might be that the intent handling does not have suitable solution artifacts and is therefore limited in its options. Please note that this is not a limitation of available resources, but a limitation in finding a solution for how to use these resources.

This first of all means that even if a concern is addressed through intent expressing a respective requirement, the autonomous system might still fail to act on it if it does not have suitable solution finding and planning artifacts available.

This also means, even if a concern and requirement is not subject to intent, the autonomous system might still consider it. In this scenario, all solutions the system finds would comply anyway.

For example, no intent might have expressed a requirement that strict tenant separation is applied in service deployments. However, all solutions options the system finds for service deployments nevertheless contain it. This requirement is implicitly addressed for example by policies involved in the solution finding process.

That a requirement is not communicated by intent is not necessarily a limitation. Not all concerns need to be dynamically changeable or allow being chosen by, for example, the customer or service provider. Other concerns and especially basic common sense can very well be addressed in the implementation of solution finding algorithms.

If, however an intent, which explicitly asks for sharing service instances between tenants, would be given to the same autonomous system described in the example above, this intent cannot be fulfilled. All available solutions do not consider this aspect as required. This first of all can mean that the operator explicitly wants to avoid the implied solutions. Not fulfilling this intent is therefore the right reaction. This requirement is wrongly given, and the autonomous system has protected the operator. This outcome would be reported back to the intent origin.

On the other hand, this new requirement might be a variant ask for by customers and the operator agrees. It reflects a new customization variant of the services sold to the customer. The rationale might be that this more resource-efficient deployment variant can be offered for a lower price. However, the operator's autonomous network is not yet able to handle this new variant. This causes a breach of autonomy, because in order to fulfill this new intent, the implementation of the system or some of its solution finding artifacts need modification. This is typically a task involving humans and requiring considerable lead-time to implement.

In this example, a system able to produce solutions for tenant separation as well as for service instance sharing would be more autonomous. It either has already more complex polices available that can produce both solution variants and select them accordingly, or it has the capability to analyze the new intent and therefore adapt its policies itself.

In any case this system does not assume anymore that the multi-tenancy concern is always addressed the same way. Consequently, it needs to be told by intent when either of the alternatives would apply. This shows how a concern can become subject to intent when the system expands towards more autonomous behavior. In this respect "more autonomous" is understood as more situations can be handled without human involvement.

[bookmark: scroll-bookmark-57][bookmark: _Toc73947952][bookmark: _Toc73948031]Conflict detection and resolution

A system is usually given multiple intent from multiple sources. There are two levels of conflict:

Explicit contradictions:
Intents directly conflict with each other by expressing explicitly opposing or incompatible requirements. For example, one intent is stating that all network links shall be encrypted, while another intent is stating that all network links must not be encrypted. Consequently, at least one of these intents will get violated. Nevertheless, as long as these requirements are provided with context that resolves the conflict they can coexist. This can for example be a non-overlapping scope such as requiring encrypted links for one user group and no encryption for another user group. As long as the user groups do not overlap, there is no explicit contradiction.

Contradictions also disappear if one requirement includes another one. For example, if one intent requires at least 10 ms latency and another one for the same target at least 5 ms. There is no conflict, because a solution exists that satisfies both. In this example, reaching 5 ms latency also satisfies the 10 ms latency requirement.

Conflicting handling actions:
In many cases conflicts are not obvious form the requirement itself but originates from conflicting actions being proposed in their handling. This will happen if the intents are realized with a common infrastructure and limited resources. For example, one intent might ask for increased RAN coverage and another intent for increased throughput delivered to users. Actions are proposed to satisfy these intents and both actions imply opposing reconfiguration of RAN cells. For example, by changing antenna tilt, but in opposite directions. Each proposed RAN configuration will improve the fulfillment of the two intents but degrade the other.

This indicates that intent handlers should be able to prioritize and therefore find the operational state that is globally preferential even if it means to degrade some intents. Please note that partially degraded intents would only occur if the handler does not have the means to satisfy all intent. All it can do is prioritize by maximizing global utility, at least within its handling scope. In any case the partial degradation would be communicated to the intent owners to allow them to take action accordingly.

[bookmark: scroll-bookmark-58][bookmark: _Toc73947953][bookmark: _Toc73948032]Intent expressing the wanted ideal system state

Intent is introduced as knowledge about the requirements and goals of a system. This can be understood as the wanted or targeted state the system should ideally be in. This means there is a range of preferred states that fulfill the intent, and it is the task of intent handling to bring the system into these states through suitable actions.

Intents are additive and therefore there are in general multiple intents the system is working to fulfill. This might not always be possible due to conflicts between the intents, the actions planned to fulfill them or the current availability of resources. This means that there are no states the system can reach that would fulfill all intent. In this case the task of intent handling would be to reach a state that is as close to the ideal state as possible.

This discussion also indicates that intent fulfillment is related to the measured state of the system. The goal of intent handling is therefore to close the gap between the measured current state and the wanted ideal state.

A system with the capability to act proactively would be able to predict future states. This allows it to detect intent degradation ahead of time and avoid it by acting with preventive measures before a non-preferential situation is actually happening. In any case intent is the decisive factor for determining if a current or future state is preferential or considered degraded. However, when dealing with predicted future states there is always a considerable amount uncertainty. Also, future intent changes might require re-evaluation of the situation and change of planned actions.

[bookmark: scroll-bookmark-59][bookmark: _Toc73947954][bookmark: _Toc73948033]Future work

The following topics need some further documentation and examples and will be addressed in future phases of the Autonomous networks project.

		Topic

		Description

		Models relating SLA, SLO and KPI

		Needs some further examples to be documented explaining the underlying SID model as used in intent Management context

		Choosing the modeling foundation

		RDF is used throughout the document as the proposed modeling approach of choice, and it is illustrated using Turtle serialization examples. There is need to document the basis for choosing RDF, probably in the form of a comparison table with others like JSON-LD.

		Serialization choices for RDF

		Document the choice and use of Turtle in the examples We should add a comparison with other possible choices like JSON, XML, YAML.

[bookmark: scroll-bookmark-60]

[bookmark: _Toc73947955][bookmark: _Toc73948034]Appendix A: Terms & Abbreviations Used within this Document

[bookmark: scroll-bookmark-61][bookmark: _Toc73947956][bookmark: _Toc73948035]Abbreviations & Acronyms

ANF Autonomous Networks Framework
DSL Domain Specific Language
IETF Internet Engineering Task Force
IoT Internet of Things
JSON JavaScript Object Notation
MnF Management Function
MnS Management Service
RACI Responsible, Accountable, Consulted, Informed
RAN Radio Access Network
SDO Standards Defining Organization
XML eXtensible Markup Language
YAML Ain't Markup Language

[bookmark: scroll-bookmark-62][bookmark: _Toc73947957][bookmark: _Toc73948036]Appendix B: References

[1] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. E. Carpenter, S. Jiang and L. Ciavaglia: "Autonomic Networking: Definitions and Design Goals (RFC7575)"

[2] A. Clemm, L. Ciavaglia, L. Z. Granville and J. Tantsura: "Intent-Based Networking - Concepts and Definitions"

[3] TM Forum IG1230: "Autonomous Networks Technical Architecture v1.1"

[4] M. Smith, J. Erwin: "Role & Responsibility Charting (RACI)", Project Management Forum, 2005

[5] 3GPP TR 28.812: "Study on scenarios for Intent driven management services for mobile network, V17.1.0, 2020-12

[6] TM Forum IG1252, Autonomous Networks Levels Evaluation Methodology v1.0.0

[bookmark: scroll-bookmark-63][bookmark: _Toc73947958][bookmark: _Toc73948037]Administrative Appendix

[bookmark: scroll-bookmark-64][bookmark: _Toc73947959][bookmark: _Toc73948038]Document History

[bookmark: scroll-bookmark-65][bookmark: _Toc73947960][bookmark: _Toc73948039]Version History

		Version Number

		Date Modified

		Modified by:

		Description of changes

		1.0.0

		28-May-2021

		Alan Pope

		Initial Release

[bookmark: scroll-bookmark-66][bookmark: _Toc73947961][bookmark: _Toc73948040]Release History

		Release Status

		Date Modified

		Modified by:

		Description of changes

		Pre-production

		28-May-2021

		Alan Pope

		Final edits prior to publication

[bookmark: scroll-bookmark-67][bookmark: _Toc73947962][bookmark: _Toc73948041]Acknowledgments

[bookmark: scroll-bookmark-68][bookmark: _Toc73947963][bookmark: _Toc73948042]Guide Lead & Author

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

[bookmark: scroll-bookmark-69][bookmark: _Toc73947964][bookmark: _Toc73948043]Main Contributors

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

		Kevin McDonnell

		Senior Director, Intelligent Automation

		Huawei

		James O'Sullivan

		Product Director, Intelligent Automation

		Huawei

		Dave Milham

		Chief Architect

		TM Forum

		Vinay Devadatta

		Practice Head (Innovation & Industry Relations)

		Wipro Technologies

		Azahar Machwe

		OSS Automation

		BT Group plc

		Wang Lei

		Systems Expert

		Huawei

		Tayeb Ben Meriem

		Senior Standardization Manager (OSS)

		Orange

[bookmark: scroll-bookmark-70][bookmark: _Toc73947965][bookmark: _Toc73948044]Additional Inputs

		Member

		Title

		Company

		Lester Thomas

		Chief IT Systems Architect

		Vodafone Group

		Ankur Goyal

		Lead Consultant

		Infosys

		Emmanuel A. Otchere

		Chief Technical ExpertVP, Standards & Industry Development

		Huawei

		Min He

		Chief Architect

		Futurewei

TM Forum 2021. All Rights Reserved.

© TM Forum 2021. All Rights Reserved. Page 66 of 66

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image3.emf
IG1253A_Intent_Mo

deling_v1.0.0.docx

IG1253A_Intent_Modeling_v1.0.0.docx
[image:]

[image:] IG1253A Intent Modeling

TM Forum Introductory Guide

Intent Modeling

IG1253A
Team Approved Date: 28-May-2021

Release Status: Pre-production	Approval Status: Team Approved
Version 1.0.0	IPR Mode: RAND

[bookmark: _Toc175037842][bookmark: _Toc278370026][bookmark: _Toc336283482][bookmark: _Toc467247665][bookmark: _Toc73954411]Notice

Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

[bookmark: _Hlk57117974][bookmark: _Hlk57108552]181 New Road, Suite 304

Parsippany, NJ 07054 USA

Tel No. +1 862 227 1648

TM Forum Web Page: www.tmforum.org

Table of Contents
Notice	2
Table of Contents	3
Executive Summary	5
Introduction	6
1.	Modeling Prerequisites and Conventions	7
2.	The intent model	8
2.1.	The Intent Class	8
2.2.	Basic properties of intent objects	8
2.2.1.	Intent owner	8
2.3.	The Expectation Class and its Sub-Classes	8
2.3.1.	Specifying what shall be delivered (Functional Requirements)	9
2.3.2.	Specifying requirements on instance properties	10
2.3.3.	Specifying metrics-based requirements	10
2.3.4.	Specifying Allocation Requirements	11
2.3.5.	Specifying Coexistence Requirements	12
2.3.6.	Specifying Sharing of Instances and Multi-tenancy	13
2.3.7.	Specifying Connection Requirements	14
2.3.8.	Specifying Reporting	15
2.4.	The Context Class	16
3.	The intent report model	17
3.1.	Intent report model	17
3.2.	The Intent Report Class	17
3.3.	Basic properties of intent report objects	17
3.3.1.	Base Intent	17
3.3.2.	Handling Status	18
3.3.3.	Report Sequence Number	18
3.3.4.	Reporting time and date	18
3.4.	Expectation reporting	18
4.	Example of intent and intent report	20
5.	Administrative Appendix	23
5.1.	Document History	23
5.1.1.	Version History	23
5.1.2.	Release History	23
5.2.	Acknowledgments	23
5.2.1.	Guide Lead & Author	23
5.2.2.	Main Contributors	23
5.2.3.	Additional Inputs	24

[bookmark: scroll-bookmark-1][bookmark: scroll-bookmark-2]

[bookmark: _Toc73954413]Executive Summary

The foundation of intent driven operation is the life cycle management of intent objects and the communication of intent and the related intent reports. This is how humans communicate their requirements to the autonomous system and this is how sub-systems communicate requirements between each other and report on their success in operating accordingly. This document introduces the models that determine how intent is expressed. This includes defining the modeling concepts and artifacts to be used when formulating intent. It means to clearly define the semantics of the detailed modeling artifacts. These models allow that is always interpreted the same way and without ambiguity.

We propose to use model federation in intent expression. This means that individual intent is expressed by using the intent common model and any number of intent extension models and intent information models. The intent common model is defining modeling artifacts such as classes and properties that are domain independent. This makes them common. Every intent, no matter of the application domain or use case it is used in, would be build using the intent common model. This document describes the intent common model for expressing intent as well as intent reports.

However, the intent common model is not complete, as it does not contain the expressiveness needed in certain application domains. This would be covered by intent extension and intent information models. Those additional models can be proposed by any standards organization or work group with the mission to define the detailed operation of a particular domain. A future IG1253B will introduce some intent extension models. But any other organization or work group is also invited to do so and contribute to the federation of models that makes intent useful within and across any number of application and industry domains.

Having this inter-organization collaboration around a federation of models will ensure that intent standards and concepts stay aligned. This bears the opportunity that interfaces and at least parts of intent management implementations can be re-used to a great extent across domain specific solutions. It reduces the need of translation between models and interfaces and therefore helps to reduce complexity in integration.

[bookmark: scroll-bookmark-3][bookmark: _Toc73954414]Introduction

This document introduces the intent common model. It defines how intent and intent report objects shall be expressed. It defines the model that is commonly used for all intents independent of their domain. This makes it the only model that is mandatory within the proposed model federation.

[bookmark: scroll-bookmark-4][bookmark: _Toc73954415]Modeling Prerequisites and Conventions

The intent common model is based on the resource descriptor Framework (RDF) and the Resource Descriptor Framework Schema (RDFS). Intent objects are knowledge graphs in the form of an ontology. RDF is a well-established standard for expressing knowledge of this form.

In this document we present the intent common models using Turtle syntax. Terse RDF Triple Language (Turtle) is a syntax and file format for expressing data in the Resource Description Framework (RDF) data model. Turtle is a serialization syntax of RDF knowledge graphs. It combines formal completeness with easy readability and is therefore ideal for presenting the intent common model components.

Objects in RDF are globally unique URI. Turtle allows prefix definitions capturing the initial and repetitive part of the URI. This considerably shortens the syntax and provides the benefit of significantly improved readability.

The intent common model uses the RDF Schema (RDFS) as defined by W3C and published at the URI “http://www.w3.org/2000/01/rdf-schema#”. We use the following prefix definition to substitute the long URI by the term “rdfs:”

@prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .

We also introduce the intent common model similarly through a TM Forum URI and the prefix substitution “imm:” (for intent common model). Please note that the model is not yet available online under this or a similar URI.

@prefix imm: https://www.tmforum.org/2021/01/intent .

Objects defined directly by the RDF standard do not need to be denominated with a prefix. RDF objects are and implied default.

A version of the intent common model is designated by its date of publication. This versioning becomes part of the URI where this model version is available. A published model is immutable. Any change or extension therefore requires publishing a new model under a new URI.

TM Forum publishes the intent common models, and it defines a project and process for future model governance. This is where changes and extensions to the model are planned and discussed and where the publication of model versions is scheduled.

The intent common model only specifies the basic building blocks of intent in general. For defining domain specific requirements, the intent common model needs to be combined with domain specific extensions and information models. These intent extension models and intent information models extent the intent common model by adding terminology and semantics that might be important for defining requirements within the domain, but they would not have a meaning outside of it.

Some domain specific intent information models might already be available and can be used. For example, an information model that defined metrics and KPI is a good candidate to be used as intent information model within a model federation. It introduces the identifiers of a KPI that can be referred to when formulating a KPI based goal within the intent object.

[bookmark: scroll-bookmark-5][bookmark: _Toc73954416]The intent model

[bookmark: scroll-bookmark-6][bookmark: _Toc73954417]The Intent Class

All intents are individual objects of the intent class of the intent common model

imm:Intent
 a rdfs:Class ;
 rdfs:comment "root class of intent objects" .

The intent class is the root class of all intent objects. This means that intent is always an object of class imm:Intent.

The class imm:Intent does not have sub-classes. It is not necessary to distinguish different types or purposes of intent explicitly. Different uses and therefore intent types are reflected through its composition of expectations and detailed requirements and constraints they express. The purpose of the intent object can however be stated to a human reader for example by assigning it to the intent object as rdfs:comment property.

[bookmark: scroll-bookmark-7][bookmark: _Toc73954418]Basic properties of intent objects

[bookmark: scroll-bookmark-8][bookmark: _Toc73954419]Intent owner

The owner of the intent can be assigned using an imm:creator property

imm:owner
 a rdf:Property ;
 rdfs:comment "Property to assign the intent owner" .

The intent owner is the individual intent management function the intent reports need to be sent to.

[bookmark: scroll-bookmark-9][bookmark: _Toc73954420]The Expectation Class and its Sub-Classes

Within an intent, any number of detailed requirements and goals can be specified together with required restrictions and constraints. Objects of the class expectation and its sub classes can be used to do so.

imm:Expectation
 a rdfs:Class ;
 rdfs:comment "root class of expectation objects" .

The intent common model allows the assigning of expectations to intents using the hasExpectation property.

imm:hasExpectation
 a rdf:Property ;
 rdfs:comment "Property to assign expectation objects" .

An imm:target property allows referring to individuals or sets or collections the expectation is about.

imm:target
 a rdf:Property ;
 rdfs:label "Expectation target" .

The imm:params property contains all the properties of the targeted instance. These are the requirements, goals, constraints, and restrictions.

imm:params
 a rdf:Property ;
 rdfs:label "Expectation parameters" .

targets and parameters are used across all objects of the class expectation and its sub-classes. The target defines to what instance or artifact the requirement and constraints are applicable and the parameters define what the requirement or constraint is.

[bookmark: scroll-bookmark-10][bookmark: _Toc73954421]Specifying what shall be delivered (Functional Requirements)

The following sub classes of expectation allow pointing at assets that are required. That can, for example, be a service that needs to be delivered and deployed or a slice that provides connectivity.

imm:DeliveryExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:Expectation ;

Usually, these expectations point at pre-defined catalog objects. For example, if a service is required, a delivery expectation would refer to the service specification object in a service catalog.

The following sub classes can be used for specifying a delivery expectation specific to the object to be delivered. This exists mainly for enhanced readability.

imm:ServiceExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:DeliveryExpectation ;

imm:ApplicationExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:DeliveryExpectation ;

imm:ProductExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:DeliveryExpectation ;

imm:FunctionExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:DeliveryExpectation ;

imm:SliceExpectation
 a rdfs:Class ;
 rdfs:subClassOf imm:DeliveryExpectation ;

Usually, these expectations point at pre-defined catalog objects. For example, if a service is required, a service expectation would refer to the service specification object in a service catalog.

Example:

@prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix imm: https://tmforum.org/2020/07/intent/ .
 @prefix tel: http://<publisher domain>/<telecom concepts>/
 @prefix cat: http://<operator domain>/Catalog/

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering a service and slice”;

 imm:hasExpectation
 [a imm:ServiceExpectation ;
 imm:target _:service ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [a cat:ManufacturingSlice] ;
] .

This example intent requires two objects to be delivered: a service called “ManufacturingService” and a slice called “ManufacturingSlice”. In both cases the intent points at objects defined within a catalog.

[bookmark: scroll-bookmark-11][bookmark: _Toc73954422]Specifying requirements on instance properties

The intent common model defines a property expectation. It allows to require that a property of an artifact instance must have a specific value or a value from a defined set of choices. If the property has any other value, the intent is considered violated.

imm:PropertyExpectation
 a rdfs:Class ;

There is no restriction on the properties that can be used within the parameters of this expectation for formulating a requirement. Domain specific information models would define the available properties and values.

Example

ope:ApplicationIntent0001
 a imm:Intent ;

 imm:hasExpectation
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [a cat:ManufacturingSlice] ;
] ,
 [a imm:PropertyExpectation ;
 imm:target _:slice ;
 imm:params [tel:deploymentState
 [a imm:oneOff rdf:value tel:up, tel:available]] ;
] .

This example shows the use of a property expectation to require the delivered slice being in state “up” or “available” for the intent to be considered to be fulfilled.

[bookmark: scroll-bookmark-12][bookmark: _Toc73954423]Specifying metrics-based requirements

Some properties are metrics and the requirement to not exceed of fall below a threshold value. KPIs are a common example for these metrics. They are, for example, applicable for all use cases in which performance requirements are needed.

The intent common model defines two expectation classes that allow specifying metrics-based requirements.

imm:MinMetricExpectation
 a rdfs:Class ;

imm:MaxMetricExpectation
 a rdfs:Class ;

If an imm:MinMetricExpectation is used, the system is required to not let the measured metrics value fall below the specified threshold, or the intent is considered not fulfilled. Exceeding the value is allowed.

The imm:MaxMetricExpectation would express the opposite. The measured metric value must not exceed the required threshold. Staying below is allowed.

Example:

@prefix kpi: http://<standard domain>/metrics/

ope:ApplicationIntent0001
 a imm:Intent ;

 imm:hasExpectation
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [a cat:ManufacturingSlice] ;
] ,
 [a imm:MinMetricExpectation ;
 imm:target _:slice ;
 imm:params [tel:numberOfSubscribers 1000] ;
] ,
 [a imm:MaxMetricExpectation ;
 imm:target _:slice ;
 imm:params [kpi:latency 10] ;
] .

This example uses the kpi: prefix indicating the use of an information model that defines key performance indicators and metrics.

In this example we show how to define a requirement for the slice to be capable of serving at least 1000 subscribers with a maximum latency of 10 ms.

[bookmark: scroll-bookmark-13][bookmark: _Toc73954424]Specifying Allocation Requirements

When an autonomous system tries to fulfill its functional requirements, it is usually doing so by allocating instances of related artifacts. This can be realized by creating new dedicated instances or by re-using already existing instances. By default, there are no requirements or restrictions on the allocation of these artifacts. Examples of allocation requirements can be that the instances must reside within a specific geographical region or stay in a specific administrative domain, such as a datacenter belonging to the operator. If there are requirements specific to allocation, they would be expressed using an imm:AllocationExpectation.

imm:AllocationExpectation
 a rdfs:Class ;

The imm:target within the allocation expectation specifies for which instances the allocation expectation is setting a requirement. The specific requirements in the imm:params of the allocation expectation are set based in information models specific to what needs to be required. For example, a geographical constraint would be based on an information model for geographical terminology. An administrative restriction, for example the use of a particular datacenter, would be based on the information models of the operator’s infrastructure and inventories.

Example: Geographical Allocation

@prefix geo: http://<standard domain>/geographics/

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering a service with allocation
 constraints”;

 imm:hasExpectation
 [a imm:ServiceExpectation ;
 imm:target _:service ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:AllocationExpectation ;
 imm:target _:service ;
 imm:params [tel:allocateIn geo:country [China]] ;
] .

In this example, a geographical information model referred by the prefix geo: is used to require that the service must be allocated in the country “China”.

Example: Allocate in specific operator site

@prefix inv: http://<operator domain>/inventory/

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering a service with allocation
 constraints”;

 imm:hasExpectation
 [a imm:ServiceExpectation ;
 imm:target _:service ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:AllocationExpectation ;
 imm:target _:service ;
 imm:params [tel:allocateIn inv:dataCenter001] ;
] .

In this example, the allocation expectation is requiring that the service would be allocated in a datacenter belonging to the operator. It points to a datacenter defined in the operator’s inventory.

[bookmark: scroll-bookmark-14][bookmark: _Toc73954425]Specifying Coexistence Requirements

Multiple artifact instances used in the fulfillment of the intent might need to coexist in a common local environment or context.

imm:CoexistanceExpectation
 a rdfs:Class ;

For example, two service instances need to be deployed in the same datacenter. While an allocation expectation would specify a specific location or context, the coexistence expectation does not require a specific allocation as long as all involved instances or artifacts are kept together. Both expectation classes can be used together to specify a combination of absolute allocation and coexistence.

Example:

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering two services that need to
 be allocated in the same datacenter”;

 imm:hasExpectation
 [a imm:ServiceExpectation ;
 imm:target _:service1 ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:ServiceExpectation ;
 imm:target _:service2 ;
 imm:params [a cat:HelperService] ;
] ,
 [a imm:CoexistanceExpectation ;
 imm:target _:service1 ;
 imm:params [tel:allocateInDCwith _:service2] ;
] .

In this example the intent requires two services to be delivered. For their allocation there is the special constraint, that they need to be deployed in the same datacenter. Please note that this constraint does not specify which datacenter is chosen. That would be expressed by an allocation expectation. Here we still allow the intent handler to select any datacenter, as long as the two services stay together.

[bookmark: scroll-bookmark-15][bookmark: _Toc73954426]Specifying Sharing of Instances and Multi-tenancy

For fulfilling the functional expectations, usually deployed instances of related artifact instances are needed. Without further requirements this can be reached by either deploying new instances or by re-using already deployed ones. As a result, instances and resources might be shared and multi-tenancy scenarios might be chosen as a solution for fulfilling the intent. By default, there are no restrictions on this. However, operators and their customers often have specific requirements on sharing and multi-tenancy, which are often driven by privacy and security concerns. The intent common model allows to specify these requirements through sharing expectations.

imm:SharingExpectation
 a rdfs:Class ;

Sharing expectations can be used for any target that can be shared. The default is that sharing is allowed. Therefore, this expectation constitutes a required constraint.

Example:

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering a slice that must not be
 shared among different customers” ;

 imm:hasExpectation
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [a cat:ManufacturingSlice] ;
] ,
 [a imm:SharingExpectation ;
 imm:target _:slice ;
 imm:params [tel:sharingRestriction tel:sameCustomer] ;
] .

In this example a slice is delivered, and it is only allowed to satisfy this by re-use and sharing of an already existing slice if this slice is restricted to the same customer.

Open question and notes:

Further expectations regarding preferences and constraints about sharing are possible. For example, it should be possible to specify if services shall share a slice or that they are not allowed to share a slice.

[bookmark: scroll-bookmark-16][bookmark: _Toc73954427]Specifying Connection Requirements

The deployed functional instances (e.g., virtual, network functions, services, etc.) need to be connected to each other and to end user equipment through the network. Network slices, for example, allow doing so in a dynamic and configurable way. The setup and assurance of these network connections are therefore a key component for fulfilling the intent and as such it is important to define them as requirements. This can be done using a connection expectation.

imm:ConnectionExpectation
 a rdfs:Class ;

A typical scenario for a connection expectation would be defining the application and infrastructure endpoints that need to be connected to each other.

Example: Connection required without requiring a specific connection method

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering two services that need to
 be connected”;

 imm:hasExpectation
 [a imm:ServiceExpectation ;
 imm:target _:service1 ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:ServiceExpectation ;
 imm:target _:service2 ;
 imm:params [a cat:HelperService] ;
] ,
 [a imm:ConnectionExpectation ;
 imm:target _:connection ;
 imm:params [tel:ConnectEndpointsOf [_:service1, _:service2] ;
 tel:ConnectEndpointToUser _:service2 ;
] .

In this intent example, two services are needed with the requirement that they are connected to each other and that the manufacturing service is connected to users.

Example: Connecting with slice

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for ordering two services that need to
 be connected with a slice”;

 imm:hasExpectation
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [a cat:ManufacturingSlice] ;
] ,
 [a imm:ServiceExpectation ;
 imm:target _:service1 ;
 imm:params [a cat:ManufacturingService] ;
] ,
 [a imm:ServiceExpectation ;
 imm:target _:service2 ;
 imm:params [a cat:HelperService] ;
] ,
 [a imm:ConnectionExpectation ;
 imm:target _:slice ;
 imm:params [tel:ConnectEndpointsOf [_:service1 _:service2] ;
 tel:ConnectEndpointToUser _:service2 ;
] .

In this example a slice is specifically chosen to do the connections needed.

[bookmark: scroll-bookmark-17][bookmark: _Toc73954428]Specifying Reporting

Whenever an intent is used the receiving intent handler is obliged to report on the status and success in fulfilling the expectations defined in the intent object. The reporting expectation in the intent allows to specify the detailed conditions for sending an intent report.

Intent reports are pushed from the intent handler to the owner/source of the intent. Using an imm:ReportExpectation, the criteria and points in time for sending an intent report can be defined.

imm:ReportingExpectation
 a rdfs:Class ;

Typical examples would be to define a regular sending of reports in combination with an event-based sending if an intent gets violated.

A criteria-based push mechanism is used to avoid excessive polling of reports. The intent handler is the only instance that can directly detect violation.

Example:

@prefix inv: http://<operator domain>/inventory/

@prefix tim: http://<standard domain>/time/

ope:ApplicationIntent0001
 a imm:Intent ;
 rdfs:comment ”intent for demonstrating reporting criteria”;

 imm:hasExpectation
 [a imm:ReportingExpectation ;
 imm:target ope:ApplicationIntent0001 ;
 imm:params [imm:regularReporting tim:hourly ;
 imm:eventReporting imm:intent_violation]
] .

This example intent demonstrates how to set reporting criteria using the reporting expectation class. The target is the intent itself. The parameters define the conditions that will initiate a reporting. In this example a report is expected at least every hour. A report is also expected if an intent violation is expected.

[bookmark: scroll-bookmark-18][bookmark: _Toc73954429]The Context Class

All binding requirements and goals are specified with expectation objects. However, the intent owner might want to provide additional contextual information to the intent handler. This information might help the handler to make the right choices and set priorities correctly. Context is not interpreted as requirement or constraint and therefore not used to determine if the intent is successfully fulfilled or violated. All context is also optional.

imm:Context
 a rdfs:Class ;
 rdfs:comment "root class of intent objects" .

imm:hasContext
 a rdfs:Class
 rdfs:comment "property to assign context objects"

We introduce the class "Context" into the intent common model. Similar to expectations, different types of contexts are assigned using themed sub-classes. This means, the intent common model as well as intent extension models can introduce multiple dimensions of context as sub-classes of the Context class.

Context can be assigned with the imm:hasContext property. It can be assigned to any other element within the intent model. This means context can be assigned to an entire intent or it can be assigned to individual expectations or its targets and properties.

Context often defines optional information that is also typically use-case and domain dependent. It is therefore mainly subject to extension models to define the sub-classes of context and the information within.

Typical examples of context are:

Customer Context: Which customer did the intent originate from or which customer's requirements does it represent. Also, for which customer the required service or function or slice need to be delivered.

Market Context: In which market or market segment is the intent used.

Geographical Context: In which country or region is the intent used.

Intent Context: list of other intent objects that are related to each other. This can for example be higher level intents for which this intent represents a breakdown into instrumental goals. Another example is a list of intent objects given to other intent handlers by one owner. In this case the owner has used a set of intents targeting different handlers and altogether would contribute to fulfill the intent owner's goals.

This version of IG 1253 and its sub-document only introduces the concept of context. We plan to integrate concrete examples in the next revisions mainly based on deeper analysis of use cases for intent based operation.

[bookmark: scroll-bookmark-19][bookmark: _Toc73954430]The intent report model

[bookmark: scroll-bookmark-20][bookmark: _Toc73954431]Intent report model

Intent reports are structurally mirror-images of the intent objects. This means if a certain expectation class was used in the intent the respective expectation report class needs to be present in the intent report object.

The target properties of these expectation reporting objects are set to the concrete instances or list of instances that are used in the fulfillment of the intent. In the intent expectations, variables might be used as targets representing placeholders of instances the intent handler is free to choose. In the report these variables are replaced by referring to the actual instances that were chosen.

The parameter properties in expectations represent requirements and the wanted state the system should be in. The parameter properties in the reporting contain the same parameters. However, in the report they contain the actual measured values that could be achieved in the handler's efforts to comply to the intent.

As context objects are informative and do not impose a requirement, they are not added to the report.

[bookmark: scroll-bookmark-21][bookmark: _Toc73954432]The Intent Report Class

All intents reports are individual objects of the intent report class.

imm:IntentReport
 a rdfs:Class ;
 rdfs:comment "root class of intent report objects" .

The intent class is the root class of all intent objects. This means that intent is always an object of class imm:Intent.

The class imm:Intent does not have sub-classes. It is not necessary to distinguish different types or purposes of intent explicitly. Different uses and therefore intent types are reflected through its composition of expectations and detailed requirements and constraints they express. The purpose of the intent object can however be stated to a human reader for example by assigning it to the intent object as rdfs:comment property.

[bookmark: scroll-bookmark-22][bookmark: _Toc73954433]Basic properties of intent report objects

[bookmark: scroll-bookmark-23][bookmark: _Toc73954434]Base Intent

Intent reports are created for a particular intent.

imm:baseIntent
 a rdf:Property ;
 rdfs:comment "Property for referring to the intent the report is made for" .

Specifies the id of the intent the report is made for.

[bookmark: scroll-bookmark-24][bookmark: _Toc73954435]Handling Status

Intent handlers manage the state of intent objects as described in IG 1253C. The handling status property can be used to inform the intent owner about the handling state.

imm:handlingStatus
 a rdf:Property ;
 rdfs:comment "Property for reporting of intent handling status" .

This status also implies the general reason for sending the report. For example, an intent being sent once an intent becomes degraded would show the status DEGRADED. The final report being sent after the owner has ordered a removal of the intent would show END in the handling status. Also, the initial report for an intent that gets rejected by the handler would show the handling status END.

[bookmark: scroll-bookmark-25][bookmark: _Toc73954436]Report Sequence Number

This property communicates the sequence number of the intent report. It starts with 1 in the initial report after receiving an intent and the sequence number is stepped with every report being created.

imm:reportSequenceNumber
 a rdf:Property ;
 rdfs:comment "Property for reporting the sequence number of the intent report" .

[bookmark: scroll-bookmark-26][bookmark: _Toc73954437]Reporting time and date

These properties assign a timestamp of creation to the intent report.

imm:reportTime
 a rdf:Property ;
 rdfs:comment "Property for specifying the creation time of the intent report" .

imm:reportDate
 a rdf:Property ;
 rdfs:comment "Property for specifying the creation date of the intent report" .

[bookmark: scroll-bookmark-27][bookmark: _Toc73954438]Expectation reporting

Intent reports contain objects of class imm:ExpectationReport or sub-classes of it. In general, for every imm:<name> Expectation class there is a class imm:<name>ExpectationReport.

This is also the case for the intent reporting expectation that steers when reports are created. The report would contain an object of class imm:ReportingExpectaionReport. It would state which of the given reporting conditions was met and has initiated the report. This is the reason for reporting.

Models for intent and intent reports are tightly related. It is recommended to define them together. This is done in the intent common model. It defines not only the classes and properties to be used in creating intent objects, but also the classes and properties needed for creating intent reports. This is the recommended best practice also for intent extension models. Keeping intent and intent reporting models together helps to preserve consistency and completeness. It must for example not happen that intent extension models introduce a new expectation class but forget to introduce also the respective expectation report class.

Future revisions of IG1253 and its sub-documents will provide proposals and examples for intent reporting together with the introduction of further classes of expectation.

[bookmark: scroll-bookmark-28][bookmark: _Toc73954439]Example of intent and intent report

The following intent is an example of intent modeling. It contains expectations about an application to be delivered and about a network slice to be used for providing connectivity to this application.

ope:ApplicationIntent0001 a imm:Intent ;
 rdfs:comment "Example intent with customer app in telco cloud" ;

 imm:hasExpectation
 [a imm:SliceExpectation ;
 imm:target _:slice ;
 imm:params [tel:useSlice cat:Slice0001]

] ,

 [a imm:PropertyExpectation ;
 imm:target _:slice ;
 imm:params [sli:deploymentState
 [a imm:oneOff rdf:value sli:up, sli:available]]
] ,

 [a imm:SharingExpectation ;
 imm:target _:slice ;
 imm:params [tel:sharingRestriction tel:sameCustomer]
] ,
 [a imm:MaxMetricExpectation ;
 imm:target _:slice ;
 imm:params [tel:latency 25 ;
 tel:packetLoss 0.0001]
] ,

 [a imm:MinMetricExpectation ;
 imm:target _:slice ;
 imm:params [tel:throughput 4 ;
 tel:availability 99.999] ;
] ,

 [a imm:ApplicationExpectation ;
 imm:target _:app ;
 imm:params [tel:useApp cat:ManufacturingApp] ;

] ,

 [a imm:ApplicationExpectation ;
 imm:target _:app1 ;
 imm:params [tel:useApp cat:HelperApp] ;
] ,

 [a imm:CoexistanceExpectation ;
 imm:target _:app ;
 imm:params [tel:mustCoexistInDCWith _:app1] ;
] ,

 [a imm:ConnectivityExpectation ;
 imm:target _:slice ;
 imm:params [tel:endpoints [_:app , _:app1] ;
 tel:customerEndpoint _:app]
] ,

 imm:hasExpectation
 [a imm:ReportingExpectation ;
 imm:target ope:ApplicationIntent0001 ;
 imm:params [imm:regularReporting tim:hourly ;
 imm:HandlingStateReached [imm:degraded, imm:complient]]
] .

An example report for this intent might be the following:

ope:ApplicationIntent0001Report51
 a imm:IntentReport ;
 rdfs:comment "Example intent report" ;

 imm:baseIntent ope:ApplicationIntent0001 ;
 imm:reportSequenceNumber 51 ;
 imm:reportDate tim:dateYearMonthDay [2021, 02, 10] ;
 imm:reportTime tim:timeHourMinSec [10, 21, 01] ;

 imm:hasExpectationReport
 [a imm:SliceExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [tel:useSlice cat:Slice0001]] ,

 [a imm:PropertyExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [sli:deploymentState
 [a rdf:value sli:available]]] ,

 [a imm:SharingExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [tel:sharingRestriction tel:exclusiveInstance]
] ,
 [a imm:MaxMetricExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [tel:latency 19 ;
 tel:packetLoss 0.000056]
] ,

 [a imm:MinMetricExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [tel:throughput 4] ;
 imm:paramsViolated [tel:availability 98.761] ;
] ,

 [a imm:ApplicationExpectationReport ;
 imm:target inv:app12345678 ;
 imm:params [tel:useApp cat:ManufacturingApp] ;

] ,

 [a imm:ApplicationExpectationReport ;
 imm:target inv:app12345679 ;
 imm:params [tel:useApp cat:HelperApp] ;
] ,

 [a imm:CoexistanceExpectationReport ;
 imm:target inv:app12345678 ;
 imm:params [tel:CoexistsInDCWith inv:app12345679] ;
] ,

 [a imm:ConnectivityExpectationReport ;
 imm:target inv:slice012345 ;
 imm:params [tel:endpoints [inv:app12345678 ,
 inv:app12345679] ;
 tel:customerEndpoint inv:app12345678] ;
] ,

 imm:hasExpectation
 [a imm:ReportingExpectationReport ;
 imm:target ope:ApplicationIntent0001Report51 ;
 imm:params [imm:HandlingStateReached imm:degraded] ;
] .

This example shows how each distinct expectation of the intent was mirrored by the intent report.

The intent used the variables _:slice, _:app and _:app1 in target properties as placeholders for the instances to be used in fulfilling the intent. The report uses the identifiers of the respective slice and applications instances as defined in the inventory.

In the intent a max metric expectation is used to define a goal on latency for the slice. The report consequently contains a max metric expectation report object with the same latency metric in its parameters. The reported value is the actual current measurement of this KPI.

The coexistence expectation of the intent requires that both application instances need to be kept together in the same datacenter. The reporting on this expectation repeats the constraint but this time with the used instances. This can be interpreted as confirmation that the constraint was met. The connectivity expectation is treated similarly in the intent report. It confirms what was asked for.

The reporting expectation of the intent defines two conditions for intent reporting: based on time once per hour and when the intent handling for this intent enters either "degraded" or "compliant" handling state. The intent reporting expectation report confirms which of the conditions was met and initiated this intent report. In this example it was the event of entering a degraded handling state.

[bookmark: scroll-bookmark-29][bookmark: _Toc73954440]Administrative Appendix

[bookmark: scroll-bookmark-30][bookmark: _Toc73954441]Document History

[bookmark: scroll-bookmark-31][bookmark: _Toc73954442]Version History

		Version Number

		Date Modified

		Modified by:

		Description of changes

		1.0.0

		28-May-2021

		Alan Pope

		Initial Release

[bookmark: scroll-bookmark-32][bookmark: _Toc73954443]Release History

		Release Status

		Date Modified

		Modified by:

		Description of changes

		Pre-production

		28-May-2021

		Alan Pope

		Final edits prior to publication

[bookmark: scroll-bookmark-33][bookmark: _Toc73954444]Acknowledgments

[bookmark: scroll-bookmark-34][bookmark: _Toc73954445]Guide Lead & Author

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

[bookmark: scroll-bookmark-35][bookmark: _Toc73954446]Main Contributors

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

		Kevin McDonnell

		Senior Director, Intelligent Automation

		Huawei

		James O'Sullivan

		Product Director, Intelligent Automation

		Huawei

		Dave Milham

		Chief Architect

		TM Forum

		Vinay Devadatta

		Practice Head (Innovation & Industry Relations)

		Wipro Technologies

		Azahar Machwe

		OSS Automation

		BT Group plc

		Wang Lei

		Systems Expert

		Huawei

		Tayeb Ben Meriem

		Senior Standardization Manager (OSS)

		Orange

[bookmark: scroll-bookmark-36][bookmark: _Toc73954447]Additional Inputs

		Member

		Title

		Company

		Lester Thomas

		Chief IT Systems Architect

		Vodafone Group

		Ankur Goyal

		Lead Consultant

		Infosys

		Emmanuel A. Otchere

		Chief Technical ExpertVP, Standards & Industry Development

		Huawei

		Min He

		Chief Architect

		Futurewei

TM Forum 2021. All Rights Reserved.

© TM Forum 2021. All Rights Reserved. Page 21 of 21

image1.png

image2.png

image4.emf
IG1253C_Intent_Life_

Cycle_Management_and_Interface_v1.0.0.docx

IG1253C_Intent_Life_Cycle_Management_and_Interface_v1.0.0.docx
[image:]

[image:] IG1253C Intent Life Cycle Management and Interface v1.0.0

TM Forum Introductory Guide

Intent Life Cycle Management and Interface

IG1253C
Team Approved Date: 28-May-2021

Release Status: Pre-production	Approval Status: Team Approved
Version 1.0.0	IPR Mode: RAND

[bookmark: _Toc175037842][bookmark: _Toc278370026][bookmark: _Toc336283482][bookmark: _Toc467247665][bookmark: _Toc73957968]Notice

Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to TM FORUM, except as needed for the purpose of developing any document or deliverable produced by a TM FORUM Collaboration Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

[bookmark: _Hlk57117974][bookmark: _Hlk57108552][bookmark: _Hlk57194686]181 New Road, Suite 304

Parsippany, NJ 07054 USA

Tel No. +1 862 227 1648

TM Forum Web Page: www.tmforum.org

Table of Contents
Notice	2
Table of Contents	3
List of Figures	5
Executive Summary	6
Introduction	7
1.	Intent life cycle	8
1.1.	Roles in the intent life-cycle management	8
1.2.	Tasks of intent owners and handlers	8
1.3.	Phases of the intent life-cycle	9
1.4.	States of intent handling	11
2.	The intent Interface	13
2.1.	Intent Handling Management Service	13
2.2.	Intent handler and owner relationship	13
2.3.	Further assumptions and proposals	15
3.	Mandatory methods and procedures of the intent interface	17
3.1.	Setting and modifying intent	17
3.2.	Removal of intent	18
3.3.	Reporting on intent status	18
3.4.	Examples	19
3.4.1.	Basic intent lifecycle management: Setting, Rejection, Modification, Reporting, Removal	19
3.4.2.	Intent Lifecycle Management: Multiple intents to multiple handlers	21
3.4.3.	Multi-level intent handling	22
4.	Optional methods and procedures of the Intent Interface	24
4.1.	Collaborative Evaluation	24
4.1.1.	Example: Asking the intent owner for a judgment	25
4.2.	Intent Probing	26
4.2.1.	Example: Intent Probing	27
4.3.	Intent best options	28
4.3.1.	Example: Proposing the best possible intent	29
5.	Administrative Appendix	31
5.1.	Document History	31
5.1.1.	Version History	31
5.1.2.	Release History	31
5.2.	Acknowledgments	31
5.2.1.	Guide Lead & Author	31
5.2.2.	Main Contributors	31
5.3.	Additional Inputs	32

[bookmark: scroll-bookmark-1][bookmark: scroll-bookmark-2]

[bookmark: _Toc73957970]List of Figures

Figure 1. Intent life cycle	9

Figure 2. State machine of intent handling and intent operational state	11

Figure 3. Intent handling management service constituting the intent interface	13

Figure 4. Multiple intent owners and handlers	14

Figure 5. Hierarchy of intent handling dual handler/owner role	15

Figure 6. Intent Lifecycle management example with basic interface methods	19

Figure 7. Intent Lifecycle management example with basic interface methods and multiple handlers	21

Figure 8. Intent Lifecycle management example with multiple levels of intent handling	22

Figure 9. Intent handler asking the intent owner for a judgment on solution preferences	25

Figure 10. Probing of expected intent handling outcomes	27

Figure 11. Asking a handler for best intent it can do	29

[bookmark: _Toc73957971]Executive Summary

The concepts of intent driven operation were introduced in IG1253. Intents are defined as knowledge objects. As such they have a defined life cycle that needs to be actively managed. Intent management functions implement this management task. This process involves communication between intent management function to exchange intents and intent reports. This interface allows sending intent, report on handling success, modify the intent and ultimately remove it. Optionally the interface allows collaborative prioritization of solutions for fulfilling the intent. It also allows a feasibility investigation if an intent can be fulfilled and a negotiation about what level of requirements and constraints would be acceptable.

This document defines the details of the intent life cycle including the related roles and tasks of the intent management function. Furthermore, this document defines the interface through which the intent objects are exchanged, negotiated and managed as part of the life cycle management process. This document demonstrated the use of the interface with detailed examples.

[bookmark: scroll-bookmark-3]

[bookmark: _Toc73957972]Introduction

This document is a supplementary document of IG1253. It defines the life cycle of intent objects and the interface for managing them.

[bookmark: scroll-bookmark-4][bookmark: _Toc73957973]Intent life cycle

[bookmark: scroll-bookmark-5][bookmark: _Toc73957974]Roles in the intent life-cycle management

Intents are knowledge objects with an actively managed life cycle. The intent management function (aka. intent manager) implements and therefore manages the life cycle of intent objects. Intent is in this respect always used in the communication between two instances of intent management functions. The life-cycle management of an intent object is therefore distributed between these two intent managers. The two involved intent managers assume distinct roles in the life-cycle of intent and these roles imply a number of responsibilities and tasks.

With respect to life cycle management of intent objects there are two distinct roles an instance of an intent management function can assume: intent owner or intent user. An intent manager can assume exactly one of these roles for each distinct intent object and these roles then determine its responsibilities and tasks within the intent lifecycle.

Intent Owner
The intent owner is the origin of the intent object. It is the entity that has created the intent object and using it to communicate requirements, goals, or constraints to other functions. The owner of an intent is responsible for managing its lifecycle. Consequently, the intent owner is the only entity and role allowed to modify intent objects and it must actively remove them if the intent is not needed anymore.

Intent Handler
An intent management function assumes the role of intent handler by receiving an intent object from an intent owner. It becomes intent handler for that intent. An intent handler considers the requirements, goals and constraints specified in this intent object when operating the domain and infrastructure it is responsible for. An intent manager cannot modify or remove intent, for which it is in the handler role. Only the intent owner can. The intent handler is however responsible for keeping the owner updated about the intent fulfillment status and progress through intent reports.

[bookmark: scroll-bookmark-6][bookmark: _Toc73957975]Tasks of intent owners and handlers

An intent handler can reject intent, for example if it is not able to fulfill the intent. It might also propose an alternative intent that is possible to fulfill. These and further interaction schemes between the intent owner and intent handler are described in more detail in Chapter 2.

Intent handlers must report on the status and fulfillment progress of all intents they have received. The detailed criteria for when and under which conditions a report is expected are determined by the intent owner and included in the intent object itself as reporting expectation.

The assignment of intent life-cycle roles are specific to every intent object. This means that the same intent manager can be in the role of intent handler for one intent object, but at same time be the intent owner of another intent object.

An individual intent object can only have one owner and it cannot have multiple handlers as well. In practical use cases the same retirement might be needed in different system domains and sub-systems, which are managed by distinct intent managers. This can be realized by creating multiple distinct intent objects with similar content and sent them independently to different intent handlers. In any case each of these intent objects is managed within its own life-cycle.

For every distinct intent object there is exactly one intent manager in the role of owner and one intent manager in the role of handler. Furthermore, these roles cannot be transferred to other entities throughout the lifecycle of an individual intent. This means for any intent object the owner stays always that same and once chosen the intent handler as well. If, for whatever reason the management of intent shall move to different instances of intent managers, this would require deleting the intent object and to create a new one with similar content.

Intent objects cannot be temporarily activated or de-activated. They can only be created and sent to a handler and later the owner can remove them. If the intent must not be considered anymore, the owner needs to remove it. If later the same requirements are needed again, the owner would create a new but similar intent and send it to the handler.

[bookmark: scroll-bookmark-7][bookmark: _Toc73957976]Phases of the intent life-cycle

The intent lifecycle consists of the following phases:

[image:]

[bookmark: _Toc73957900]Figure 1. Intent life cycle

Detection (Monitor, Analyze)
The intent owner monitors and analyzes the state of the underlying infrastructure as well as changes in demand and as reflected by its own goals. It determines if its own goals are sufficiently fulfilled. This allows intent owners to detect if it needs to revise its own solution strategy and implement it by modifying the requirements, goals or constraints given as intent to the underlying management layers and autonomous domains.

This need to adapt solution strategy and associated intent can be motivated by new or changed goals given to the intent owner. It can also originate from observation through received intent reports and other means, such as analytics insights and measurement of metrics and KPI. Also, a root cause analysis can play a role indicating which detail of the intent needs, attention.

Investigation (Negotiation, Feasibility)
The intent owner determines what intent is feasible. This refers to the composition of requirements, goals, and constraints and if the available intent handlers can be successful in handling them. This can be based on experience with the underlying infrastructure, management layers and autonomous domains. Or it can be determined from a negotiation and feasibility check in collaboration with intent handlers within the targeted domains. Intent handlers would provide their estimate and prediction about intent handling success.

Definition (Decide, Allocate, Create, Modify, Remove)
The intent owner decides a solution strategy. This is based on the need determined in the detection phase and considers feasibility according to the investigation phase. The intent owner implements its solution strategy by defining intent to be given to the underlying management layers and autonomous domains.

Practically this means that the intent owner selects, which intent handling domains are impacted. It targets each intent handling domain by individual intent. The intent owner creates new intent, modifies existing intent or retires intent that is not needed anymore.

Please note that each individual intent object has its own life cycle managed as described here. However, the life cycles of multiple intent objects can be related to each other by being part of a solution strategy that involves multiple intent handlers and multiple individual intent objects. It is in the responsibility of the intent owner to manage these relationships and keep the individual intent objects consistent with each other.

Distribution (Act, Discover, Select, Route, Send)
In this phase the intent owner acts by distributing the defined intent. It first identifies the right target intent handler for each individual intent object. This involves an intent handler registry providing information about intent handling domain scope of available intent handlers. The registry information also contains the intent handler’s capabilities with respect to the information models it implements and therefore supports to be used in the intent definition. For modified intent the used intent handler does not change, but its capabilities with respect to supported information elements need consideration to avoid rejection of the intent.

If a suitable intent handler is discovered, the intent owner informs it about changes (using the intent API). This includes setting of new intent, modification of existing intent or removal of intent that is not needed anymore. A targeted intent handler participates according to the intent API procedures and its reporting obligations.

Operation (Knowledge, Decision, Actuation)
The intent handler is operating its intent handling domain according to given requirements, goals and constraints. An individual intent object contributes this set. The operation involves that the intent handler performs its own analysis, decision-making, and actuation trying to fulfill the intent and keeping it fulfilled.

The intent handler is reporting on the state of handling and fulfillment success to the intent owner. This reporting is done individually for each distinct intent object. The reporting closes the life-cycle loop as it enables the detection phase in the intent owner.

The intent handler cannot modify the intent. It can only report on its success to meet the requirements to the intent owner. However, for multiple different intent objects a single intent manager entity can assume the intent owner role for some and the intent user role for others.

[bookmark: scroll-bookmark-8][bookmark: _Toc73957977]States of intent handling

Intent objects within the intent handler have the following states:

[image:]

[bookmark: _Toc73957901]Figure 2. State machine of intent handling and intent operational state

Received
This is the initial handling state of an intent when it is received by an intent handler. This state is valid only before the intent handler can send a first report to the owner. The first report would either accept or reject the intent. If it is rejected, the state machine ends, because the intent is not handled and no further actions about it are taken by the intent.

Degraded Initial handling
This is the state of the intent after it was accepted. After an intent is accepted the handler will start considering it in its operational decisions. The intent is usually not fulfilled yet, because the intent handler is still executing the initial actions to do so. This phase ends when the intent handler has finished its initial handling actions. The result of these actions might be that the system is compliant to the intent or degraded if any of the expectations expressed by the intent could not be met.

Compliant
All expectations of the intent are met according to the current state of the system determined by measurements and analytics.

Degraded
The intent is in this state if any of the expectation is not met. Also, here this is determined by measurement of the detailed system state and analytics insights.

The operation decisions and actions of the intent handler try to transition the intent handling state into "compliant" and keep it there until the intent is removed. External factors, such as resource shortage, user actions or errors of any kind can lead to the intent to become degraded. If this is happening the intent handler would immediately start to plan compensatory actions to transition the system back into a compliant state.

It might not be possible to reach a compliant state, for example when facing persistent resource shortage. In this case the intent handler would prioritize which and to what extent intents need to be fulfilled while leaving some degraded. The intent handler would first of all report this situation back to the owners of degraded intents so that they can evaluate if a continued degradation is acceptable or if they need to take action. Nevertheless, the intent handler would continuously look out for solutions that can bring all intents back to a compliant state.

Even if the state of intent handling is compliant, the intent handler might still look for alternative solutions and actions that can optimize the way it reaches compliance. For example, there might be another solution that reaches compliance with less resource usage, or which results in compliance being more robust. In this respect the pressure to change the solution for an already compliant intent might come from other intents. In order to fulfill them the solution for already exiting intents need to be changed. This indicates that global compliance across all intents is the ultimate goal of intent handling.

Intent handlers with predictive capabilities can apply proactive actions to avoid expected future degradation ahead of time.

This state machine describes each intent individually. The intent management function is usually the handler of many intents in parallel. The intent management function will try to keep as many intents in "compliant" state as possible. And if this is not possible, it will prioritize to minimize the accumulated negative impact of intent degradation.

If an intent is modified, the new version would be managed with its individual state. The old intent version and the modified intent therefore exist in parallel in the system for a while. The modified intent reaches the RECEIVED state and the intent handler considers its acceptance. If it accepts the modified intent, the state machine of the original intent ends and is replaced entirely with the state of the modified intent. If the modification is rejected, the state machine of the modified intent ends, and the original intent stays in place.

This state machine of intent handling demonstrates the tasks and processes involved in intent handling. Next to this recommendation it is also possible to implement variants of this state machine or even entirely different states within the intent handler. This can be useful to better capture domain-specific characteristics and tasks involved in intent handling.

If different state machines are introduced it is recommended to do this in addition to the state machine proposed in this chapter. The intent handling state is used in intent reporting providing a high level overview of the intent handling status. In this respect it is useful to use a universally understood reference for reporting the intent handling state. Reporting of additional states from different state machines can be specified through intent extension models.

[bookmark: scroll-bookmark-9][bookmark: _Toc73957978]The intent Interface

[bookmark: scroll-bookmark-10][bookmark: _Toc73957979]Intent Handling Management Service

The intent interface described in this document is the interface between two distinct individuals of intent management functions. Through this interface the intent management functions manage the life cycle of intent objects. Therefore, the participating intent manager instances roles of the intent owner and intent handler. Furthermore, the intent interface establishes a control loop through intent setting and intent reporting in return. The reporting on intent status and success closes the loop that was initiated by the intent owner when issuing the intent to a handler.

[image:]

[bookmark: _Toc73957902]Figure 3. Intent handling management service constituting the intent interface

The intent interface is established by introducing the intent handling management service. An instance of the intent management function in the role of intent handler is the producer of this management service. The consumer is another instance of an intent management function in the role of intent owner.

[bookmark: scroll-bookmark-11][bookmark: _Toc73957980]Intent handler and owner relationship

When building an operation system based on intent there are typically multiple sources of intent. Examples are user facing frontend through which human personnel can directly enter intent or service ordering systems that manage SLA and derive intent from them. This means that often the intents given to an intent handler originate from multiple distinct intent owners.

Furthermore, every intent handler has a distinct scope of responsibilities for handling the intent within a domain. An intent owner might therefore issue multiple intents to address the requirements for each effected domain through separate intent objects. This means that there are in general many to many relationships between intent owners and intent handlers as depicted in Figure 4.

[image:]

[bookmark: _Toc73957903]Figure 4. Multiple intent owners and handlers

The intent object used between an owner and handler is always unique. This means that there are never multiple owners for the same intent and an intent object is also never sent to multiple handlers. If an intent owner needs to issue the same requirements, goals or constraints into multiple domains and therefore addressed to multiple distinct intent handlers this would be done by multiple individual intent objects that contain similar content.

Intent handlers can act by creating further intent to be sent into subordinate domains. This practically assigns a dual role to an intent manager. It is in the intent handler role for the intents it has received from another intent owner. Furthermore, this intent manger entity would be in the intent owner role for all intent it creates itself and sends to further intent handlers. This creates a hierarchy of intent handling where the handling of higher-level intent results in lower level intent being created.

[image:]

[bookmark: _Toc73957904]Figure 5. Hierarchy of intent handling dual handler/owner role

[bookmark: scroll-bookmark-12][bookmark: _Toc73957981]Further assumptions and proposals

We propose that the intent interface is based on REST. This document specifies new methods on the protocol to be used for the tasks if intent life cycle management and intent-based operation.

All intent based communication over the intent interface is asynchronous.

Advanced features and capabilities are not mandatory. If an intent handler supports them it can announce this as part of its intent handler profile in intent handling capability management.

The methods in the intent handling interface contain two types of objects: intent and intent report. Both are built following RDF/RDFS according to IG1253A. We propose to use a serialization in TURTLE as interchange format, but also other encoding formats such as XML or JSON are possible.

We do not introduce a mechanism for activating and deactivating intent. An intent being sent to the intent handler is immediately active in this respect. This means that it immediately become a retirement when received and that the intent handler has to consider in its operation.

An intent owner can remove the intent or modify it an any time. This allows to reach a similar behavior to activation/deactivation. The intent owner is in control and needs to follow up on what intent needs to be in operation. The intent handler does not need to implement additional states for managing this. Please note that the intent objects may allow setting validity conditions and therefore enable use cases with temporal or situational validity of requirements or restrictions.

[bookmark: scroll-bookmark-13][bookmark: _Toc73957982]Mandatory methods and procedures of the intent interface

Mandatory methods need to be implemented by each intent manager. They are considered to be the minimum set of interface capabilities for enabling basic intent life cycle management and intent based operation.

[bookmark: scroll-bookmark-14][bookmark: _Toc73957983]Setting and modifying intent

Intent owners can set new intent or modify existing intent objects. This is achieved with the “SET” method:

SET <intent object>

It is used in the distribution phase of the intent life-cycle and sent from intent owner to intent handler.

A repeated set for the same individual intent object with new content overwrites existing intent and therefore modifies it. A separate modification method is not needed.

The intent owner can use the SET method at any time for sending new intent or for modifying existing intent objects.

The receiving intent handler will issue an immediate response according to the mechanism of the underlying REST protocol. This will confirm the reception of the message but without considering the intent content. This is done with the first intent report sent by the intent handler. This is sent as soon as the intent has analyzed the intent object and reached a conclusion if it can accept the intent.

Intent can be rejected for the following reasons:

Unsupported expectations: The intent contains expectation classes the intent handler does not support. It has not implemented them. As expectation objects represent binding requirements, not understanding it implies that correct handling cannot be guaranteed. The intent needs to be rejected.

Unsupported information model in expectation: The intent contains details based on information models within expectation expressions. The intent handler might support the expectation objects involved, but not the information models used for expressing the details within. For example, a KPI from an unsupported metrics model is used within a known expectation object. The semantics of the expectation is understood, but not the detailed of the requirement. This means that the entire expectation is not understood. As expectations represent binding requirements this implies that it cannot be guaranteed that the intent is handled correctly.

Out of scope: The intent defines details that is not in the domain scope of the intent handler. The intent handler might well understand all used expectation objects and information within. But what is required is beyond the scope of responsibilities of this intent handler. This means that this intent was sent to the wrong handler.

The intent handler can accept the intent, but raise a warning if:

Unsupported Context: The intent uses a context class the intent handler does not support and has not implemented. As context is not a binding requirement, but rather supplementary information, the intent handler can accept the intent even if it does not understand the additional information. The intent handling process can then not use this information in its decisions. This means it might miss some opportunities to further optimize, but as long as all hard requirements communicated by expectations are understood, the intent handler can anyway start working. The intent owner would be informed about this problem and can change the context information based on supported context classes if needed.

Unsupported information model in context: An unsupported information model was used within a non-critical non-binding part of the intent, such as a context specification. While the context class as such is understood, an information model used to express the details of this context is not supported. As this is non-binding supplementary information, it can be ignored. The intent owner would be warned about this mismatch and can decide to react by reformulating the context information using supported models. The intent handler might also start consulting with other functions or humans to compensate for missing information.

Unsuccessful handling: If the intent handler cannot fulfill the intent it will report this. This means that the intent handler does not expect that the intent can be fulfilled and that it will stay in a degraded state. In this case the intent handler would anyway start to do its best to fulfill the intent, because it represents a requirement. The intent owner would receive reports about this situation and can decide if it accepts the solutions with degraded intent. Alternatively, the owner can remove the intent or modify it to requirements the handler can be successful with. If the intent owner wants to avoid this situation, it can use the procedures on the intent interface that allow investigating intent feasibility before the intent is set.

If the intent is modified, the same process and initial reporting is applied to the modifications. If a modification is rejected, the intent stays valid with the content from before the modification attempt. The intent owner can then decide to try a different modification or remove the intent altogether.

[bookmark: scroll-bookmark-15][bookmark: _Toc73957984]Removal of intent

The intent owner can withdraw an intent using the “REMOVE” method.

REMOVE <intent object URI>

The remove method identifies the intent object to be removed through its URI.

On reception of the removal order, the intent handler would delete the related requirements and constraints from its knowledge and issue a final report that also acknowledges the removal.

[bookmark: scroll-bookmark-16][bookmark: _Toc73957985]Reporting on intent status

The intent handler will use the “REPORT” method to send reports to the intent owner.

REPORT <intent report>

The intent report is created based on the intent model and domain specific information models as described in IG1253A and the future IG1253B.

The intent handler sends a report after every reception of a SET or REMOVE in the intent API and according to the criteria defined in the intent by a reporting expectation.

The intent Interface does not contain a method in which intent reports can be requested. They are never pulled explicitly by the intent owner, but always pushed by the intent handler according to the reporting criteria specified within the intent. The intent owner can control the reporting by setting and changing the intent reporting criteria.

[bookmark: scroll-bookmark-17][bookmark: _Toc73957986]Examples

The following examples show how to execute intent lifecycle management through the intent interface.

[bookmark: scroll-bookmark-18][bookmark: _Toc73957987]Basic intent lifecycle management: Setting, Rejection, Modification, Reporting, Removal

[image:]

[bookmark: _Toc73957905]Figure 6. Intent Lifecycle management example with basic interface methods

The intent lifecycle management process starts with an intent management function detecting the need for intent. In this example this is based on observations of the intent management functions including its configuration of goals. This intent management function decides that new intent is needed, and it therefore assumes the role of an intent owner for that intent.

In the investigation phase, the intent owner would determine if there were intent handlers available that have the needed capabilities for the intents the owner wants to create.

In definition phase the intent owner creates the intent object containing all expectations it needs. It would then enter the distribution phase in which it sends the intent to the selected intent handler.

In this example the intent handler rejects the intent. It might do this because currently it does not have sufficient resources available to successfully fulfill the intent. It communicates the intent rejection by sending an initial intent report that contains the reason for rejection.

On reception of the rejection the lifecycle of that intent object ends. The intent owner goes into detection for a new intent lifecycle. Based on the rejection details it might be able to find a different solution strategy involving another intent. It creates this new intent and distributes it to a handler.

In this example the new revised intent is given to the same intent handler and this time it accepts the intent. It is doing so by sending an initial intent report stating that the intent is accepted. The intent becomes a new requirement for the intent handler and will be considered in decisions and actions of this intent handler.

Acceptance of an intent also starts intent reporting according to the reporting expectation. If the condition of an intent reporting expectation is fulfilled, the intent handler sends a report to the intent owner.

After a modification, the older version of the intent stays valid until the handler accepts the change.

[bookmark: scroll-bookmark-19][bookmark: _Toc73957988]Intent Lifecycle Management: Multiple intents to multiple handlers

[image:]

[bookmark: _Toc73957906]Figure 7. Intent Lifecycle management example with basic interface methods and multiple handlers

In this example the intent owner has made a plan that involves requirements targeting multiple domains. This is realized by creating multiple intents and sending them to the intent handlers responsible for the respective domains. Each involved intent has its own lifecycle managed by the same instance of an intent management function taking the owner role for both.

In this scenario independent intent objects with independent lifecycles mean that the owner can modify or remove them individually. Also, the owner will receive separate reports for each intent object.

[bookmark: scroll-bookmark-20][bookmark: _Toc73957989]Multi-level intent handling

[image:]

[bookmark: _Toc73957907]Figure 8. Intent Lifecycle management example with multiple levels of intent handling

In this example, the intent management function 2 received an intent and becomes intent handler for intent 1. It then starts operating the intent and plan a solution strategy and actions. In this example the result of this process is to set requirements in another domain and use the intent mechanism to do so. This means the intent MnF 2 starts the lifecycle for another intent object "intent2". It therefore becomes owner of this new intent. Here the same intent management function is in the role of handler and owner at the same time. But it is taking these roles for different intents.

The destination domain of the new intent2 is managed by the intent management function 3. It is getting the role of handler for intent2.

While the lifecycles of both intents are in principle independent, there is a causal relationship between the intents. The detection phase performed by intent MnF 2 in the owner role is related to the requirements set by intent1.

In this example both intent handlers start sending reports to the respective intent owners. At some point the intent MnF 1 detects that the intent 1 is not needed anymore and it orders its removal from Intent MnF 2. The removal of intent1 removes a requirement from the domain managed by intent MnF 2. This new situation is considered in the detection phase of the lifecycle of intent2. In this example the decision is made that intent 2 is also not needed and consequently it is removed.

Note that the removal of intent2 is not a necessary consequence of removing intent1. It is fully in the responsibility of intent MnF 2 to remove it or modify it or even leave it untouched depending on all known requirements.

[bookmark: scroll-bookmark-21][bookmark: _Toc73957990]Optional methods and procedures of the Intent Interface

An intent management function always implements the mandatory methods of the intent interface described in Chapter 3. They can be complemented with additional optional methods introduced in this chapter. These optional methods and the related communication procedures add further capabilities to the intent lifecycle management. This enables further refined and optimized intent based operation. However, these advanced capabilities a can be a challenge to implement. They might require for example advanced AI techniques or more complex handling processes. Their implementation can be costly, consume a lot of resources to execute and in some intent handling use cases, they might not provide significant advantages. For these reasons we propose to implement them if needed.

The intent handling capability management allows a handshake between owner and handler if and which optional methods are available.

[bookmark: scroll-bookmark-22][bookmark: _Toc73957991]Collaborative Evaluation

The intent handler might find multiple solutions for fulfilling the intent. All the solutions and the related actions are in principle feasible as they fulfill the intent and do not degrade others. But the possible solutions are still expected to produce different outcomes. One of them might be better and more optimized in one aspect and another solution might be better in another aspect. The intent handler cannot further decide what is better. The intent owner would be able to decide. The collaborative evaluation allows the intent handler to ask the intent owner to decide, which out of many possible outcomes is preferred.

This is initiated by the intent handler using the “JUDGE” Method asking the intent owner for a judgment on the solutions.

JUDGE <outcome report 1>, <outcome report 2>, …, <outcome report n> [<deadline>]

In this method multiple intent reports are sent. Each of them represents the expected outcome for a solution. It is also possible to set a deadline for an answer.
It is up to the intent handler to decide which owner to ask. This can for example depend on which intent is the most significantly impacted one by the action alternatives. The respective intent handler would be asked for judgment.

It is also possible to as multiple intent handler for their judgement. The intent can therefore collect multiple opinions about the outcome and based on that prioritize and decide.

Please note, that the intent handler is not presenting the solution details and the actions it is planning to do. The intent owner is on the system level above and would not understand these details. The intent handler would rather use intent reports to communicate the expected outcomes of these actions.

When asked through the JUDGE method what solution to prefer, the intent owner can evaluate and communicate its choice using the PREFERENCE method.

PREFERENCE <outcome report URI 1>, <outcome report URI 2>, …, <outcome report URI m>

It uses the unique URI of each presented outcome reports sending a list of them back to the intent handler. The list is sorted with the most preferred outcome first. If an outcome report is left out of the answer, this is an indication that the respective solution should be avoided.

The outcome reports are created as intent reports according to the intent model.

[bookmark: scroll-bookmark-23][bookmark: _Toc73957992]Example: Asking the intent owner for a judgment

[image:]

[bookmark: _Toc73957908]Figure 9. Intent handler asking the intent owner for a judgment on solution preferences

In this example the intent handler found multiple possible solutions to fulfill the intent. They produce different outcomes, but it is beyond the knowledge of the intent handler to decide which of the solutions is preferable. In this situation the intent handler first determines an estimate on the expected results for each alternative solution. It creates an intent report object containing a hypothetical report for the expected outcome. The intent handler then uses the judge interface for sending these hypothetical intent reports to the intent owner.

The intent owner can now evaluate which reported outcome is more preferential. It would inform the intent handler about its evaluation by sending a PREFERENCE message. It contains a knowledge object that contains preference information.

A basic way for intent owners to express their preferences might be by sorting the intent reports on the order of preference with the best being first in the list and the other reported outcomes following in descending order of preference. Completely unacceptable solutions can be indicated by leaving them out of the preference answer. This simple answer consists of a qualitative evaluation but not a quantitative one. The intent owner does not quantify how much better one of the options is over another one. Expressing this is currently not in scope of this document but will be considered in future iterations.

[bookmark: scroll-bookmark-24][bookmark: _Toc73957993]Intent Probing

The intent owner might want to explore what intent requirements and constraints are actually possible and what outcomes can realistically be provided by the intent handlers. This would need to be known before actually setting an intent that becomes a requirement.

An intent owner can use the PROBE method for sending an intent to an intent handler without the expectation that is actually be acted upon.

PROBE <intent object>

The intent handler would start generating reports for this intent stating what the expected outcome would be if the intent becomes a requirement.

Also, intent set using the PROBE method need to be actively life cycle managed by the intent owner. Similar to the SET method the probing intent can be modified using further PROBE messages. This allows exploring multiple options and find out how the intent handler and the domain it controls would react.

The probing intent would be removed using the REMOVE method.

[bookmark: scroll-bookmark-25][bookmark: _Toc73957994]Example: Intent Probing

[image:]

[bookmark: _Toc73957909]Figure 10. Probing of expected intent handling outcomes

The example shown in Figure 10 demonstrates the use if the probing interface. Probing is part of the investigation phase, and it is initiated by the intent owner. It wants to get an estimate about the expected outcome if the wanted intent is actually used. The wanted intent is sent to an intent handler using the PROBE method. The receiving intent handler would start sending reports representing its estimate of handling results if the intent would be set.

The intent handler would continue sending hypothetical reports until the probing intent is removed buy the owner. This enables the intent owner to observe as long as needed. It is also possible to modify the probing intent in order to test diverse intent configurations.

Ultimately the intent owner would proceed by removing the probing intent and continue with the lifecycle. This means, based on the probing results it can decide in definition phase what intent configuration to use. The intent owner would create the intent and send it to the handler. The lifecycle continues as usual.

Further variants, which are not yet specified in detail:

1. Probing intents in operation to investigate the potential effects of a modification.

2. Transforming a probing intent into a set intent without the intermediate step of removal.

3. Asking the handler to prepare so that the intent can really be fulfilled as reported in the probing. This might imply that the handler reserves resources.

[bookmark: scroll-bookmark-26][bookmark: _Toc73957995]Intent best options

The intent owner might be interested to know what the most challenging requirements are it can use in an intent and still have intent handler fulfill it. This would be initiated by the intent handler using the BEST method.

BEST <intent object>

With the BEST method the intent owner sends an intent object where one or multiple expected parameters are marked that the best possible value should be selected.

The intent handler would reply using the PROPOSAL method.

PROPOSAL <intent object>

In the PROPOSAL method the intent handler would send an intent object that shows the best currently possible value for the marked properties so that the intent can be fulfilled.

It is also possible to ask for the best possible proposal for already existing intent. This can be sensible if the intent handler fails to fulfill the intent as is and the owner wants to know what the best level would be the intent handler can do. The intent owner can ask for this and steer the process using a proposal expectation.

[bookmark: scroll-bookmark-27][bookmark: _Toc73957996]Example: Proposing the best possible intent

[image:]

[bookmark: _Toc73957910]Figure 11. Asking a handler for best intent it can do

In the example sequence, shown in Figure 11 the intent owner performs an investigation by using the BEST method. It wants to assess what are the best or most severe requirements within an intent the selected handler can successfully meet.

The intent owner steers this process by creating an intent object in which one or potentially multiple expectation parameters are marked asking for a proposal for them. This creates an under specified intent object with incomplete expectations. This intent object is then sent to the intent handler using the BEST method. The intent handler is expected to fill in the open expectation parameters with the best values or value combinations if expects it is able to successfully handle.

The intent handler does this investigation based on its currently known state and available resources. If multiple parameters are left open, the intent handler will propose the best combination according to its knowledge and interpretation.

The intent handler creates a new intent object by copying the one received in the BEST request and filling in its proposal for the open parameters. It therefore completes the intent. This new intent is then sent back to the intent owner that has asked for the best proposal.

In this example the intent owner asks the handler for the best proposal with multiple variants of an intent. This can be done in sequence as shown here or in parallel testing multiple options at once.

It is possible to ask for the best proposal for many distinct expectations and properties at once. This would however give many degrees of freedom to the intent handler and therefore as the handler to prioritize itself and assume, which combination of settings is the most advantageous to the asking owner. This might not always match with the actual goals of the owner. It is therefore a good practice if the owner tightly controls the process by only asking for a single or just a few best proposals at a time. The intent owner can explore the possibilities by repeating BEST requests focusing on different aspects.

In this example the intent owner proceeds into definition phase after a few best proposal queries. It is using the results to define the intent that is then sent for operation.

[bookmark: scroll-bookmark-28][bookmark: _Toc73957997]Administrative Appendix

[bookmark: scroll-bookmark-29][bookmark: _Toc73957998]Document History

[bookmark: scroll-bookmark-30][bookmark: _Toc73957999]Version History

		Version Number

		Date Modified

		Modified by:

		Description of changes

		1.0.0

		28-May-2021

		Alan Pope

		Initial Release

[bookmark: scroll-bookmark-31][bookmark: _Toc73958000]Release History

		Release Status

		Date Modified

		Modified by:

		Description of changes

		Pre-production

		28-May-2021

		Alan Pope

		Final edits prior to publication

[bookmark: scroll-bookmark-32][bookmark: _Toc73958001]Acknowledgments

[bookmark: scroll-bookmark-33][bookmark: _Toc73958002]Guide Lead & Author

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

[bookmark: scroll-bookmark-34][bookmark: _Toc73958003]Main Contributors

		Member

		Title

		Company

		Jörg Niemöller

		Expert of Analytics and Customer Experience

		Ericsson

		Kevin McDonnell

		Senior Director, Intelligent Automation

		Huawei

		James O'Sullivan

		Product Director, Intelligent Automation

		Huawei

		Dave Milham

		Chief Architect

		TM Forum

		Vinay Devadatta

		Practice Head (Innovation & Industry Relations)

		Wipro Technologies

		Azahar Machwe

		OSS Automation

		BT Group plc

		Wang Lei

		Systems Expert

		Huawei

		Tayeb Ben Meriem

		Senior Standardization Manager (OSS)

		Orange

[bookmark: scroll-bookmark-35][bookmark: _Toc73958004]Additional Inputs

		Member

		Title

		Company

		Lester Thomas

		Chief IT Systems Architect

		Vodafone Group

		Ankur Goyal

		Lead Consultant

		Infosys

		Emmanuel A. Otchere

		Chief Technical ExpertVP, Standards & Industry Development

		Huawei

		Min He

		Chief Architect

		Futurewei

TM Forum 2021. All Rights Reserved.

© TM Forum 2021. All Rights Reserved. Page 29 of 29

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

