3GPP TSG-SA5 Meeting #132e 
S5-204434
e-meeting 17th-28th Aug 2020








Source:
Ericsson
Title:
On RACH optimization granularity for NR
Document for:
Endorsement
Agenda Item:
6.4.4
1
Decision/action requested

The meeting is asked to endorse/agree the contribution.
2
References

[1]
3GPP TS 36.331, Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification
[2]
3GPP TS 32.425, Telecommunication management; Performance Management (PM); Performance measurements Evolved Universal Terrestrial Radio Access Network (E-UTRAN)
[3]
S5-203069, CR 28.552, Add measurements related to RACH optimization
[4]
3GPP TS 28.541, Management and orchestration; 5G Network Resource Model (NRM); Stage 2 and stage 3
[5]
S5-204435, Rel-16 CR Add measurements for RACH optimization management for NR
[6]
3GPP TS 38.321, NR; Medium Access Control (MAC) protocol specification
3
Rationale

During SA5#131-e, a contribution was proposed and noted on measurements on Random Access CHannel (RACH), see S5-203069 [3]. These proposed measurements were essentially a copy of the LTE solution. One notable difference to LTE is that the granularity of the measurements: In LTE, the measurement granularity is per cell, and in the NR proposal the granularity is per beam.

This contribution argues for keeping the granularity for NR on a per cell, rather than on a per beam. The reason lies in the details of how RACH works. The next two clauses will describe RACH for LTE and NR.
3.1
RACH Measurements for LTE

In LTE, a UE which needs to access the network issues RACH requests on one cell. If a RACH attempt fails, the UE increases the power for its next RACH attempt according to the power ramping step value. When a RACH request succeeds and the UE reaches connected mode, the UE can report the number of RACH attempts it has made to the eNB using RRC signalling, see TS 36.331 [1], clause 6.2.2.
The eNB creates statistics for the access requests from the UEs. From the number of RACH attempts made and reported from the connected UEs to the eNB, the eNB calculates the distribution of the number of RACH attempts for each cell, see Fig 1. The eNB also analyses the RACH reports and calculates the distribution of RACH delays, see Fig 2. Both these measurements are reported to OAM, see TS 32.425 [2], clause 4.5.5.2 and 4.5.5.3. In both these examples, 20 successful accesses were made. Graphically, these measurements look like this:

[image: image1.png]Number of connects

-

Distribution of number of RACH preambles

N

1 2 3 4 5 6

Number of RACH preambles sent





Fig.1. Example of LTE Distribution of the number of RACH preambles measurement (TS 32.425 [2] clause 4.5.5.2)
[image: image2.png]Number of connects

-

0

Distribution of RACH access delay

3

0-10

11-20 21-30 31-40 41-50 51-60
Time before successful attach [ms]

61-70

71-





Fig. 2. Example of LTE Distribution of RACH access delay (TS 32.425 [2] clause 4.5.5.3)
3.2
RACH Measurements for NR

The RACH procedure for NR is somewhat different from LTE. Like LTE, e.g., in initial access procedure, after selecting a suitable cell, the UE attempts to connect to the selected cell. However, a NR cell may consist of multiple beams.  The UE selects one or multiple beams to use for RACH attempts, according to certain rules, see TS 38.321 [6] clause 5.1.2.
· If the UE fails a RACH attempt on one beam and again selects the same beam for the next attempt, it increases its preamble transmission power.  

· If the UE fails a RACH attempt on one beam and selects another beam for the next attempt, it keeps its power (in other words it does not ramp up with the transmission power level).  
When a RACH request succeeds and the UE reaches connected mode, the UE can report a list of the RACH attempts it has made using RRC signalling, see TS 38.331 [1], clause 5.7.10. This list contains includes identifiers for the beams used in the attempt.
As the UE is free to choose the sequence of beams for each RACH procedure, a per-beam statistics measurement is impossible to achieve or causing misleading results. Consider the following examples. Note that these examples are based on imagined, however reasonable implementations. 
3.2.1
Examples

To be able to compare the examples, we assume that the UE needs seven RACH attempts until it succeeds.
Example 1:

1. The UE attempts to access cell A, which consists of several beams. This particular UE, using the procedure in TS 38.321 [6] clause 5.1.2, selects three of the beams (1, 2 and 3) to send RACH attempts to. The implementation then attempts these beams in a round-robin manner, with two attempts per beam.
2. The UE sends RACH attempt 1 to beam 1 using power P0. The RACH attempt fails.

3. The UE sends RACH attempt 2 to beam 1 using power P1. The RACH attempt fails.

4. The UE sends RACH attempt 3 to beam 2 using power P1. The RACH attempt fails.

5. The UE sends RACH attempt 4 to beam 2 using power P2. The RACH attempt fails.

6. The UE sends RACH attempt 5 to beam 3 using power P2. The RACH attempt fails.

7. The UE sends RACH attempt 6 to beam 3 using power P3. The RACH attempt fails.

8. The UE sends RACH attempt 7 to beam 1 using power P3. The RACH attempt succeeds.

How would you create beam level statistics for this case? Beam 1 has 3 attempts, beam 2 and 3 has two attempts. Are these attempts comparable? No, the first and the last attempts, both on beam 1, have different power levels, maybe 12 dB
 between the first and the last attempts.
Example 2:

This implementation selects only one beam and keeps trying on that beam until it succeeds (or fails.)

1. The UE attempts to access cell A, which consists of several beams. This particular UE vendor implementation selects one beam to send RACH attempts to, using some metrics. The implementation then stays on that beam until it succeeds or fails.

2. The UE sends RACH attempt 1 to beam 1 using power P0. The RACH attempt fails.

3. The UE sends RACH attempt 2 to beam 1 using power P1. The RACH attempt fails.

4. The UE sends RACH attempt 3 to beam 1 using power P2. The RACH attempt fails.

5. The UE sends RACH attempt 4 to beam 1 using power P3. The RACH attempt fails.

6. The UE sends RACH attempt 5 to beam 1 using power P4. The RACH attempt fails.

7. The UE sends RACH attempt 6 to beam 1 using power P5. The RACH attempt fails.

8. The UE sends RACH attempt 7 to beam 1 using power P6. The RACH attempt succeeds.

This example is similar to the LTE RACH solution. However, as this is just one example of UE implementations, and because the gNB has no information about which implementation the UE uses, it cannot create statistics from implementations following this example and compare it with, statistics from another implementation, for example Example 1.
Example 3:

This implementation is similar to Example 1, but it attempts three times instead of two.

1. The UE attempts to access cell A, which consists of several beams. This particular UE vendor implementation selects three of the beams (1, 2 and 3) to send RACH attempts to, using some metrics. The implementation then attempts these beams in a round-robin manner, with three attempts per beam.

2. The UE sends RACH attempt 1 to beam 1 using power P0. The RACH attempt fails.

3. The UE sends RACH attempt 2 to beam 1 using power P1. The RACH attempt fails.

4. The UE sends RACH attempt 3 to beam 1 using power P2. The RACH attempt fails.

5. The UE sends RACH attempt 4 to beam 2 using power P2. The RACH attempt fails.

6. The UE sends RACH attempt 5 to beam 2 using power P3. The RACH attempt fails.

7. The UE sends RACH attempt 6 to beam 2 using power P4. The RACH attempt fails.

8. The UE sends RACH attempt 7 to beam 3 using power P4. The RACH attempt succeeds.
If we create distribution graphs for these three implementation examples, we get the following three figures:

[image: image3.png]Number of attempts
ok N WA U o N

Distribution,
Example 1

1 2 3
Beam number



[image: image4.png]Number of attempts
o, N W s G oo N

Distribution,
Example 2

1 2
Beam number

3



 [image: image5.png]Number of attempts
o, N W s G oo N

Distribution,
Example 3

1 2 3
Beam number




Figure 3








Figure 4








Figure 5
3.2.2
What is wrong with beam-based measurements for NR
The three example distributions above have the same pre-conditions, except that they represent three different UE implementations. Each of the three represent one connect request resulting in seven RACH attempts. Two of the attempts result in using beam 1, one result in using beam 3, and none in using beam 2. 
Observation 1: Beam level measurements as proposed in S5-203069 [3] mixes both unsuccessful as well as successful RACH attempts with no way to distinguish between them. This does not result in meaningful measurements.

Observation 2: As discussed in Example 1, beam level measurements as proposed in S5-203069 [3] mixes different power levels uncontrollably, which does not result in meaningful data.
Another way of expressing the same thing is that for RACH access attempts, the least common denominator for UE implementations is the cell, not the beam.
Observation 3: The least common denominator for UE implementations of RACH is the cell, not the beam.
The management of RACH optimization is built using control attributes in TS 28.541 [4] clauses 4.2.1 and 4.3.59, as well as corresponding measurements. The idea is for the operator to be able to compare the distributions in the measurements discussed in this proposal, with the distributions supplied as the control attributes. For such a comparison to be meaningful, the statistics and the control attributes should have the same common denominator. As the control attributes have the cell as their lowest entity, the measurements should also have the cell as their lowest entity, not the beam.
Observation 4: In order for an operator to be able to manage RACH optimization, cell level measurements are useful, while beam level measurements are not.
4
Detailed proposal

For the reasons in clause 3, we propose to specify RACH distribution measurements per cell instead of per beam. We propose cell level measurements in CR S5-204435 [5].
� We assume three (P3-P0) times 4dB. The 4dB comes from 38.331: 


set PREAMBLE_POWER_RAMPING_STEP to powerRampingStep


and: 


powerRampingStep                    ENUMERATED {dB0, dB2, dB4, dB6},





