3GPP TSG-SA5 (Telecom Management)

 Tdoc S5F0000x2
Meeting #13, Washington, D.C., 24 - 28 July 2000

Title:
Suggested Updates To TS 32.111-3 Alarm IRP CORBA Solution Set

Source:
Lucent Technologies, Randall J. Scheer (rjscheer@lucent.com)

Agenda item:
9.5 FM

Document for:
Discussion and Decision

Category:
Contribution for 9.5 Fault Management

Document Summary:
This contribution requests the following updates to the Alarm Integration Reference Point CORBA Solution Set document:

1. Clarification on the filtering of sets in the Filterable Body Field.

2. Changing of Notify Alarm List Rebuilt from an Extended Event Type to an Event Type.

3. Clarification of NV pairs name.

4. Clarification on Alarm Acknowledge State.

5. Adding #pragma statement.

6. Clarification on AttributeChangeSetType.
7. Correcting push_structured_events references.

8. Clarification of maintaining iterators and iterator contents

9. Clarification of Get Alarm IRP Version exceptions.

This contribution requests the following items be put out for discussion:

1. Clarification on Threshold Information.

2. Miscellaneous comments.

Specification(s) involved:
TS 32.111-3

1. REFERENCES

[1]. 3GPP, Part 1: 3G Fault Management (Release 1999), 3G TS 32.111-1, June, 2000.

[2]. 3GPP, Part 2: Alarm Integration Reference Point: Information Service (Release 1999), 3G TS 32.111-2, June, 2000.

[3]. 3GPP, Part 3: Alarm Integration Reference Point: CORBA Solution Set (Release 1999), 3G TS 32.111-3, June, 2000.

[4]. 3GPP, Part 4: Alarm Integration Reference Point: CMIP Solution Set (Release 1999), 3G TS 32.111-4, June, 2000.

[5]. 3GPP, Part 1: 3G Configuration Management (Release 1999), 3G TS 32.106-1, June, 2000.

[6]. 3GPP, Part 2: Notification Integration Reference Point: Information Service (Release 1999), 3G TS 32.106-2, June, 2000.

[7]. 3GPP, Part 3: Notification IRP: CORBA Solution Set (Release 1999), 3G TS 32.106-3, June, 2000.

[8]. 3GPP, Part 4: Notification Integration Reference Point: CMIP Solution Set (Release 1999), 3G TS 32.106-4, June, 2000.

[9]. 3GPP, Part 5: Basic Configuration Management IRP: Information Model (Release 1999), 3G TS 32.106-5, May, 2000.

[10]. 3GPP, Part 6: Basic Configuration Management IRP: Information Service CORBA Solution Set (Release 1999), 3G TS 32.106-6, May, 2000.

[11]. 3GPP, Part 7: Basic Configuration Management IRP: CMIP Solution Set (Release 1999), 3G TS 32.106-7, May, 2000.

[12]. 3GPP, Part 8: Name Convention For Managed Objects (Release 1999), 3G TS 32.106-8, June, 2000.

[13]. 3GPP, Suggested Updates To TS 32.106-2 Notification IRP: Information Service, S5C0000x1, July, 2000.

[14]. 3GPP, Suggested Updates To TS 32.106-3 Notification IRP CORBA Solution Set, S5C0000x2, July, 2000.

[15]. 3GPP, Suggested Updates To TS 32.106-5 Configuration Management IRP: Information Model, S5C0000x3, July, 2000.

[16]. 3GPP, Suggested Updates To TS 32.106-6 Configuration Management IRP CORBA Solution Set, S5C0000x4, July, 2000.

[17]. 3GPP, Suggested Updates To TS 32.111-1 Fault Management, S5F0000x1, July, 2000.

[18]. ITU-T, Q.821 – Stage 2 And Stage 3 Description For The Q3 Interface – Alarm Surveillance, Draft, February, 2000.

[19]. ITU-T, X.733 – Alarm Reporting Function, 1992.

[20]. ITU-T, X.734 – Event Report Management Function, 1993.
[21]. OMG, Notification Service, August, 1999.

[22]. OMG, Telecom Log Service Specification, Version 1.0, January, 2000.

[23]. OMG, Trading Object Service Specification, December, 1997.

2. PROPOSALS

This document proposes a number of suggested updates to TS 32.111-3 Alarm IRP CORBA Solution Set [3].

2.1 Filterable Body Fields

From clause 6 Table 9 of reference [3], correlatedNotifications, stateChangeDefinition and monitoredAttributes are in the Filterable Body Fields portion of the OMG Structured Event [21]. Since they are sets, they basically can’t be filtered using OMG Notification Service Extended Trader Constraint Language (TCL).

correlatedNotifications is defined as CorrelatedNotificationSetType (in [8]), which is a sequence of structures (containing a sequence).

stateChangeDefinition is defined as AttributeChangeSetType; which is a sequence of structures.

monitoredAttributes is defined as AttributesSetType, which is a sequence of structures (containing an Any).

The Extended TCL grammar defined in [21] (based from the grammar defined in [23]), allows sequence operations, but not set operations. Sequence operations are performed by using the “[“ and “]” operators (as an example, $a[0].name accesses the name attribute in the first element of the a sequence). Set operations can be performed on sequences of fixed length (as an example, to check to see if ‘b’ is in a sequence of fixed length 3, you could check “($a[0].name == ‘b’) or ($a[1].name == ‘b’) or ($a[2].name == ‘b’)”), but not on sequences of variable length.

Lucent Technologies recommends that the following note be added following Table 9 in clause 6 of reference [3]:

While correlatedNotifications, stateChangeDefinition and monitoredAttributes are contained in the Filterable Body Field, they are variable length sets, and as such, are typically not directly filterable using the OMG Notification Extended TCL grammar.

2.2 Notify Alarm List Rebuilt Comments

Reference [21] defines Type Name (i.e., Event Type) and Event Name (i.e., Extended Event Type) as follows:

The type_name field contains a string which identifies the type of event contained within a given Structured Event. This name should be unique among all event types defined within a given vertical domain, which is identified by the domain_name field.
The event_name field contains a string which names a specific instance of Structured Event. This name is not interpreted by any component of the Notification Service, and thus the semantics associated with it can be defined by end-users of the service. This field can be used, for instance, to associate names with individual Structured Events which can be used to uniquely identify an instance of a particular type of Structured Event within a given installation of the Notification Service.

This means that the Extended Event Type (i.e., OMG Notification Service Event Name) is a subtype of the Event Type (i.e., OMG Notification Service Type Name). It is clear that “New Alarm”, “Changed Alarm”, “Ack State Changed” and “Cleared Alarm” are subtypes of Communications, Processing Error, Environmental, Quality Of Service and Equipment Alarms. As stated in clause 5.3, each of these notifications contains the same data contents.

The notificationHeader comments associated with the notifyAlarmListRebuilt notification in reference [3] clause 5.3 Table 6 state the following:

The managedObjectClass, systemDN shall be absent. The eventType shall contain a zero-length string.
The extendedEventType shall contain a string of extendedEventTypeValue.NOTIFY_FM_ALARM_LIST_REBUILT.

The managedObjectInstance shall carries the DN of the IRPAgent whose Alarm List has been rebuilt. Syntax and semantics of this string conform to the Managed Object string representation specified in [12].

See clause 6.4 for attributes related to notificationHeader. See Table 9 for qualifiers for the parameter-attributes.

The reason comments associated with the notifyAlarmListRebuilt notification in reference [3] clause 5.3 Table 6 state the following:

It is a string indicating the Alarm List rebuilt reason
The OMG Notification Service uses Domain Name and Type Name to uniquely define a notification. Neither of
these parameters should be empty. The notifyAlarmListRebuilt notification should be a unique notification.

For filtering and logging capabilities, the notifyAlarmListRebuilt notification needs to be associated with a defined managed object.

The method used for providing the reason attribute in the OMG Structured Event is not defined.

Lucent Technologies recommends the following replacement to the notificationHeader comments associated with the notifyAlarmListRebuilt notification in reference [3] clause 5.3 Table 6:

The managedObjectClass and managedObjectInstance shall contain the MO representing the IRPAgent defined in [10].

The systemDN shall carries the DN of the IRPAgent whose Alarm List has been rebuilt. Syntax and semantics of this string conform to the Managed Object string representation specified in [12].

The eventType shall contain ET_NOTIFY_FM_ALARM_LIST_REBUILT.
The extendedEventType shall contain an empty string.

See clause 6.4 for attributes related to notificationHeader. See Table 9 for qualifiers for the parameter-attributes.

Lucent Technologies recommends the following replacement to the reason comments associated with the notifyAlarmListRebuilt notification in reference [3] clause 5.3 Table 6:

One NV pair of filterable_body_fields.

Name of NV pair is a string, NotificationIRPConstDefs::NV_REASON.

Value of NV pair is a string indicating the Alarm List rebuilt reason.

Lucent Technologies recommends the following replacement to AlarmIRPConstDefs in reference [3] Annex A:

const string ET_COMMUNICATIONS_ALARM = "x1";

const string ET_PROCESSING_ERROR_ALARM = "x2";

const string ET_ENVIRONMENTAL_ALARM = "x3";

const string ET_QUALITY_OF_SERVICE_ALARM = "x4";

const string ET_EQUIPMENT_ALARM = "x5";

const string ET_NOTIFY_FM_ALARM_LIST_REBUILT = “x6”;

const string NOTIFY_FM_NEW_ALARM = "x1";

const string NOTIFY_FM_CHANGED_ALARM = "x2";

const string NOTIFY_FM_ACK_STATE_CHANGED = "x3";

const string NOTIFY_FM_CLEARED_ALARM = "x4";

Lucent Technologies recommends the following be removed from reference [7] clause 6 Table 13 for parameter Extended Event Type (also see reference [14]):

NOTIFY_FM_ALARM_LIST_REBUILT

Lucent Technologies recommends the following be added to reference [7] Appendix A NotificationIRPConstDefs (also see reference [14]):

const string NV_REASON = “w”;

Lucent Technologies recommends that the following be added to reference [2] Appendix A Table 14

Event Types
Explanation

Alarm List Rebuilt
An alarm of this type indicates that the Alarm List has been rebuilt.

Lucent Technologies recommends that Alarm List Rebuilt be deleted from reference [2] Appendix A Table 15.

2.3 Attribute Name Value

Reference [7] uses a different name representation than what is listed in reference [3] clause 6 Table 9. As an example, the name of NV pair for notificationId should be NotificationIRPConstDefs::NV_NOTIFICATION_ID instead of AttributeNameValue.notificationId.

Lucent Technologies recommends that reference [3] clause 6 Table 9 be updated to use the strings defined in reference [7] Appendix A.

2.4 Missing Alarm Acknowledge State Parameter

Lucent Technologies recommends the following be added to reference [3] after clause 5.2 Table 4:

The alarmAckState parameter is not required in the getAlarmList and getAlarmCount operations because the supplied filter may contain checks for the filterable_body_fields ackState.

2.5 Pragma Statement

CORBA IDL defines an IDL compiler pragma statement that may be used to define a unique prefix to the module identifiers when they are registered in the CORBA interface repository (a central directory of interface information used by CORBA ORBs).

Lucent Technologies recommends the following be added to reference [3] at the beginning of Annex A (following the #include statements) according to OMG style guidelines:

#pragma prefix “3gpp.org”
2.6 Attribute Value Set Type

Lucent Technologies recommends that AttributeChangeSetType be renamed AttributeValueChangeSetType to match type naming conventions used elsewhere.

2.7 Push Structured Events

Clause 4.1.2 of reference [7] states the following:

For efficiency, IRPAgent uses the following OMG Notification Service [2] defined interface to pack multiple notifications and push them to IRPManager using one method push_structured_events.

Clause 5.1 Table 1 of reference [3] uses the term push_structured_event instead of push_structured_events.

Lucent Technologies recommends that each occurrence of push_structured_event in clause 5.1 Table 1 and clause 7 of reference [3] be changed to push_structured_events.

2.8 Iterator Clarification

The get_alarm_list method specifies an iterator because the number of alarms that can be returned could be larger than can be returned in a single CORBA method. As part of supporting the iterator, the IRPAgent must maintain the complete list of alarms at the moment of the get_alarm_list invocation. (Since the alarm list may change quite often, the iterator must fix the alarm list to one moment in time.) This saved list of alarms may get to be quite large.

Due to an IRPManager failure, it is possible that the IRPManager may loose the object reference to the iterator. The end result is that the IRPAgent would still maintain the old iterator and the saved alarm list (at least, save how much of the alarm list that has not already been sent).

The IRPAgent should be able to destroy iterators and old maintained alarm lists when the unsubscribe operation is performed for the IRPManager Manager Reference [7]. However, the getAlarmList operation does not require that an IRPManager subscribe to receive alarm notifications (or specify a Manager Reference).

The end result is that the IRPAgent does not have a way of cleaning up old iterators and saved alarm lists. As a result of this, Lucent Technologies recommends that the following be added after clause 5.2 Table 4 of reference [3]:

The get_alarm_list method uses an iterator to iterate through the list of alarms. It is the IRPAgent’s responsibility to fix the alarms returned through the iterator at one moment in time. It is the IRPManager’s responsibility to maintain the iterator reference and to eventually destroy the iterator.

2.9 Get Alarm IRP Version Exceptions

Annex A of reference [3] states the following:

CommonIRPConstDefs::VersionNumberSet get_alarm_IRP_version ()

raises (GetAlarmIRPVersion, InvalidParameter);

Since no parameter is provided, the InvalidParameter exception should not be included.

Lucent Technologies recommends that Annex A of reference [3] be changed to the following:

CommonIRPConstDefs::VersionNumberSet get_alarm_IRP_version ()

raises (GetAlarmIRPVersion);

Similarly, clause 5.2 Table 6 status parameter of reference [3] states the following:

status
Exceptions:

GetAlarmIRPVersion, InvalidParameter
M

Lucent Technologies recommends that clause 5.2 Table 6 status parameter of reference [3] be changed to the following:

status
Exceptions:

GetAlarmIRPVersion
M

3. DISCUSSION ITEMS

3.1 Threshold Information

Clause 5.4.6 Table 13 of reference [2] states the following in Threshold Info comments:

It indicates if the threshold crossed was in the up or down direction. See definition in [19] clause 8.1.2.7.

Clause 8.1.2.7 of reference [19] states the following:

This parameter shall be present when the alarm is a result of crossing a threshold. It consists of four subparameters

· triggered threshold: The identifier of the threshold attribute that caused the notification;

· threshold level: In the case of a gauge the threshold level specifies a pair of threshold values, the first being the value of the crossed threshold and the second, its corresponding hysteresis; in the case of a counter the threshold level specifies only the threshold value.

· observed value: The value of the gauge or counter which crossed the threshold. This may be different from the threshold value if, for example, the gauge may only take on discrete values.

· arm time: For a gauge threshold, the time at which the threshold was last re-armed, namely the time after the previous threshold crossing at which the hysteresis value of the threshold was exceeded thus again permitting generation of notifications when the threshold is crossed. For a counter threshold, the later of the time at which the threshold offset was last applied, or the time at which the counter was last initialized (for resettable counters).
Annex A of reference [3] defines Threshold Information as the following:

enum ThresholdIndicationType {Up, Down};

Clearly, the IDL doesn’t reflect the definition of Threshold Information from ITU-T X.733. Either the reference in clause 5.4.6 Table 13 of reference [2] needs to be deleted or the IDL needs to be changed to reflect the full Threshold Information subparameters.

Lucent Technologies leaves it to the discretion of the committee to decide which option to choose.

3.2 Miscellaneous Comments

1. The procedures for using iterators needs to be the same between the Alarm IRP [3] and the Configuration Management IRP [10]. Currently, the Alarm IRP uses an interface with a next_alarmInformations method and the Configuration Management IRP uses a valuetype with a get_next_elements method

NOTICE
This document has been prepared by Lucent Technologies Inc. (“Lucent”) to assist ATIS subcommittee T1M1. It is proposed to the subcommittee as a basis for discussion and is not to be construed as a binding proposal on Lucent. Lucent specifically reserves the right to amend or modify the material contained herein and nothing herein shall be construed as conferring or offering licenses or rights with respect to any intellectual property of Lucent.

5
2

