24

3GPP TSG-SA5 Meeting #126
S5-195851
Bruges, BL 19-23 August 2019

 Revision of S5-195537
Source:

Ericsson

Title:
YANG style guide additions
Document for:
Approval

Agenda Item:
6.4.4
1
Decision/action requested

The group is asked to approve this contribution.
2
References

[1]

pCR S5-194437: " Rel-16 pCR 32.160 v120 YANG style guide"
3
Rationale

This contribution asks to extend YANG style guide and the mapping of stage 2 to stage 3 Yang of [1].

The Yang guidelines were agreed on the Sapporo meeting as documented in pCR 194437. This pCR extends the pCR 194437.

JSON guidelines will be handled in separate pCRs when appropriate.

The document moves the chapter 6.1 to move the unchanged content 6.2 chapter.

4
Detailed proposal

First Change
6.2
Stage 3 YANG style and example

The next chapter defines general rules for YANG modules. The following chapters specify how specific Stage two constructs should be mapped to YANG. Each chapter may include the following sections:

· The chapter of Reference [3] for which mapping is specified.

· An example model that will be mapped.

· Mapping rules.

· An example of the resulting YANG statements.
6.2.1
General Modeling Rules

6.2.1.1
Modeling Resources
Resources shall be modeled as YANG data nodes (leaf, leaf-list, container, list) instead of Classes and Attributes. Specific operations shall be modelled as YANG actions.
6.2.1.2
Unique YANG Module names

The names of 3GPP YANG modules shall start with the “_3gpp” prefix.

6.2.1.3
Unique YANG Namespace

The namespace of a 3GPP YANG module’s namespace shall have the following form:

 urn:3gpp:saX:<module-name>

saX denotes the group creating the relevant YANG model e.g. “sa5”

Reference: https://tools.ietf.org/html/rfc8407#section-4.9
6.2.1.4
Unique YANG Module Prefixes

3GPP YANG Modules shall use prefixes ending with "3gpp".

e.g. prefix nrmtype -> prefix nrmtype3gpp

Note:
To ensure that the prefix (in the yang prefix statement) is globally unique a prefix-suffix shall be used. While global uniqueness of prefixes is not mandatory most SW implementations have problems and need workarounds in case conflicting prefixes are found.

6.2.1.5
Use YANG Version 1.1

YANG version 1.1 shall be used.
6.2.1.6
YANG Constructs Not to be Used – Not needed

The following YANG constructs shall not be used in 3GPP YANG models as they are not available in the Stage 2 modeling terminology, thus not needed.

· Anydata

· AnyXml

· Rpc – use actions instead

· Deviation
6.2.1.7
Reuse Standards from Other Standard Organizations

Whenever there is a suitable existing standard from another standard organization or industry forum its usage should be preferred before defining a 3GPP model covering the same scope. E.g. ietf-types, ietf-inet-types

3GPP models shall link to and reference YANG models from other standard organizations/industry forum whenever applicable.

6.2.1.8
Vendor Specific Model Changes

Vendors shall modify 3GPP YANG modules neither by changing the original file nor by adding vendor specific YANG modules that contain deviations targeting parts of a 3GPP module. Only the following exceptions are allowed from the above rule:

· Deviations that maintain backwards compatibility as defined in RFC 7950 are allowed

· Marking as “not supported” any model element that is optional to support as defined by the 3GPP stage 2 supportQualifier is allowed.

Vendors extensions shall be done in separate YANG modules; they do not impact compliance.
6.2.1.9
Model Correctness, checking

3GPP YANG modules shall be checked with the pyang tool. See: PYANG an extensible YANG validator and converter
The “pyang –-strict” command shall be run with no errors returned. pyang has other options e.g. “—lint” that can be useful, but they are not mandated by 3GPP.
Next Change
6.2.2
InformationObjectClass – abstract
6.2.2.1
Introduction

Reference [3] clause 5.4.2
6.2.2.2
YANG mapping

An abstract class shall be mapped to a “grouping”. The name of the “grouping” will be <IocName>Grp. The “grouping” shall contain all attributes of the class. The naming attribute shall only be contained as a YANG comment, because all other attributes will be contained in a YANG “non-presence container” named “attributes”, however the “key leaf” must
be contained immediately by the “list”, it cannot be inside a child “container”.

// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is either not included or

 // included only as a comment not as a real definition

 // leaf id {

 // type string;

 // description “naming attribute of the IOC”;

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}
}

6.2.3
Naming attribute

6.2.3.1
Introduction

Reference [3] clause 3.1
6.2.3.2
Yang mapping
The “leaf” that is mapped from the naming attribute shall be used in the YANG “key” statement. This is usually called “id” as defined in the Top_ class in TS 28.620 Umbrella Information Model (UIM), clause 4.3.8.
6.2.4
InformationObjectClass – concrete

6.2.4.1
Introduction

Reference [3] clause 5.3.2
6.2.4.2
YANG mapping

A concrete class shall be mapped to a “list” that “uses” a “grouping”. The “grouping” shall be named <IocName>Grp. It shall contain all attributes of the class in the same manner as the “grouping” for an abstract class. The “list” shall be named <IocName>. The NamingAttribute shall be used as a key. All other attributes shall be placed inside a “container” named “attributes”. The “container attributes” will facilitate asking for all attributes of an object instance with a simple subtree or XPath filter.

//concrete class

grouping MyConcreteClassGrp {
 // contains all attributes in the same manner as

 // a grouping for abstract class

}

list MyConcreteClass {

 key namingAttribute; // usually named ‘id’

 leaf namingAttribute {…}

 container attributes {
 uses MyConcreteClassGrp ;
 }
 //YANG lists representing contained classes

}

6.2.5
Generalization relationship - inheritance from another class

6.2.5.1
Introduction

Reference [3] clause 5.2.5
Example model: Class MyManagedFunction inherits from class ManagedFunction.
6.2.5.2
YANG mapping
Generalization/Inheritance relationships are mapped to the inheriting class using the “grouping” of the inherited class in its own “grouping”.
// Inheritance
grouping ManagedFunctionGrp {

 // Attributes of ManagedFunction

}

grouping MyManagedFunctionGrp {

 uses ManagedFunctionGrp;

 //additional attributes

}

list MyManagedFunction {

 key id;

 leaf id {}

 container attributes {

 uses MyManagedFunctionGrp;
 }
}

6.2.6
Name containment
6.2.6.1
Introduction

Reference [3] clause 5.2.4 - Composite aggregation association relationship
Example model: The classes ManagedElement and MyClass are defined in YANG module TS1. According to the stage2 definition ManagedElement contains MyClass.Another YANG module (TS2) defines class GnodeB. According to the stage2 definition ManagedElement contains GnodeB.

6.2.6.2
YANG mapping

The containment of classes defined in the same YANG module is mapped as embedded “lists”.
Containment of classes defined in different YANG modules is mapped using the “augment” statement.

// Class containment

module TS1 {
 grouping MyClassGrp {

 // subnetwork attributes

 }

 grouping ManagedElementGrp {

 // managedElement attributes

 }

 list ManagedElement {

 key id;
 leaf id {}

 attributes {
 use ManagedElementGrp;
 }
 list MyClass {

 key id;
 leaf id {}

 attributes {
 uses MyClassGrp;
 }
 }
 // place to insert/augment managedFunctions e.g. EnodeB
 }
}

module TS2 {
 import _TS1 { prefix ts1; };

 grouping GNodeBGrp {

 // GNodeB attributes

 }

 augment /ts1:ManagedElement {

 list GNodeB {

 key id;
 leaf id {}

 attributes {
 uses GNodeBGrp;
 }
 // lists representing child classes in the same module

 }

 }
}

6.2.7
Recursive containment - reference based solution

The NRM information object class stage 2 definition contains one case where a class contains itself (so called recursive containment): the It is the SubNetwork class.

The name containment that a class has with itself in the stage 2 definition shall be modeled using a pair of ”leaf-list” references between the instances of the class. The references shall be named “leaf-list parents {…}” and “leaf-list containedChildren {…}”. Note the 2 reference “leaf-lists” should be defined directly under the “list” defining the class not in its “grouping” because the “path” statements are specific to each class, so the “leaf-lists” must not be inherited.

 list SubNetwork {

 key id;

 leaf id {..}

 container attributes {

 uses SubNetworkGrp;

 leaf-list parents {

 description "Reference to all containg SubNetwork instances

 in strict order from the root subnetwork down to the immediate

 parent subnetwork.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetworks.

 This reference MUST NOT be present for the top level SubNetwork and

 MUST be present for other SubNetworks.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 leaf-list containedChildren{

 description "Reference to all directly contained SubNetwork instances.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetwork.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 }

The following instance data example shows how the reference values specify the SubNetwork hierarchy:

Top level: subnet=root

 | \ +----------------+

 | +--------+ |

 | | |

Level 1: subnet=A1 subnet=B1 subnet=C1

 | \ +----------------+

 | +--------+ |

 | | |

Level 2: subnet=A2 subnet=B2 subnet=C2

 | \ +----------------+

 | +--------+ |

 | | |

Level 3: subnet=A3 subnet=B3 subnet=C3

Top level: id=root parents=null containedChildren= A1,B1,C1

Level 1: id=A1,(B1,C1) parents=root containedChildren = A2,B2,C2

Level 2: id=A2,(B2,C2) parents=root,A1 containedChildren = A3,B3,C3

Level 3: id=A3,(B3,C3) parents=root,A1,A2 containedChildren = A4,B4

When reading/writing self-contained classes only the last such class instance needs to be specified in the Netconf request as that uniquely identifies the exact instance. The following Netconf request could be used to retrieve all attributes of SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <!-- SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22 -->

 <filter type="subtree"/>

 <SubNetwork>

 <id>B2</id>

 <NRFrequency>

 <id>22</>

 <attributes/>

 </NRFrequency>

 </SubNetwork>

 </get-config>

 </rpc>

There is no need to specify the ancestors SubNetwork=root, SubNetwork=A1 as any subNetwork can be addressed directly.

6.2.8
Multi-root management tree

YANG supports multi-rooted managed models natively; the standardized IETF models have many root “list”/”container” nodes.

6.2.9
Alternative containment

Stage 2 models allows multiple different name-containment hierarchies. A particular name-containment hierarchy implemented by a specific vendor/product can be discovered in run-time, by reading the content of the ietf-yang-library and the ietf-yang-schema mount modules.

YANG provides multiple possible methods to model alternative containment hierarchies.

In cases where the number of YANG modules affected by the alternative containment is small, the use of a feature-controlled augmentation is proposed.

 augment "/SubNetwork" {

 if-feature ExternalsUnderSubNetwork ;

 uses ExternalNRCellCUWrapper;

 }

In cases where the number of YANG modules affected by the alternative containment is large (cca. more than 8), the following mapping is proposed (using the optional containment of SubNetwork and ManagedElement as an example):

- If the ManagedElement is a root class, no further documentation or implementation steps are required.

- If the ManagedElement shall be contained under Subnetwork it shall be mounted under the SubNetwork “list” using the YANG schema mount mechanism as described in RFC8528.[x1]

Mounted schemas will appear in Netconf, the CLI and management GUIs as if they were part of a common containment hierarchy.

Yang Schema Mount provides vendor the flexibility of arranging the containment tree in accordance of operator intention, and provides a way for a consumer to discover the actual mount and containment hierarchy in run-time.
Next Change
6.2.10
Attribute – simple, single value

6.2.10.1
Introduction

Reference [TS 32.156 Model repertoire] clause 5.2.1

The multiplicity of the attribute is either 0..1 or 1..1. Whether zero is allowed is defined by the isNullable=true/false property.

6.2.10.2
YANG Mapping
Non-structured single value attributes are mapped to a “leaf”.

// attribute single value, nonstructured

leaf myAttribute { type xxx; }
6.2.11
Attribute – simple, multivalue

6.2.11.1
Introduction

Reference [TS 32.156 Model repertoire] clause 5.2.1
The multiplicity of the attribute may be greater than 1.
6.2.11.2
YANG mapping
If the attribute is isUnique=true or isWritable=false it is mapped to a leaf-list.

If the attribute is isUnique=false and isWritable=true map it to a list with an additional dummy index. The name of the list shall be <attributeName>Wrap. The name of the dummyIndex shall be idx and shall have a type uint32 or uint64.

// Attribute multivalue, non-structured
// attribute is unique or read-only

leaf-list mySimpleMultivalueAttribute1 { type xxx; }
// attribute is non-unique and read-write

list mySimpleMultivalueAttribute2Wrap {
 key idx;

 leaf idx { type uint32 ; }
 leaf mySimpleMultivalueAttribute2 {type xxx;}
6.2.12
Attribute, structured
Reference [TS 32.156 Model repertoire] clause 5.2.1

6.2.12.1
YANG Mapping

Structured attributes are mapped to a grouping containing member parts; and a list using the grouping. (Structured attributes that are not used in multiple places may define the member parts directly in the list.)

// attribute, structured, isUnique=true OR isWritable=false

grouping pLMNIdGrp {

 description “PLMN-Id= Mobile Country Codes (MCC) &

 Mobile Network Codes(MNC)”;

 leaf MCC {

 type t_mcc;

}

 leaf MNC {

 type t_mnc;

}

}

list pLMNIdList {

 key "MCC MNC";

 config true;

 description "a list of PLMN-Ids";

 ordered-by user;

 uses pLMNIdGrp;

}
// attribute, structured, isUnique=true, isWritable=true

list pLMNIdList {

 key "idx";

 leaf idx { type uint32 ; };

 leaf member1 { type xxx ; }

 leaf member2 { type yyy ; }

}

If the attribute is isUnique=true in YANG all member parts should be specified as keys. If it is known that one or a subset of members are unique without considering the rest of the members, it is allowed to specify only the unique subset as keys.

If the attribute is isUnique=false and isWritable=false, the YANG “key” statement is not used. YANG allows defining ReadOnly lists without a key.

If the attribute is isUnique=false and isWritable=true an additional dummy index shall be defined in YANG. The name of the dummyIndex shall be idx and shall have a type uint32 or uint64.
6.2.13
defaultValue
6.2.13.1
Introduction

Reference [TS 32.156 Model repertoire] clause 5.2.1.1

The 3GPP/UML defaultValue has a different meaning then the YANG “default” statement.

The 3GPP defaultValue could be considered an initialValue as it has effect only at object creation. If the attribute is later deleted the 3GPP defaultValue has no effect. In YANG the “default” is always used whenever a leaf/leaf-list does not have a value: both at creation of the parent object and if the leaf/leaf-list is deleted (set to null in 3GPP operation).

Note:
The 3GPP defaultValue is not used for structured attributes. In YANG there is no default value for containers or list entries.
6.2.13.2
YANG mapping
For a simple isNullable=false attribute use the YANG “default” statement.

For a simple isNullable=true attribute map the 3GPP defaultValue to the 3GPP YANG “yext3gpp:initial-value”, extension. (Defined in the _3gpp-yang-extensions module). The initial-value property should also be included in the data node’s “description” statement.

Note:
For simple attributes that are isUnique=false and isWriteable=true that are mapped to YANG lists neither the YANG default nor the “yext3gpp:initial-value”, statement can be used. The 3GPP default shall be documented only in the description text.

Note:
extensions are not understood or enforced by standard YANG tools, they need extra SW implementation.

6.2.14
multiplicity and cardinality

Reference [TS 32.156 Model repertoire] clause 5.2.1.1

Reference [TS 32.156 Model repertoire] clause 5.2.8

6.2.14.1
YANG mapping

Multiplicity of attributes mapped to a list or leaf-list shall be mapped to the “min-elements” and “max-elements” YANG statements.
Cardinality for containment of classes shall be mapped to “min-elements” and “max-elements” on the list representing the child objects.

Cardinality for reference relationships shall be mapped to “min-elements” and “max-elements” on the reference attributes representing the reference.
6.2.15
isNullable

Reference [TS 32.156 Model repertoire] clause 5.2.1.1

6.2.15.1
YANG mapping

isNullable=true for attributes that are mapped to a leaf shall be mapped to a “mandatory false;” YANG statement.

isNullable=false for attributes that are mapped to a leaf shall be mapped to a “mandatory true;” YANG statement.

isNullable=true for an attribute that is mapped to a list or leaf-lists shall be mapped to “min-elements X; (where X is greater than zero.)

isNullable=true for an attribute that is mapped to a list or leaf-lists shall be mapped to “min-elements 0;”. However if the minimum multiplicity of the attribute is greater than zero then an additional “must” statement shall be added forbidding any multiplicity values between 1 and the minimum multiplicity (but allowing zero and the minimum).

Note:
YANG/Netconf does not differentiate between a non-existent (NULL) sequence and a sequence with zero elements. However this distinction would be very confusing for the operator, so better not use it.

6.2.16
dataType

Reference [TS 32.156 Model repertoire] clause 5.3.4
Reference [TS 32.156 Model repertoire] clause 5.4.3
6.2.16.1
YANG mapping

Mapping for predefined datatypes shall be the following:

· integer -> One of the 8 YANG integer types

· string - > string

· Boolean -> Boolean
3GPP user-defined datatypes shall be mapped to the YANG “typedef” statement.
6.2.17
enumeration

Reference [TS 32.156 Model repertoire] clause 5.3.5
6.2.17.1
YANG mapping

The 3GPP enumeration datatype shall be mapped to the YANG “enumeration” YANG type.
6.2.18
choice

Reference [TS 32.156 Model repertoire] clause 5.3.6
6.2.18.1
YANG mapping

The 3GPP choice stereotype shall be mapped to a Yang “choice” statement.
End of Change
3GPP

