
- 1 -

Y.3172_(Y.IMT2020-ML-Arch)

Draft Recommendation ITU-T Y.3172 (formerly Y.IMT2020-ML-Arch)

Architectural framework for machine learning in future networks including

IMT-2020

Summary

This document specifies an architectural framework for machine learning (ML) in future networks

including IMT-2020. A set of architectural requirements and specific architectural components

needed to satisfy these requirements are presented. These components include, but are not limited to,

ML pipeline as well as ML management and orchestration functionalities. The integration of such

components into future networks including IMT-2020 and guidelines for applying this architectural

framework in a variety of technology-specific underlying networks are also described.

Keywords

architectural framework, IMT-2020, high-level architecture, intent, machine learning, ML,

orchestrator, overlay, pipeline, requirements, sandbox, training, underlay

- 2 -

Y.3172_(Y.IMT2020-ML-Arch)

Table of Contents

1 Scope .. 3

2 References .. 3

3 Definitions .. 3

3.1 Terms defined elsewhere .. 3

3.2 Terms defined in this Recommendation .. 3

4 Abbreviations and acronyms .. 4

5 Conventions .. 5

6 Introduction .. 6

7 High-level architectural requirements .. 7

7.1 Enablers for correlation ... 7

7.2 Enablers for deployment ... 9

7.3 Interface-related .. 11

7.4 Declarative specification ... 12

7.5 Management of ML functionalities ... 14

8 Framework of the high-level architecture .. 16

8.1 High-level architectural components ... 16

8.2 High-level architecture .. 18

8.3 General guidelines for realization of the high-level architecture... 21

9. Security considerations .. 21

Appendix I.. 22

Appendix II .. 24

Bibliography... 26

- 3 -

Y.3172_(Y.IMT2020-ML-Arch)

Draft Recommendation ITU-T Y.IMT2020-ML-Arch

Architectural framework for machine learning in future networks including

IMT-2020

1 Scope

This Recommendation specifies an architectural framework for machine learning in future networks

including IMT-2020.

A set of architectural requirements is presented, which in turn leads to specific architectural

components needed to satisfy these requirements. This Recommendation also describes an

architectural framework for integration of such components into future networks including IMT-

2020 and guidelines for applying this architectural framework in a variety of technology-specific

underlying networks.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.3111] ITU-T Recommendation Y.3111 (2017), “IMT-2020 network management and

orchestration framework”

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 Network function [b-ITU-T Y.3100]: In the context of IMT-2020, a processing function in

a network.

NOTE 1 – Network functions include but are not limited to network node functionalities,

e.g., session management, mobility management and transport functions, whose functional

behaviour and interfaces are defined.

NOTE 2 – Network functions can be implemented on a dedicated hardware or as virtualized

software functions.

NOTE 3 – Network functions are not regarded as resources, but rather any network

functions can be instantiated using the resources.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 machine learning (ML): processes that enable computational systems to understand data

and gain knowledge from it without necessarily being explicitly programmed.

- 4 -

Y.3172_(Y.IMT2020-ML-Arch)

NOTE 1 – Definition adapted from [b-ETSI GR ENI 004].

NOTE 2 – Supervised machine learning and unsupervised machine learning are two

examples of machine learning types.

3.2.2 machine learning function orchestrator (MLFO): a logical node with functionalities that

manage and orchestrate the nodes in a machine learning pipeline.

3.2.3 machine learning model: model created by applying machine learning techniques to data to

learn from.

NOTE 1 – A machine learning model is used to generate predictions (e.g. regression,

classification, clustering) on new (untrained) data.

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the

form of a software (e.g. virtual machine, container) or hardware component (e.g. IoT device).

NOTE 3 – Machine learning techniques include learning algorithms (e.g. learning the

function that maps input data attributes to output data).

3.2.4 machine learning overlay: a loosely coupled deployment model of machine learning

functionalities whose integration and management with network functions, are standardised.

NOTE – A machine learning overlay aims to minimise interdependencies between machine

learning functionalities and network functions using standard interfaces, allowing for

parallel evolution of functionalities of the two.

3.2.5 machine learning pipeline: a set of logical nodes, each with specific functionalities, that

can be combined to form a machine learning application in a telecommunication network.

NOTE – The nodes of a machine learning pipeline are entities that are managed in a

standard manner and can be hosted in a variety of network functions [b-ITU-T Y.3100].

3.2.6 machine learning sandbox: an environment in which machine learning models can be

trained, tested and their effects on the network evaluated.

 NOTE – A machine learning sandbox is designed to prevent a machine learning application

from affecting the network, or to restrict the usage of certain machine learning

functionalities.

3.2.7 machine learning underlay network: a telecommunication network and its related network

functions which interfaces with corresponding machine learning overlays.

NOTE – An IMT-2020 network is an example of machine learning underlay network.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AF Application Function

AN Access Network

API Application Programming Interface

AR/VR Augmented Reality/Virtual Reality

C Collector (in ML pipeline)

CN Core Network

D Distributor (in ML pipeline)

EMS Element Management System

FMC Fixed Mobile Convergence

- 5 -

Y.3172_(Y.IMT2020-ML-Arch)

GPU Graphic Processor Unit

IoT Internet of Things

KPI Key Performance Indicator

M Model (in ML pipeline)

mIoT massive Internet of Things

MEC Multi-access Edge Computing

ML Machine Learning

MLFO Machine Learning Function Orchestrator

MPP Mobility Pattern Prediction

MnS Management Service

NF Network Function

NOP Network Operator

OAM Operations, Administration and Maintenance

P Policy (in ML pipeline)

PP Pre-Processor (in ML pipeline)

QoS Quality of Service

RCA Root Cause Analysis

RRC Radio Resource Control

SBA Service-Based Architecture

SMF Session Management Function

SON Self-Optimizing Network

SRC Source

UE User Equipment

UPF User Plane Function

V2X Vehicle-to-everything

VoLTE Voice over Long-Term Evolution

5 Conventions

In this Recommendation, requirements are classified as follows:

The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted if conformance to this Recommendation is to be

claimed.

The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim conformance.

The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option and the feature can be optionally

enabled by the network operator/service provider. Rather, it means the vendor may

optionally provide the feature and still claim conformance with the specification.

In the body of this Recommendation and its annexes, the words shall, shall not, should, and

- 6 -

Y.3172_(Y.IMT2020-ML-Arch)

may sometimes appear, in which case they are to be interpreted, respectively, as is required

to, is prohibited from, is recommended, and can optionally. The appearance of such phrases

or keywords in an appendix or in material explicitly marked as informative is to be

interpreted as having no normative intent.

ML pipeline – In this Recommendation, when the symbol shown in Figure 1 is used, this denotes a

subset (including proper subset) of nodes in an ML pipeline. When this symbol is used in a figure,

the symbol stands for the subset of an ML pipeline’s nodes not explicitly shown in that figure.

Figure 1 - Symbol used to denote a subset of nodes in an ML pipeline

Service egress and ingress points – In this Recommendation, a node and its service egress and

ingress points are denoted by the symbol in Figure 2. The service egress point is shown with a green

rectangle on top of the node, while the service ingress point corresponds to the red rectangle on top

of the node.

Figure 2 - Symbol used to denote a node with its service egress and ingress points

6 Introduction

Machine learning (ML) provides a way to teach computational systems to gain knowledge from data

without necessarily being explicitly programmed in order to realize complicated tasks such as detection

of characteristics or prediction of behaviours. As ML becomes an important technical trend in the

industry, network operators and other stakeholders are searching for cost-effective ways to

incorporate ML into the future networks including IMT-2020.

While the benefits from such an integration have been discussed under many use cases (e.g.,
troubleshooting of network problems, network traffic prediction, traffic optimization adjustment,

network security auditing [b-ITU-T Y.3650] [b-ITU-T Y.3170]), there are many challenges to such an

integration. Some of the important challenges are:

A. Heterogeneous nature of ML functionalities and unique characteristics of future

communication technologies impose a varied set of requirements for integration.

B. Roadmaps for evolution of these ML functionalities and communication networks are not

aligned.

C. Cost of integration, in terms of architecture impacts, is an important consideration.

D. Disparate management mechanisms for ML functionalities and network functions [b-ITU-T

Y.3100] will disrupt the operations management of communication networks.

An architectural framework for integration of ML with future networks including IMT-2020 is

provided to address these challenges.

Building on high-level architectural requirements, such a framework at first provides a common

vocabulary and nomenclature for ML functionalities and their relationships with the communication

networks. The framework addresses the reference points for future networks including IMT- 2020

which enable loosely coupled integration with ML functionalities. Management mechanisms for

ML are also described in the framework considering the existing management principles which

have been identified in IMT-2020 networks.

- 7 -

Y.3172_(Y.IMT2020-ML-Arch)

The framework enables a standard method of integrating ML functionalities in future networks

including IMT-2020.

7 High-level architectural requirements

This clause provides high-level requirements for the design of the high-level architecture

framework in clause 8.

These high-level architectural requirements are classified as follows:

● Enablers for correlation of data across levels and heterogenous technologies. This set of

requirements addresses the challenge A mentioned in clause 6 and the requirements which

fall into this set are provided in clause 7.1.

NOTE – Levels may correspond to different parts of the network where the reference points

between these parts are defined in the relevant network architecture specifications. For

example, [b-ITU-T Y.3104] defines the reference point RP-an between Access Network (AN)

and Core Network (CN), thus, AN and CN may correspond to different levels of an IMT-

2020 network.

● Enablers for deployment. This set of requirements addresses the challenge B mentioned in

clause 6 and the requirements which fall into this set are provided in clause 7.2.

● Requirements related to interfaces between the architectural components. This set of

requirements addresses the challenges B and C mentioned in clause 6 and the requirements

which fall into this set are provided in clause 7.3.

● Requirements related to declarative specifications used for specifying the ML applications.

This set of requirements addresses the challenges C and D mentioned in clause 6 and the

requirements which fall into this set are provided in clause 7.4.

● Requirements related to the management of the architectural components. This set of

requirements addresses the challenge D mentioned in clause 6 and the requirements which

fall into this set are provided in clause 7.5.

7.1 Enablers for correlation

Table 7-1 provides requirements regarding enablers for correlation of data across levels and

heterogeneous technologies.

Table 7.1 – High-level requirements – Enablers for correlation

REQ-ML-COR-001
The ML architecture is recommended to support correlation of data

coming from multiple sources.

Description

In future networks, sources of data may be heterogeneous, integrated with

different network functions (NFs), and may report different formats of

data. These varied "perspectives" can provide rich insights upon

correlated analysis. Architectural components to enable the ML

functionalities to collect and correlate data from these varied sources in

the network are needed.

Notes

NOTE 1 – As an example, the analysis of data from user equipment (UE),

AN, CN and application function (AF) is needed to predict potential

issues related to quality of service (QoS) in end-to-end user flows.

NOTE 2 – Other examples of such sources of data are self-optimizing

network (SON) functionalities that monitor and correlate network alarms

- 8 -

Y.3172_(Y.IMT2020-ML-Arch)

and key performance indicators (KPIs) [b-3GPP TS 28.554], and then

take relevant action to clear alarms or enhance network KPIs, or give

network design recommendations without human intervention.

REQ-ML-COR-002

a) The ML architecture is required to support multiple technologies of

future networks including IMT-2020 to achieve end-to-end user

experience.

b) The ML architecture is recommended to be interfaced with non-IMT-

2020 external functional entities to achieve end-to-end user

experience.

Description

Future networks will have multiple technologies coexisting side by side,

e.g., licensed and unlicensed wireless technologies, fixed mobile

convergence (FMC) technologies, legacy and future technologies. The

emergence of network slicing [ITU-T Y.3111] is one example in which

vertical technologies (networks customized to provide flexible solutions

for different market scenarios) and their integration into future networks

are important. The interfacing of ML architecture with such functional

entities will help in achieving KPIs as for example specified in [b-3GPP

TS 28.554].

Thus, it is important for the ML architecture to be capable of integration

with multiple underlying technologies and even support of application

functions.

Notes

NOTE 1 – Vehicle-to-everything (V2X) is an example of a vertical

application which may benefit from the support of network slicing.

NOTE 2 – Various communication network (e.g. 3G, 4G, 5G) technologies

could be considered as examples of underlying technologies.

Applications for hosting in-car entertainment, processing data from

drones, entertainment applications using augmented reality/virtual reality

(AR/VR) are examples of application functions.

NOTE 3 – Examples of network functions which are not directly managed

by the network operator (NOP) are sensors, power circuits and different

Internet of things (IoT) modules. In some use cases, the data from such

network functions are utilized to control and monitor both the network

functions deployed in the network as well as such external network

functional entities themselves. These data could also be then used in

various types of network parameter optimizations to achieve gains in

coverage, capacity and quality by the NOP.

REQ-ML-COR-003
The ML architecture is required to support distributed instantiation of

machine learning functionalities in multiple levels.

Description

Distributed instantiation helps in using data from different levels, to enrich

locally available data in a level, as needed. Thus, the ML functionalities

may be multi-level.

Independent instances of ML functionalities may be created in multiple

levels.

Notes

NOTE 1 – In some use cases, the source of data may be placed in AN and

pre-processed data are handled by CN [b-ITU-T Y.3102] where the ML

model is hosted.

- 9 -

Y.3172_(Y.IMT2020-ML-Arch)

NOTE 2 – ML functionalities may be used for performing mobile pattern

predictions (MPPs) or network slice [b-ITU-T Y.3100] configurations

using input from the network at multiple levels (from sources in AN or

CN).

7.2 Enablers for deployment

Table 7-2 provides requirements regarding enablers for deployment of ML functionalities.

Table 7-2 – High-level requirements – Enablers for deployment

REQ-ML-DEP-001

The ML architecture is recommended to define the points of interaction

between ML functions and technology-specific underlay network

functions, independently from functionalities of the machine learning

application.

Description

The specification of ML applications in future networks will be related to

the existing (or new) network services or network functions. Based on the

specification of the ML applications, placement and characteristics of the

ML functionalities are decided. The source of data and the target of ML

output are points of tight integration with the technology-specific underlay

NFs. Apart from this, ML functionalities may be generic and do not have

tight integration with technology-specific NFs. Well-defined reference

points between the ML functionalities and the technology-specific

underlay NFs are required.

Notes

NOTE 1 – ML output may be policies or configurations to be applied in

the network and target of ML output may be functions in the network for

applying ML output. Such application of ML output may be controlled by

network operator policies.

NOTE 2 – In some use cases, source of data and traffic classification

(based on ML output) may be placed in the user plane of the network, e.g.

user plane function (UPF) [b-ITU-T Y.3104]. These may be considered as

points of tight integration between the ML functionalities and the

underlying network (e.g. AN or CN). Other ML functionalities (e.g., the

ML model) do not have such interface dependencies on the underlying

networks.

REQ-ML-DEP-002
The ML architecture is required to support split or combined deployments

of ML functionalities across different underlay network functions.

Description

In future networks, management and orchestration functions [ITU-T

Y.3111] will optimize the location and the performance of NFs

accordingly.

To carry forward such benefits to ML applications, similar optimizations

should also be applied to ML functionalities. Moreover, the constraints

applicable to an ML functionality may be unique.

Notes

NOTE 1 – ML training may need a graphic processor unit (GPU) and may

need to be done in an isolated environment so that it does not affect other

functionalities of the network.

- 10 -

Y.3172_(Y.IMT2020-ML-Arch)

NOTE 2 – As an example, depending on the latency budget, data

availability and other considerations for ML applications, the ML

functionalities could have the source of data and the ML training hosted in

the CN or AN.

REQ-ML-DEP-003

The ML architecture is required to support flexible placement of ML

functionalities (in coordination with the management and orchestration

functions [b-ITU-T Y.3100] [b-ITU-T Y.3110]) in the underlying network

functions.

Description

The flexible placement ML functionalities could be based, among other

factors, on the specifications of ML applications.

The Management and Orchestration functions utilize both the

specifications of the ML applications and the conditions in the network to

implement this requirement.

Resource allocation for ML functionalities is required to consider various

constraints (e.g., resource constraints of the NFs, latency constraints

specific to the ML application, availability of data that is specific to the

ML application, data transformation capabilities, performance constraints,

training capabilities and model characteristics).

The ML architecture should provide the ability to place the ML

functionalities in a flexible manner in the network that is most optimal for

the performance of the ML applications and based on the constraints

defined in the declarative specifications of the ML applications.

The constraints for online training and prediction for real-time ML

applications which are captured in the specification form inputs to placing

the ML functionalities in the network that can provide optimal

performance for the use case.

Notes

NOTE 1 – If the ML model includes a neural network, then a placement

decision in a GPU-based system is desirable.

NOTE 2 – Based on the requirements of the ML applications, the ML

functionalities which provide latency sensitive short-term predictions may

be hosted closer to the edge. The placement may also be influenced by

considerations on data availability. This may be done in coordination with

the split of ML functionalities mentioned in REQ-ML-DEP-002.

NOTE 3 – In certain use cases, user plane data classification may be done

using ML models. Since user plane data classification is a latency-

sensitive application, the model may be hosted at the transport network,

whereas the training could be done at CN.

REQ-ML-DEP-004
The ML architecture is required to support plugging in and out new data

sources or configuration targets to a running ML environment.

Description

Certain advanced applications in future networks, e.g., massive Internet of

Things (mIoT), require handling of unstructured data from a huge number

of data sources that may be plug and play. One such use case is the

analysis of logged data for anomaly detection in networks.

Notes

NOTE 1 – Scaling of ML functionalities based on type and volume of

incoming data is an example of handling new data sources.

NOTE 2 - The configuration of ML functionalities in the network needs to

- 11 -

Y.3172_(Y.IMT2020-ML-Arch)

handle the plugging in and out of new data sources or configuration targets

based on metadata of data sources.

7.3 Interface-related

Table 7-3 provides interface-related requirements.

Table 7-3 – High-level requirements – Interface-related

REQ-ML-INT-001
The ML architecture is recommended to support an interface to transfer

trained models among ML functionalities of multiple levels.

Description

Training of models has certain specific needs, e.g., availability of certain

kinds of processors, availability of certain kinds of training data. Once the

training is done, the ML model has to be sent to the technology-specific

underlay network that is hosting the ML model. Model training can be

done separately from the live network. Thus, sending trained models

across multiple levels is an important requirement.

Notes

NOTE 1 – UE, access network functions (AN), core network (CN)

functions could be treated as examples of technology-specific underlying

network functions which could host the trained model.

NOTE 2 – CN and AN could be treated as examples of multiple levels.

NOTE 3 – Depending on the availability of data, learning may be done at

the CN or AN, and trained model (e.g. classifier) hosted by the transport

networks.

REQ-ML-INT-002
The ML architecture is required to support an interface to transfer data for

training or testing models among ML functionalities of multiple levels.

Description

Certain levels in which the data are available may not have the training

capabilities. In such cases, there may be a need to send data for training or

testing to levels where the capacity for such operations is available.

Notes

NOTE 1 – ANs may be considered as examples of resource-constrained

networks, whereas CNs may be considered as a level where capacity may

be available to scale.

NOTE 2 – Data pre-processing may be done at the transport network and

the pre-processed data is then sent to the model at the CN for training.

REQ-ML-INT-003

a) While defining the interface with underlying networks, the ML

architecture is recommended to utilize existing standard protocols

wherever possible, with required extensions wherever needed.

b) The ML architecture is recommended to support specific interfaces or

application programming interface (API) for interfacing with

technology-specific network functions, for sourcing data from such

NFs or for configuring such NFs.

c) The ML architecture is recommended to support logical interfaces

between ML functionalities which can be hosted in multiple levels,

and the realization of such logical interfaces be implemented

according to deployment scenarios.

Description Sources of data and target for ML output may need specific interfaces or

- 12 -

Y.3172_(Y.IMT2020-ML-Arch)

APIs with the underlay networks to extract data or apply configurations.

Some use cases may need a tight coupling at integration stage between the

source and target of ML functionalities, and the NFs. In certain cases, an

extension of such interfaces may be needed to achieve the ML

functionalities in the use case.

The ML functionalities may use interfaces provided by an underlying

network as a source of data or target of configurations. In that sense, these

network-specific APIs may act as realizations of an interface to the source

and target of ML functionalities.

Notes

NOTE 1 – With respect to item a above, certain interfaces may be realized

by reusing existing protocols (e.g., Radio Resource Control (RRC) [b-

ITU-T Y.3104], MEC [b-ETSI MEC 003], management service (MnS) [b-

3GPP TS 23.501]).

NOTE 2 – With respect to item b above, for example, a source running in

the UE may use specific APIs to extract data from a voice over long-term

evolution (VoLTE) client [b-GSMA IR.92].

NOTE 3 – With respect to item c above, for example, in the use case

where the source runs in the AN but needs measurements from the UE, the

AN needs to configure the UE for this measurement using RRC.

REQ-ML-INT-004
The ML architecture is recommended to support data sharing between ML

functionalities using distributed data sharing mechanisms.

Description
Cross-level sharing of data is needed to enable correlated ML decisions in

future networks.

Notes
NOTE - Concepts like data lakes are emerging in future clouds and can

also be exploited in network operators’ clouds.

7.4 Declarative specifications

Table 7-4 provides requirements regarding declarative specifications.

Table 7-4 – High-level requirements – Declarative specification

REQ-ML-SPEC-001

The ML architecture is required to support a standard method to represent

ML applications, which can be translated into ML functionalities in

technology-specific underlay network functions.

Description

Automation using declarative specification and corresponding translation

into configurations is a characteristic of future networks. Extending this

technique to ML, declarative specification of ML applications and

corresponding translation into configurations of ML functionalities need to

be supported.

Notes

Interpretation of the declarative specification allows configuration of ML

functionalities in the network by translating the specification into the

configuration that can be hosted by network functions.

REQ-ML-SPEC-002

a) The ML architecture is required to support ML applications to specify

the sources of data, repositories of ML models, targets for output from

ML models, and constraints on network resources.

b) The ML architecture is required to support the time constraints

- 13 -

Y.3172_(Y.IMT2020-ML-Arch)

requirements of ML applications.

Description

The separation between technology agnostic part of the ML application

and technology-specific deployment is captured in the design time of

future network services. Declarative specifications for the ML applications

achieve this separation.

Different ML applications have varied time constraints. These constraints

form an important input to the management and orchestration functions

while determining the placement, chaining and monitoring of the ML

functionalities.

Notes

NOTE 1 – With respect to item a) above, as an example, a description

written in a metalanguage may capture the requirements of a network

operator for an ML application. The management and orchestration

functions may translate it into the configuration that can be implemented

in the network.

NOTE 2 – With respect to item b) above, at the tightest scale, the

application of ML in beamforming, scheduling, link adaptation network

functionalities would have latency criteria of the order of microseconds,

whereas transport and core network functionalities have a few

milliseconds of latency criteria. The least demanding in terms of latency

are management level functionalities, e.g., anomaly detection and

coverage hole detection, that can afford minutes, hours or days of latency.

REQ-ML-SPEC-003
The ML architecture is required to support flexible split of ML

functionalities based on the specifications of ML applications.

Description

Specification of ML application is an important input for deployment of

ML in future networks including IMT-2020. But network capabilities can

change (hardware can be added or removed), NFs may be scheduled or

(re)configured dynamically by the management and orchestration

functions. These dynamic changes may necessitate a change in the split

and placement of the ML functionalities (e.g., a decision may be taken to

collocate certain functions of ML, based on changes in the link capacity,

or a decision may be taken to add a new source of data based on decisions

of the management and orchestration functions). Thus, a combination of

(a) inputs from specification, (b) the requirement of ML functions to be

capable of split and combined deployment and (c) coordination with the

underlying management and orchestration function, is needed.

Notes
NOTE – A new source of data may be instantiated based on scale out

decisions in the network.

REQ-ML-SPEC-004

The ML architecture is required to support the specifications of ML

applications by third parties to specify the sources of data, repositories of

ML models, targets for output from ML models, and constraints on

network resources.

- 14 -

Y.3172_(Y.IMT2020-ML-Arch)

Description

Third party [b-ITU-T Y.3100] service providers may offer innovative

services on top of future networks. This may include new ML algorithms.

Collaboration between third party providers and network operators may

bring new sources of data or aggregation capabilities. The declarative

process in the architecture should extend the capabilities to include third

parties, and they should be able to include these functionalities in the

specification so that end users can benefit from such innovative services

offered by third party providers.

Notes

NOTE 1 – In some use cases, ML models may be provided as third-party

applications.

NOTE 2 – A smartphone application which interfaces with the sensors on

the UE is an example of a third-party source of data.

NOTE 3 – A third-party voice over IP service provider wants to optimize

call quality over the network by running an ML application that configures

network parameters. Specification of such an ML application is an

example of a third-party specification.

7.5 Management of ML functionalities

Table 7-5 provides requirements regarding the management of ML functionalities.

Table 7-5 – High-level requirements – Management of ML functionalities

REQ-ML-MNG-001
The ML architecture is required to support ML model selection at the

setup time of the ML functionalities.

Description

Advances in machine learning suggest that in future networks there would

be ML models with varied characteristics (e.g., using a variety of

optimization techniques and weights) that are appropriate for different

problem spaces and data characteristics.

In future networks, new sources of data may get added dynamically. To

extend the ML applications to such new and heterogeneous sources of

data, ML model selection has to be done dynamically, based on the data

provided by the sources.

Notes

NOTE– Plug and play of new network functions (e.g. new UPF) into a

live network may be an example for dynamic on-boarding of new sources

of data.

REQ-ML-MNG-002
The ML architecture is required to support ML model training and model

updates while preventing impact on the network.

Description

ML model training has several considerations: use of specific hardware for

speed, availability of data, parameter optimizations, avoiding bias,

distribution of training, etc.

Moreover, in future networks, service disruptions should be avoided while

model training and updates are performed.

Notes

- 15 -

Y.3172_(Y.IMT2020-ML-Arch)

REQ-ML-MNG-003

The ML architecture is required to support capabilities to monitor the

network operations based on the effect of ML and to update the ML

models and/or policies without impacting the network.

Description

The effect of ML on the network needs to be monitored. Various KPIs are

measured constantly and the impact of machine learning on them as well

as on the ML functionalities themselves needs to be monitored and

corrected if needed, continuously. ML functionalities need to be trained

for future recognition and handling such corrected scenarios.

Notes

NOTE– Continuous improvement of the automated fault recovery process

workflows is an example of a process where such monitoring and update

is done in the network. The root cause analysis (RCA) from the fault

recovery process is provided for configuring the management and

orchestration functions, and also the effect produced by ML in the network

is evaluated and used to optimize the ML functionalities themselves.

REQ-ML-MNG-004
The ML architecture is required to support an orchestration functionality

to manage all the ML functionalities in the network.

Description

The performance of the ML functionalities in the network is monitored

and when the performance falls below a predefined threshold, the ML

functionalities are reconfigured to improve it.

The varied sources of data (e.g. CN, AN) imply that there could be various

training techniques including distributed training. Complex models may

be trained using varied data. The performance of such models can be

determined and compared in an isolated environment.

Based on such comparisons, network operators can then select the

appropriate ML functionalities (based on internal policies) for specific ML

applications.

Notes

NOTE 1 – Evaluation involves evaluation of network performance along

with performance of ML algorithms.

NOTE 2 – Reselection of ML model is an example of reconfiguration

done to improve the performance of the ML functionalities.

REQ-ML-MNG-005
The ML architecture is required to support flexible chaining of ML

functionalities including multi-level chaining.

Description

Flexible chaining of ML functionalities is required to be done based on the

hosting and positioning on different NFs and levels. This is to enable the

hybrid or distributed ML functionalities.

Chaining of ML functionalities may be used to build a complex ML

functionality.

Management and orchestration functions provide NOPs with capabilities

to rapidly design, develop and deploy network services in the technology-

specific underlay networks. Similarly, ML functionalities in the network

need mechanisms including flexible chaining to keep up with innovation

in the technology-specific underlay networks. As underlying network

services evolve and deploy rapidly, so do the ML functionalities on top of

them, using flexible chaining techniques. This requirement aims to give

the ML functionalities, the ability to adapt to dynamic service creation and

- 16 -

Y.3172_(Y.IMT2020-ML-Arch)

orchestration in the underlying networks.

Notes

8 Framework of the high-level architecture

The framework of the high-level architecture described in this clause supports the requirements

defined in clause 7.

This clause provides description of the high-level architectural components and the high-level

architecture itself, and provides guidelines for realisation of the high-level architecture on different

technology-specific underlay networks.

This approach to design the architecture provides an ability to analyse both ML solutions which are

agnostic to technology specific underlying networks and issues specific to integration of ML to such

underlay networks. An example of the realization of this architectural framework on technology-

specific underlay networks is provided in Appendix I.

8.1 High-level architectural components

This clause specifies the high-level architectural components which are essential parts of the

architectural framework. Integration of such components to a network architecture by interfacing

with the NFs, along with the placement of the ML functionalities in such a network, forms the

architecture framework.

Figure 3 – High-level architectural components

The high-level architectural components include the following:

1) machine learning pipeline.

- 17 -

Y.3172_(Y.IMT2020-ML-Arch)

As defined in clause 3, a machine learning pipeline is a set of logical nodes, each with

specific functionalities, that can be combined to form a machine learning application in a

telecommunication network.

NOTE 1 – Machine learning pipeline may be deployed on simulated or live ML underlay

networks.

The following describes the nodes of an ML pipeline.

• SRC (source): This node is the source of data that can be used as input to the ML pipeline.

NOTE 2 – Potential SRC nodes include user equipment (UE), session management

function (SMF) [b-ITU-T Y.3104] and application function (AF) [b-ITU-T Y.3104].

• C (collector): This node is responsible for collecting data from one or more SRC nodes.

NOTE 3 – A collector node may have the capability to configure SRC nodes. For

example, the radio resource control (RRC) protocol [b-3GPP TS 23.501] can be used to

configure user equipment (UE) acting as a SRC node. The collector node may use vendor

specific operations, administration and maintenance (OAM) protocols to configure SMF

acting as a SRC node. Such configurations may be used to control the nature of data, its

granularity and periodicity while it is generated from the SRC.

• PP (pre-processor): This node is responsible for cleaning data, aggregating data or

performing any other pre-processing needed for the data to be in a suitable form so that

the ML model can consume it.

• M (model): This is a machine learning model, in a form which is usable in a machine

learning pipeline.

NOTE 4 – Example is an ML algorithm implemented in software as a NF [b-ITU-T

Y.3104].

• P (policy): This node enables the application of policies to the output of the model node.

NOTE 5 – This node can be used, for example, to minimize impacts when the output of

machine learning is applied to a live ML underlay network. Specific rules can be put in

place by a network operator to safeguard the sanity of the network, e.g., major upgrades

may be done only at night time or when data traffic in the network is low.

• D (distributor): This node is responsible for identifying the SINK(s) and distributing the

output of the M node to the corresponding SINK nodes.

NOTE 6 – It may have the capability to configure SINK nodes. For example, RRC

protocol may be used to configure a UE acting as a SINK node.

• SINK: This node is the target of the ML output, on which it takes action.

NOTE 7 – For example, a UE acting as a SINK node may adjust the periodicity of

channel measurement based on ML output.

NOTE 8 - A “service egress point” of a node is a point where services exposed by the node

(producer role) can be accessed. A “service ingress point” of a node is a point from where

services from other nodes can be consumed (consumer role).

2) machine learning function orchestrator (MLFO).

As defined in clause 3, MLFO is a logical node with functionalities that manage and orchestrate

the nodes of ML pipelines based on ML Intent and/or dynamic network conditions.

NOTE 9 – MLFO selects and reselects the ML model based on, e.g. its performance.

NOTE 10 – The placement of the ML pipeline nodes, based on the corresponding network

capabilities and constraints of the ML application, is the responsibility of the MLFO.

NOTE 11 – MLFO also provides chaining functionality, i.e., connecting ML nodes together to

form an ML pipeline. For example, chaining can be used to connect an SRC node instantiated in

the access network with C and PP nodes instantiated in the core network. The chain itself is

declared in the ML application specification and its technology-specific implementation in the

- 18 -

Y.3172_(Y.IMT2020-ML-Arch)

network is done by the MLFO. The MLFO determines the chaining considering the constraints

(e.g., timing constraints for prediction).

NOTE 12 – Figure 4 includes ML Intent to emphasise its important role as input to MLFO. ML

Intent is a declarative description which is used to specify an ML application. ML Intent does not

specify any technology-specific network functions to be used in the ML application and provides

a basis for mapping ML applications to diverse technology-specific network functions. ML

Intent may use a meta-language specific for machine learning to define ML applications.

3) ML sandbox.

ML sandbox is an isolated domain which allows hosting of separate ML pipelines to train, test

and evaluate them before deploying them in a live network. For training or testing, ML sandbox

can use data generated from simulated ML underlay networks and/or live networks.

NOTE 13 – ML sandbox may benefit from ML techniques such as supervised machine learning

to train, test and evaluate ML models.

In addition to the above high-level architectural components, the following supporting

architectural aspects are to be noted:

o Service-based architecture (SBA) [b-ETSI TS 129 500] may be used to interface ML

functionalities with ML underlay networks. Similarly, for the ML pipeline in sandbox, SBA

may be used to interface the ML functionalities with the simulated ML underlay networks.

This provides a uniform reference point towards the ML overlay for NFs and the simulated

ML underlay networks, alike.

SBA may also be used between ML pipeline nodes themselves, and to manage the ML

functionalities by the MLFO.

o Data handling reference points are defined between the ML pipeline and the simulated or

live ML underlay networks. Using these reference points, the impacts to the ML underlay

networks are localised to the source of data and target of configurations (as a result of ML

pipeline execution).

NOTE 14 – Extensions of existing protocols may be used at the data handling reference

points to minimise the architectural impacts to the ML underlay networks.

NOTE 15 – Non-SBA protocols need to be used at the data handling reference points in case

the network functions in the ML underlay networks are not SBA-capable.

With reference to Figure 3, the arrows 2 and 3 show the paths to the ML pipeline for the data

generated from the simulated ML underlay networks and the ML underlay networks,

respectively. The arrows 1 and 4 show the paths from the ML pipeline for configuration of

the target based on ML output in the simulated ML underlay networks and the ML underlay

networks, respectively.

Appendix II provides the mapping of the architectural components and supporting architectural

aspects to the high-level requirements provided in clause 7.

8.2 High-level architecture

The high-level architecture shown in Figure 4 is derived from the high-level requirements specified

in clause 7 and builds upon the architectural components described in clause 8.1.

- 19 -

Y.3172_(Y.IMT2020-ML-Arch)

Figure 4 – High-level architecture

The reference points shown in Figure 4 are the following:

1, 2: Data handling reference points between simulated ML underlay networks and an ML

pipeline in ML sandbox subsystem.

3: Reference point between ML sandbox subsystem and ML pipeline subsystem.

4: Reference point between ML pipeline subsystem and ML underlay networks.

NOTE 1 – This reference point represents the data handling reference points shown as

arrows 3 and 4 in Figure 3.

5, 6: Reference points between Management subsystem and, ML pipeline subsystem and ML

sandbox subsystem, respectively.

7: Reference point between MLFO and other management and orchestration functions of

Management subsystem.

8, 9: Reference points between ML pipeline nodes located in different levels.

The three subsystems of the high-level architecture as shown in Figure 4 are:

• Management subsystem. This subsystem includes MLFO and other management and

orchestration functions, e.g. those defined in [ITU-T Y.3111].

The management subsystem enables to extend the management and orchestration mechanisms

used for future networks including IMT-2020 to ML pipeline nodes. This brings uniformity to

the management of ML functionalities and NFs.

The MLFO works in coordination with the other functions of the management subsystem to

manage the ML pipeline nodes.

NOTE 2 – The reference point(s) between the functions of the management subsystem and NFs

in the ML underlay networks complies(y) with the reference points defined in the related

specifications, e.g. [ITU-T Y.3111]. These reference points are out of scope of this

Recommendation and thus are not shown in Figure 4.

NOTE 3 – The interaction between MLFO and the other functions of the management subsystem

may be achieved using service-based architecture (SBA).

• ML pipeline subsystem. The ML pipeline is a logical pipeline that can be overlaid on existing

network infrastructures. The services of the MLFO are used for instantiation and setup.

- 20 -

Y.3172_(Y.IMT2020-ML-Arch)

Integration aspects of such ML pipeline overlay on technology-specific ML underlay networks

may require extension or definition of specific protocols and APIs.

In addition, the following points are to be noted:

− SBA may be used for interfacing between NFs and ML pipeline nodes as well as between ML

pipeline nodes themselves. As a first example, a SRC node exposes interfaces for consuming

data from the NFs and producing data towards the collector (C) node. As a second example, a

SINK node exposes interfaces for consuming the ML output from the distributor (D) node and

produces such configurations to the NFs which it interfaces with.

NOTE 4 – Due to the heterogeneity of NFs and ML underlay networks, SBA may not be

supported by NFs in the ML underlay networks. In such cases, protocols and APIs specific to

those ML underlay networks are used between the ML pipeline nodes and the NFs.

− The placement and chaining of the ML pipeline nodes are controlled by the MLFO and this

control may be influenced by factors such as:

▪ Inputs from the ML Intent to the MLFO which may impose constraints on the placement of

ML pipeline nodes.

NOTE 5 – The requirement to place an ML model (M) node on a network computing

resource which provides a specific type of acceleration capability is an example of

constraints on the placement of an M node.

▪ Feedback received by the MLFO from the management and orchestration functions of the

ML underlay networks or from the ML pipeline nodes may provide inputs on the placement

and chaining of ML pipeline nodes.

NOTE 6 – Decoupling of the location of the ML pipeline nodes from their functionalities,

except in the case of performance constraints, is achieved using the placement and chaining

mechanisms.

− The deployment of an ML pipeline in future networks including IMT-2020 may span different

levels. In this case, reference points between nodes located in different levels of an ML

pipeline are used to allow ML pipeline multi-level distribution.

NOTE 7 – As shown in Figure 4, an ML pipeline may be distributed over multiple levels, e.g.

a specific deployment may distribute the pipeline across UE, AN and CN. Based on the

specific ML application, different ways of distributing the ML pipeline nodes are possible.

• ML sandbox subsystem. An ML sandbox subsystem allows ML pipelines to adapt to dynamic

network environments such as those of future networks including IMT-2020 where a variety of

conditions may change (e.g., air interface conditions, UE position, network capabilities and

resources). The ML sandbox subsystem includes ML pipeline(s) and simulated ML underlay

networks, and it is managed by the MLFO according to the specifications in the ML Intent. The

ML sandbox subsystem allows network operators to study the effect of ML outputs before

deploying them on live ML underlay networks. Feedbacks from the functions of the management

subsystem are provided to the ML sandbox subsystem so that the ML pipelines of the ML

sandbox subsystem can adapt to the dynamically changing network environments.

The following points are to be noted:

− The reference point between ML pipeline subsystem and ML sandbox subsystem allows the

ML pipelines to interface with the ML sandbox subsystem for training and update of ML

models.

− Data from the ML underlay networks and/or the simulated ML underlay networks may be

used to train the ML models in the ML sandbox subsystem.

− The management of the ML pipeline nodes in the ML sandbox subsystem is also controlled by

the MLFO. This allows the MLFO to train and select the ML model(s) for a given ML

application.

- 21 -

Y.3172_(Y.IMT2020-ML-Arch)

8.3 General guidelines for realization of the high-level architecture

General guidelines for realization of the high-level architecture on different technology-specific

underlay networks are as follows:

• Instantiation of the ML pipeline nodes: an ML application is described using ML Intent. The

flow of information in an ML application can be represented by the chaining in an ML pipeline.

The data from various source nodes, e.g. coming from various underlying networks, need to be

gathered (by a collector node) and pre-processed (by a pre-processor node) before feeding these

data to the ML model (model node). The output of the ML model is then used to apply policies

(by a policy node) that will be implemented (by a SINK node).

An ML application can be realized by instantiating nodes of the ML pipeline with specific roles

(e.g., SRC, C, SINK), and associating these nodes to the technology specific underlying

network functions, based on the corresponding requirements of the ML application and the

capabilities of the underlying network functions.

The instantiation is performed by the MLFO in coordination with the other management and

orchestration functions.

• Interfacing of ML application with underlying network functions: there are two points of

specific interfacing with the underlying network functions for an ML application - the SRC and

the SINK nodes. The SRC nodes may have either an SBA based interface to the associated NFs

which produce data or a technology-specific interface for non-SBA capable NFs. Similarly, the

SINK nodes may have an SBA based interface to the associated NFs which enforce the ML

output policies or a technology-specific interface for non-SBA capable NFs.

• Management of the ML pipeline: this is done by the MLFO in coordination with the other

management and orchestration functions.

• ML model training and evaluation in the ML sandbox: this is controlled by the MLFO

independently of the ML underlay networks. The reference point between ML sandbox

subsystem and ML pipeline subsystem is used to transfer trained ML models, data for training

and ML model updates between the ML sandbox subsystem and the ML underlay networks

which interact with the live ML pipeline.

Appendix I gives examples of applying the above guidelines to the realization of the high-level

architecture on technology-specific underlay networks.

9. Security considerations

This Recommendation describes the architectural framework of machine learning which is expected

to be applied in future networks including IMT-2020: therefore, general network security

requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T

Y.3101].

It is required to prevent from unauthorized access to, and data leaking from, an ML pipeline,

whether or not they have a malicious intention, with implementation of mechanisms regarding

authentication and authorization, external attack protection, etc.

- 22 -

Y.3172_(Y.IMT2020-ML-Arch)

Appendix I

Realisation of the high-level architecture on technology-specific underlay networks

(This appendix does not form an integral part of this Recommendation.)

Figure I-1 gives an example of realisation of the high-level architecture on an IMT-2020 network

[b-ITU-T Y.3104] [ITU-T Y.3111].

Figure I-1 – Example of realisation of the high-level architecture in an IMT- 2020 network

This example of realisation is represented in the following manner: the ML pipeline shows the ML

pipeline node positions wherever the nodes are hosted, e.g., CN, AN, UE or management functions.

For example, the ML pipeline represented by arrows 1→2→4→ML pipeline 2 uses inputs from UE

to make predictions at CN (e.g., MPP-based ML applications).

NOTE - The sandbox subsystem is not shown for simplicity in Figure I-1, but its functionality is

applicable also to Figure I-1.

The following describes different realization instances with respect to requirements identified in

clause 7:

• Realisation instance in support of requirements in clauses 7.1 and 7.2:

– Consider arrows 5→4→ML pipeline 2→6: this ML pipeline uses inputs from CN and

possibly a combination of UE inputs to make predictions at CN and applies them to the

management functions. This application of ML output can in turn affect configurations in

different levels (e.g., SON decisions made at CN or closed loop decisions on resource

allocations done in the network).

– Consider arrows 1→3→ML pipeline 1→7: this ML pipeline uses inputs from UE and hosts

an ML model in AN for latency sensitive decisions to be applied in AN itself.

• Realisation instance in support of requirements in clause 7.3:

- 23 -

Y.3172_(Y.IMT2020-ML-Arch)

– Consider arrow 1: this can be realised using RRC.

– Consider arrows 2, 3, 4, 5, 7: this can be realised as an extension of reference points in CN

[b-ITU-T Y.3104].

– Consider arrow 6: this can be realized via reuse of reference points defined in [ITU-T

Y.3111].

• Realisation instance in support of requirements in clause 7.4:

– UE is a resource-constrained device, hence only the SRC is instantiated in UE. This

constraint is specified in the ML Intent.

• Realization instance in support of requirements in clause 7.5:

– The collectors in AN and CN are placed by the MLFO based on the specifications of the ML

applications in the ML Intent. For latency sensitive applications in AN, ML pipeline 1 is

used. ML pipeline 2 is used for latency tolerant applications. The chaining is done according

to the requirements specified in the ML Intent.

- 24 -

Y.3172_(Y.IMT2020-ML-Arch)

Appendix II

Mapping of the architectural components and supporting aspects to the requirements in

clause 8

 (This appendix does not form an integral part of this Recommendation.)

Table II-1 provides the mapping of the architectural components and supporting aspects to the

requirements in clause 7.

Table II-1 – Mapping of the architectural components and supporting aspects to the

requirements

Architectural

components and

supporting aspects

Requirements Mapping explanation

ML pipeline See clauses 7.1 and 7.2. The ML pipeline provides a common

vocabulary for ML in future networks

including IMT-2020. By defining the ML

pipeline nodes, it becomes possible to

consider the evolution of ML separately from

the underlay networks.

Instantiation of these nodes form an

important part of deployment of ML overlay

on different underlay networks. The functions

of these nodes are defined independently of

their location in the network, and hence this

allows flexible placement of such nodes in

the network. Split, merge and chaining of ML

pipeline nodes allows deploying complex

functions from these basic nodes.

MLFO See clauses 7.2, 7.4 and

7.5

The MLFO orchestrates and manages the ML

pipeline nodes. It is also responsible for

optimal placement and chaining of ML

pipeline nodes in the network. It implements

these functions in coordination with the

management and orchestration functions. The

declarative specifications of the ML

applications are supported by the MLFO by

converting them into underlay-specific

deployments. It also selects the models and

reselects them based on the needs of the ML

applications and other constraints defined in

the ML Intent.

ML sandbox See clause 7.5 This subsystem provides the ability to train,

evaluate and monitor the performance of ML

models before deploying them in a real

network. It interfaces with the underlay

- 25 -

Y.3172_(Y.IMT2020-ML-Arch)

networks for transfer of data or trained

models. In addition, it uses the simulated ML

underlay networks which may generate data

required for training the ML models.

ML Intent See clause 7.4 Written in a metalanguage, this architectural

supporting aspect defines the ML application,

its needs in terms of data input, configuration

output, any other constraints or

characteristics. It is used as input towards the

functionalities of the MLFO. This is the input

for MLFO to create a deployable ML pipeline

(one which conforms to the requirements) on

specific underlay networks. By standardising

this architectural aspect, it is possible for

third party solution providers to integrate

with the ML pipeline.

SBA See clause 7.3 This architectural supporting aspect is used to

interface between the underlay network

functions and the ML pipeline. It provides the

necessary loose coupling between the ML

overlay and the ML underlay networks. SBA

is also used to interface between the

simulated ML underlay networks and the ML

pipeline. It is used to train the ML pipeline

and to configure the simulated ML underlay

networks using the ML pipeline.

- 26 -

Y.3172_(Y.IMT2020-ML-Arch)

Bibliography

[b-ETSI MEC 003] ETSI GS MEC 003 V1.1.1 (2016), Mobile Edge Computing (MEC);

Framework and Reference Architecture.

[b-ETSI GR ENI 004] ETSI GR ENI 004 V1.1.1 (2018), Experiential Networked Intelligence

(ENI); Terminology for Main Concepts in ENI.

[b-ETSI NFV-IFA 014] ETSI GS NFV-IFA 014 V2.3.1 (2017), Network Functions Virtualisation

(NFV) Release 2; Management and Orchestration; Network Service

Templates Specification.

[b-ETSI TS 129 500] ETSI TS 129 500 V15.0.0 (2018-07) 5G; 5G System; Technical

Realization of Service Based Architecture.

[b-GSMA IR.92] GSMA IR.92 (VoLTE) – IMS Profile for Voice and SMS.

[b-IEC] IEC whitepaper on Edge Intelligence, http://www.iec.ch/whitepaper/

pdf/IEC_WP_Edge_Intelligence.pdf.

[b-ITU GLOSSARY] Broadband: Acronyms, Abbreviations & Industry Terms,

https://www.itu.int/osg/spu/ni/broadband/glossary.html

[b-ITU-T Q.5001] Recommendation ITU-T Q.5001 (2018), Signalling requirements and

architecture of intelligent edge computing.

[b-ITU-T Y.2322] Recommendation ITU-T Y.2322 (2018), “The functional architecture of

virtualized control network entities management and orchestrator in next

generation network evolution.”

[b-ITU-T Y.2701] Recommendation ITU-T Y.2701 (2007), “Security requirements for NGN

release 1”

[b-ITU-T Y.3100] Recommendation ITU-T Y.3100 (2017), “Terms and definitions for IMT-

2020 network”

[b-ITU-T Y.3101] Recommendation ITU-T Y.3101 (2018), “Requirements of the IMT-2020

network”

[b-ITU-T Y.3102] Recommendation ITU-T Y.3102 (2018) “Framework of the IMT-2020

network.”

[b-ITU-T Y.3104] Recommendation ITU-T Y.3104 (2018), “Architecture of the IMT-2020

network”

[b-ITU-T Y.3105] Recommendation ITU-T Y.3105 (2018), “Requirements of capability

exposure in the IMT-2020 network.”

[b-ITU-T Y.3110] Recommendation ITU-T Y.3110 (2017), “IMT-2020 network

management and orchestration requirements”

[b-ITU-T Y.3170] Recommendation ITU-T Y.3170 (2018), “Requirements for machine

learning-based quality of service assurance for the IMT-2020 network.”

[b-ITU-T Y.3650] Recommendation ITU-T Y.3650 (2018), “Framework of big-data-driven

networking.”

[b-3GPP TS 23.501] 3GPP TS 23501 Release 15 (2018), “System Architecture for the 5G

System.”

http://www.iec.ch/whitepaper/%20pdf/IEC_WP_Edge_Intelligence.pdf
http://www.iec.ch/whitepaper/%20pdf/IEC_WP_Edge_Intelligence.pdf
https://www.itu.int/osg/spu/ni/broadband/glossary.html

- 27 -

Y.3172_(Y.IMT2020-ML-Arch)

[b-3GPP TS 28.554] 3GPP TS 28.554, “Management and orchestration of 5G networks; 5G

End to end Key Performance Indicators (KPI) (Release 15)”

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Introduction
	7 High-level architectural requirements
	7.1 Enablers for correlation
	7.2 Enablers for deployment
	7.3 Interface-related
	7.4 Declarative specifications
	7.5 Management of ML functionalities

	8 Framework of the high-level architecture
	8.1 High-level architectural components
	8.2 High-level architecture
	8.3 General guidelines for realization of the high-level architecture

	9. Security considerations
	Appendix I
	Appendix II
	Bibliography

