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Summary 

This document specifies an architectural framework for machine learning (ML) in future networks 

including IMT-2020. A set of architectural requirements and specific architectural components 

needed to satisfy these requirements are presented. These components include, but are not limited to, 

ML pipeline as well as ML management and orchestration functionalities. The integration of such 

components into future networks including IMT-2020 and guidelines for applying this architectural 

framework in a variety of technology-specific underlying networks are also described. 

 

Keywords 

architectural framework, IMT-2020, high-level architecture, intent, machine learning, ML, 

orchestrator, overlay, pipeline, requirements, sandbox, training, underlay 



- 2 - 

Y.3172_(Y.IMT2020-ML-Arch) 

 

 

Table of Contents 

 

1 Scope .......................................................................................................................................... 3 

2 References .................................................................................................................................. 3 

3 Definitions .................................................................................................................................. 3 

3.1 Terms defined elsewhere ........................................................................................................ 3 

3.2 Terms defined in this Recommendation ................................................................................ 3 

4 Abbreviations and acronyms ...................................................................................................... 4 

5 Conventions ................................................................................................................................ 5 

6 Introduction ................................................................................................................................ 6 

7 High-level architectural requirements ........................................................................................ 7 

7.1 Enablers for correlation ............................................................................................................. 7 

7.2 Enablers for deployment ........................................................................................................... 9 

7.3 Interface-related ...................................................................................................................... 11 

7.4 Declarative specification ......................................................................................................... 12 

7.5 Management of ML functionalities ......................................................................................... 14 

8 Framework of the high-level architecture ................................................................................ 16 

8.1 High-level architectural components ................................................................................... 16 

8.2 High-level architecture ........................................................................................................ 18 

8.3 General guidelines for realization of the high-level architecture......................................... 21 

9. Security considerations .................................................................................................................. 21 

Appendix I.......................................................................................................................................... 22 

Appendix II ........................................................................................................................................ 24 

Bibliography....................................................................................................................................... 26 

 

 



- 3 - 

Y.3172_(Y.IMT2020-ML-Arch) 

Draft Recommendation ITU-T Y.IMT2020-ML-Arch 

Architectural framework for machine learning in future networks including 

IMT-2020 

  

1 Scope 

This Recommendation specifies an architectural framework for machine learning in future networks 

including IMT-2020. 

A set of architectural requirements is presented, which in turn leads to specific architectural 

components needed to satisfy these requirements. This Recommendation also describes an 

architectural framework for integration of such components into future networks including IMT-

2020 and guidelines for applying this architectural framework in a variety of technology-specific 

underlying networks.  

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the 

currently valid ITU-T Recommendations is regularly published. The reference to a document within 

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.3111]  ITU-T Recommendation Y.3111 (2017), “IMT-2020 network management and 

orchestration framework”  

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1  Network function [b-ITU-T Y.3100]: In the context of IMT-2020, a processing function in 

a network. 

NOTE 1 – Network functions include but are not limited to network node functionalities, 

e.g., session management, mobility management and transport functions, whose functional 

behaviour and interfaces are defined. 

NOTE 2 – Network functions can be implemented on a dedicated hardware or as virtualized 

software functions. 

NOTE 3 – Network functions are not regarded as resources, but rather any network 

functions can be instantiated using the resources. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1  machine learning (ML): processes that enable computational systems to understand data 

and gain knowledge from it without necessarily being explicitly programmed. 
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NOTE 1 – Definition adapted from [b-ETSI GR ENI 004]. 

NOTE 2 – Supervised machine learning and unsupervised machine learning are two 

examples of machine learning types.  

3.2.2  machine learning function orchestrator (MLFO): a logical node with functionalities that 

manage and orchestrate the nodes in a machine learning pipeline. 

3.2.3 machine learning model: model created by applying machine learning techniques to data to 

learn from. 

NOTE 1 – A machine learning model is used to generate predictions (e.g. regression, 

classification, clustering) on new (untrained) data. 

NOTE 2 – A machine learning model may be encapsulated in a deployable fashion in the 

form of a software (e.g. virtual machine, container) or hardware component (e.g. IoT device). 

NOTE 3 – Machine learning techniques include learning algorithms (e.g. learning the 

function that maps input data attributes to output data). 

3.2.4 machine learning overlay: a loosely coupled deployment model of machine learning 

functionalities whose integration and management with network functions, are standardised.  

NOTE – A machine learning overlay aims to minimise interdependencies between machine 

learning functionalities and network functions using standard interfaces, allowing for 

parallel evolution of functionalities of the two. 

3.2.5  machine learning pipeline: a set of logical nodes, each with specific functionalities, that 

can be combined to form a machine learning application in a telecommunication network. 

NOTE – The nodes of a machine learning pipeline are entities that are managed in a 

standard manner and can be hosted in a variety of network functions [b-ITU-T Y.3100].  

3.2.6  machine learning sandbox: an environment in which machine learning models can be 

trained, tested and their effects on the network evaluated. 

 NOTE – A machine learning sandbox is designed to prevent a machine learning application 

from affecting the network, or to restrict the usage of certain machine learning 

functionalities. 

3.2.7 machine learning underlay network: a telecommunication network and its related network 

functions which interfaces with corresponding machine learning overlays.  

NOTE – An IMT-2020 network is an example of machine learning underlay network. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AF  Application Function 

AN  Access Network 

API  Application Programming Interface 

AR/VR  Augmented Reality/Virtual Reality 

C  Collector (in ML pipeline) 

CN  Core Network 

D Distributor (in ML pipeline) 

EMS  Element Management System 

FMC  Fixed Mobile Convergence 
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GPU  Graphic Processor Unit 

IoT  Internet of Things 

KPI  Key Performance Indicator 

M  Model (in ML pipeline) 

mIoT  massive Internet of Things 

MEC  Multi-access Edge Computing 

ML  Machine Learning 

MLFO  Machine Learning Function Orchestrator 

MPP  Mobility Pattern Prediction 

MnS  Management Service 

NF  Network Function 

NOP  Network Operator 

OAM  Operations, Administration and Maintenance 

P  Policy (in ML pipeline) 

PP  Pre-Processor (in ML pipeline) 

QoS  Quality of Service 

RCA  Root Cause Analysis 

RRC  Radio Resource Control 

SBA  Service-Based Architecture 

SMF  Session Management Function 

SON   Self-Optimizing Network 

SRC  Source 

UE  User Equipment 

UPF  User Plane Function 

V2X   Vehicle-to-everything 

VoLTE  Voice over Long-Term Evolution 

5 Conventions 

In this Recommendation, requirements are classified as follows:       

The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted if conformance to this Recommendation is to be 

claimed. 

The keywords "is recommended" indicate a requirement which is recommended but which 

is not absolutely required. Thus, this requirement need not be present to claim conformance. 

The keywords "can optionally" indicate an optional requirement which is permissible, 

without implying any sense of being recommended. This term is not intended to imply that 

the vendor's implementation must provide the option and the feature can be optionally 

enabled by the network operator/service provider. Rather, it means the vendor may 

optionally provide the feature and still claim conformance with the specification. 

In the body of this Recommendation and its annexes, the words shall, shall not, should, and 
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may sometimes appear, in which case they are to be interpreted, respectively, as is required 

to, is prohibited from, is recommended, and can optionally. The appearance of such phrases 

or keywords in an appendix or in material explicitly marked as informative is to be 

interpreted as having no normative intent. 

ML pipeline – In this Recommendation, when the symbol shown in Figure 1 is used, this denotes a 

subset (including proper subset) of nodes in an ML pipeline. When this symbol is used in a figure, 

the symbol stands for the subset of an ML pipeline’s nodes not explicitly shown in that figure. 

 

Figure 1 - Symbol used to denote a subset of nodes in an ML pipeline 

Service egress and ingress points – In this Recommendation, a node and its service egress and 

ingress points are denoted by the symbol in Figure 2. The service egress point is shown with a green 

rectangle on top of the node, while the service ingress point corresponds to the red rectangle on top 

of the node.  

 

Figure 2 - Symbol used to denote a node with its service egress and ingress points  

6 Introduction 

Machine learning (ML) provides a way to teach computational systems to gain knowledge from data 

without necessarily being explicitly programmed in order to realize complicated tasks such as detection 

of characteristics or prediction of behaviours. As ML becomes an important technical trend in the 

industry, network operators and other stakeholders are searching for cost-effective ways to 

incorporate ML into the future networks including IMT-2020.  

While the benefits from such an integration have been discussed under many use cases (e.g., 
troubleshooting of network problems, network traffic prediction, traffic optimization adjustment, 

network security auditing [b-ITU-T Y.3650] [b-ITU-T Y.3170]), there are many challenges to such an 

integration. Some of the important challenges are: 

A. Heterogeneous nature of ML functionalities and unique characteristics of future 

communication technologies impose a varied set of requirements for integration. 

B. Roadmaps for evolution of these ML functionalities and communication networks are not 

aligned.  

C. Cost of integration, in terms of architecture impacts, is an important consideration. 

D. Disparate management mechanisms for ML functionalities and network functions [b-ITU-T 

Y.3100] will disrupt the operations management of communication networks. 

An architectural framework for integration of ML with future networks including IMT-2020 is 

provided to address these challenges.  

Building on high-level architectural requirements, such a framework at first provides a common 

vocabulary and nomenclature for ML functionalities and their relationships with the communication 

networks. The framework addresses the reference points for future networks including IMT- 2020 

which enable loosely coupled integration with ML functionalities. Management mechanisms for 

ML are also described in the framework considering the existing management principles which 

have been identified in IMT-2020 networks.  
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The framework enables a standard method of integrating ML functionalities in future networks 

including IMT-2020.   

7 High-level architectural requirements 

This clause provides high-level requirements for the design of the high-level architecture 

framework in clause 8. 

These high-level architectural requirements are classified as follows: 

● Enablers for correlation of data across levels and heterogenous technologies. This set of 

requirements addresses the challenge A mentioned in clause 6 and the requirements which 

fall into this set are provided in clause 7.1.  

NOTE – Levels may correspond to different parts of the network where the reference points 

between these parts are defined in the relevant network architecture specifications. For 

example, [b-ITU-T Y.3104] defines the reference point RP-an between Access Network (AN) 

and Core Network (CN), thus, AN and CN may correspond to different levels of an IMT-

2020 network.  

● Enablers for deployment. This set of requirements addresses the challenge B mentioned in 

clause 6 and the requirements which fall into this set are provided in clause 7.2.  

● Requirements related to interfaces between the architectural components. This set of 

requirements addresses the challenges B and C mentioned in clause 6 and the requirements 

which fall into this set are provided in clause 7.3.  

● Requirements related to declarative specifications used for specifying the ML applications. 

This set of requirements addresses the challenges C and D mentioned in clause 6 and the 

requirements which fall into this set are provided in clause 7.4.  

● Requirements related to the management of the architectural components. This set of 

requirements addresses the challenge D mentioned in clause 6 and the requirements which 

fall into this set are provided in clause 7.5.  

 

7.1 Enablers for correlation 

Table 7-1 provides requirements regarding enablers for correlation of data across levels and 

heterogeneous technologies. 

Table 7.1 – High-level requirements – Enablers for correlation 

REQ-ML-COR-001 
The ML architecture is recommended to support correlation of data 

coming from multiple sources. 

Description 

In future networks, sources of data may be heterogeneous, integrated with 

different network functions (NFs), and may report different formats of 

data. These varied "perspectives" can provide rich insights upon 

correlated analysis. Architectural components to enable the ML 

functionalities to collect and correlate data from these varied sources in 

the network are needed. 

Notes 

NOTE 1 – As an example, the analysis of data from user equipment (UE), 

AN, CN and application function (AF) is needed to predict potential 

issues related to quality of service (QoS) in end-to-end user flows. 

NOTE 2 – Other examples of such sources of data are self-optimizing 

network (SON) functionalities that monitor and correlate network alarms 
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and key performance indicators (KPIs) [b-3GPP TS 28.554], and then 

take relevant action to clear alarms or enhance network KPIs, or give 

network design recommendations without human intervention. 

 

REQ-ML-COR-002 

a) The ML architecture is required to support multiple technologies of 

future networks including IMT-2020 to achieve end-to-end user 

experience. 

b) The ML architecture is recommended to be interfaced with non-IMT-

2020 external functional entities to achieve end-to-end user 

experience. 

Description 

Future networks will have multiple technologies coexisting side by side, 

e.g., licensed and unlicensed wireless technologies, fixed mobile 

convergence (FMC) technologies, legacy and future technologies. The 

emergence of network slicing [ITU-T Y.3111] is one example in which 

vertical technologies (networks customized to provide flexible solutions 

for different market scenarios) and their integration into future networks 

are important. The interfacing of ML architecture with such functional 

entities will help in achieving KPIs as for example specified in [b-3GPP 

TS 28.554]. 

Thus, it is important for the ML architecture to be capable of integration 

with multiple underlying technologies and even support of application 

functions. 

Notes 

NOTE 1 – Vehicle-to-everything (V2X) is an example of a vertical 

application which may benefit from the support of network slicing.  

NOTE 2 – Various communication network (e.g. 3G, 4G, 5G) technologies 

could be considered as examples of underlying technologies. 

Applications for hosting in-car entertainment, processing data from 

drones, entertainment applications using augmented reality/virtual reality 

(AR/VR) are examples of application functions. 

NOTE 3 – Examples of network functions which are not directly managed 

by the network operator (NOP) are sensors, power circuits and different 

Internet of things (IoT) modules. In some use cases, the data from such 

network functions are utilized to control and monitor both the network 

functions deployed in the network as well as such external network 

functional entities themselves. These data could also be then used in 

various types of network parameter optimizations to achieve gains in 

coverage, capacity and quality by the NOP. 

 

REQ-ML-COR-003 
The ML architecture is required to support distributed instantiation of 

machine learning functionalities in multiple levels. 

Description 

Distributed instantiation helps in using data from different levels, to enrich 

locally available data in a level, as needed. Thus, the ML functionalities 

may be multi-level. 

Independent instances of ML functionalities may be created in multiple 

levels.  

Notes 

NOTE 1 – In some use cases, the source of data may be placed in AN and 

pre-processed data are handled by CN [b-ITU-T Y.3102] where the ML 

model is hosted. 
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NOTE 2 – ML functionalities may be used for performing mobile pattern 

predictions (MPPs) or network slice [b-ITU-T Y.3100] configurations 

using input from the network at multiple levels (from sources in AN or 

CN). 

 

7.2 Enablers for deployment 

Table 7-2 provides requirements regarding enablers for deployment of ML functionalities. 

Table 7-2 – High-level requirements – Enablers for deployment 

 

REQ-ML-DEP-001 

The ML architecture is recommended to define the points of interaction 

between ML functions and technology-specific underlay network 

functions, independently from functionalities of the machine learning 

application. 

Description 

The specification of ML applications in future networks will be related to 

the existing (or new) network services or network functions. Based on the 

specification of the ML applications, placement and characteristics of the 

ML functionalities are decided. The source of data and the target of ML 

output are points of tight integration with the technology-specific underlay 

NFs. Apart from this, ML functionalities may be generic and do not have 

tight integration with technology-specific NFs. Well-defined reference 

points between the ML functionalities and the technology-specific 

underlay NFs are required. 

Notes 

NOTE 1 – ML output may be policies or configurations to be applied in 

the network and target of ML output may be functions in the network for 

applying ML output. Such application of ML output may be controlled by 

network operator policies. 

NOTE 2 – In some use cases, source of data and traffic classification 

(based on ML output) may be placed in the user plane of the network, e.g. 

user plane function (UPF) [b-ITU-T Y.3104]. These may be considered as 

points of tight integration between the ML functionalities and the 

underlying network (e.g. AN or CN). Other ML functionalities (e.g., the 

ML model) do not have such interface dependencies on the underlying 

networks. 

 

REQ-ML-DEP-002 
The ML architecture is required to support split or combined deployments 

of ML functionalities across different underlay network functions. 

Description 

In future networks, management and orchestration functions [ITU-T 

Y.3111] will optimize the location and the performance of NFs 

accordingly.  

To carry forward such benefits to ML applications, similar optimizations 

should also be applied to ML functionalities. Moreover, the constraints 

applicable to an ML functionality may be unique. 

Notes 

NOTE 1 – ML training may need a graphic processor unit (GPU) and may 

need to be done in an isolated environment so that it does not affect other 

functionalities of the network.  



- 10 - 

Y.3172_(Y.IMT2020-ML-Arch) 

NOTE 2 – As an example, depending on the latency budget, data 

availability and other considerations for ML applications, the ML 

functionalities could have the source of data and the ML training hosted in 

the CN or AN. 

 

REQ-ML-DEP-003 

The ML architecture is required to support flexible placement of ML 

functionalities (in coordination with the management and orchestration 

functions [b-ITU-T Y.3100] [b-ITU-T Y.3110]) in the underlying network 

functions. 

Description 

The flexible placement ML functionalities could be based, among other 

factors, on the specifications of ML applications.  

The Management and Orchestration functions utilize both the 

specifications of the ML applications and the conditions in the network to 

implement this requirement. 

Resource allocation for ML functionalities is required to consider various 

constraints (e.g., resource constraints of the NFs, latency constraints 

specific to the ML application, availability of data that is specific to the 

ML application, data transformation capabilities, performance constraints, 

training capabilities and model characteristics). 

The ML architecture should provide the ability to place the ML 

functionalities in a flexible manner in the network that is most optimal for 

the performance of the ML applications and based on the constraints 

defined in the declarative specifications of the ML applications. 

The constraints for online training and prediction for real-time ML 

applications which are captured in the specification form inputs to placing 

the ML functionalities in the network that can provide optimal 

performance for the use case. 

Notes 

NOTE 1 – If the ML model includes a neural network, then a placement 

decision in a GPU-based system is desirable. 

NOTE 2 – Based on the requirements of the ML applications, the ML 

functionalities which provide latency sensitive short-term predictions may 

be hosted closer to the edge. The placement may also be influenced by 

considerations on data availability. This may be done in coordination with 

the split of ML functionalities mentioned in REQ-ML-DEP-002. 

NOTE 3 – In certain use cases, user plane data classification may be done 

using ML models. Since user plane data classification is a latency-

sensitive application, the model may be hosted at the transport network, 

whereas the training could be done at CN. 

 

REQ-ML-DEP-004 
The ML architecture is required to support plugging in and out new data 

sources or configuration targets to a running ML environment. 

Description 

Certain advanced applications in future networks, e.g., massive Internet of 

Things (mIoT), require handling of unstructured data from a huge number 

of data sources that may be plug and play. One such use case is the 

analysis of logged data for anomaly detection in networks.  

Notes 

NOTE 1 – Scaling of ML functionalities based on type and volume of 

incoming data is an example of handling new data sources. 

NOTE 2 - The configuration of ML functionalities in the network needs to 
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handle the plugging in and out of new data sources or configuration targets 

based on metadata of data sources.   

 

7.3 Interface-related 

Table 7-3 provides interface-related requirements. 

Table 7-3 – High-level requirements – Interface-related 

REQ-ML-INT-001 
The ML architecture is recommended to support an interface to transfer 

trained models among ML functionalities of multiple levels.  

Description 

Training of models has certain specific needs, e.g., availability of certain 

kinds of processors, availability of certain kinds of training data. Once the 

training is done, the ML model has to be sent to the technology-specific 

underlay network that is hosting the ML model. Model training can be 

done separately from the live network. Thus, sending trained models 

across multiple levels is an important requirement. 

Notes 

NOTE 1 – UE, access network functions (AN), core network (CN) 

functions could be treated as examples of technology-specific underlying 

network functions which could host the trained model. 

NOTE 2 – CN and AN could be treated as examples of multiple levels. 

NOTE 3 – Depending on the availability of data, learning may be done at 

the CN or AN, and trained model (e.g. classifier) hosted by the transport 

networks. 

 

REQ-ML-INT-002 
The ML architecture is required to support an interface to transfer data for 

training or testing models among ML functionalities of multiple levels. 

Description 

Certain levels in which the data are available may not have the training 

capabilities. In such cases, there may be a need to send data for training or 

testing to levels where the capacity for such operations is available.  

Notes 

NOTE 1 – ANs may be considered as examples of resource-constrained 

networks, whereas CNs may be considered as a level where capacity may 

be available to scale. 

NOTE 2 – Data pre-processing may be done at the transport network and 

the pre-processed data is then sent to the model at the CN for training. 

 

REQ-ML-INT-003 

a) While defining the interface with underlying networks, the ML 

architecture is recommended to utilize existing standard protocols 

wherever possible, with required extensions wherever needed. 

b) The ML architecture is recommended to support specific interfaces or 

application programming interface (API) for interfacing with 

technology-specific network functions, for sourcing data from such 

NFs or for configuring such NFs. 

c) The ML architecture is recommended to support logical interfaces 

between ML functionalities which can be hosted in multiple levels, 

and the realization of such logical interfaces be implemented 

according to deployment scenarios.  

Description Sources of data and target for ML output may need specific interfaces or 
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APIs with the underlay networks to extract data or apply configurations. 

Some use cases may need a tight coupling at integration stage between the 

source and target of ML functionalities, and the NFs. In certain cases, an 

extension of such interfaces may be needed to achieve the ML 

functionalities in the use case. 

The ML functionalities may use interfaces provided by an underlying 

network as a source of data or target of configurations. In that sense, these 

network-specific APIs may act as realizations of an interface to the source 

and target of ML functionalities. 

Notes 

NOTE 1 – With respect to item a above, certain interfaces may be realized 

by reusing existing protocols (e.g., Radio Resource Control (RRC) [b-

ITU-T Y.3104], MEC [b-ETSI MEC 003], management service (MnS) [b-

3GPP TS 23.501]). 

NOTE 2 – With respect to item b above, for example, a source running in 

the UE may use specific APIs to extract data from a voice over long-term 

evolution (VoLTE) client [b-GSMA IR.92]. 

NOTE 3 – With respect to item c above, for example, in the use case 

where the source runs in the AN but needs measurements from the UE, the 

AN needs to configure the UE for this measurement using RRC. 

 

REQ-ML-INT-004 
The ML architecture is recommended to support data sharing between ML 

functionalities using distributed data sharing mechanisms. 

Description 
Cross-level sharing of data is needed to enable correlated ML decisions in 

future networks.  

Notes 
NOTE - Concepts like data lakes are emerging in future clouds and can 

also be exploited in network operators’ clouds.  

7.4 Declarative specifications 

Table 7-4 provides requirements regarding declarative specifications. 

Table 7-4 – High-level requirements – Declarative specification 

REQ-ML-SPEC-001 

The ML architecture is required to support a standard method to represent 

ML applications, which can be translated into ML functionalities in 

technology-specific underlay network functions. 

Description 

Automation using declarative specification and corresponding translation 

into configurations is a characteristic of future networks. Extending this 

technique to ML, declarative specification of ML applications and 

corresponding translation into configurations of ML functionalities need to 

be supported.  

Notes 

Interpretation of the declarative specification allows configuration of ML 

functionalities in the network by translating the specification into the 

configuration that can be hosted by network functions. 

 

REQ-ML-SPEC-002 

a) The ML architecture is required to support ML applications to specify 

the sources of data, repositories of ML models, targets for output from 

ML models, and constraints on network resources.  

b) The ML architecture is required to support the time constraints 



- 13 - 

Y.3172_(Y.IMT2020-ML-Arch) 

requirements of ML applications. 

Description 

The separation between technology agnostic part of the ML application 

and technology-specific deployment is captured in the design time of 

future network services. Declarative specifications for the ML applications 

achieve this separation.  

Different ML applications have varied time constraints. These constraints 

form an important input to the management and orchestration functions 

while determining the placement, chaining and monitoring of the ML 

functionalities. 

Notes 

NOTE 1 – With respect to item a) above, as an example, a description 

written in a metalanguage may capture the requirements of a network 

operator for an ML application. The management and orchestration 

functions may translate it into the configuration that can be implemented 

in the network. 

NOTE 2 – With respect to item b) above, at the tightest scale, the 

application of ML in beamforming, scheduling, link adaptation network 

functionalities would have latency criteria of the order of microseconds, 

whereas transport and core network functionalities have a few 

milliseconds of latency criteria. The least demanding in terms of latency 

are management level functionalities, e.g., anomaly detection and 

coverage hole detection, that can afford minutes, hours or days of latency. 

 

REQ-ML-SPEC-003 
The ML architecture is required to support flexible split of ML 

functionalities based on the specifications of ML applications. 

Description 

Specification of ML application is an important input for deployment of 

ML in future networks including IMT-2020. But network capabilities can 

change (hardware can be added or removed), NFs may be scheduled or 

(re)configured dynamically by the management and orchestration 

functions. These dynamic changes may necessitate a change in the split 

and placement of the ML functionalities (e.g., a decision may be taken to 

collocate certain functions of ML, based on changes in the link capacity, 

or a decision may be taken to add a new source of data based on decisions 

of the management and orchestration functions). Thus, a combination of 

(a) inputs from specification, (b) the requirement of ML functions to be 

capable of split and combined deployment and (c) coordination with the 

underlying management and orchestration function, is needed.  

Notes 
NOTE – A new source of data may be instantiated based on scale out 

decisions in the network. 

 

REQ-ML-SPEC-004 

The ML architecture is required to support the specifications of ML 

applications by third parties to specify the sources of data, repositories of 

ML models, targets for output from ML models, and constraints on 

network resources.  
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Description 

Third party [b-ITU-T Y.3100] service providers may offer innovative 

services on top of future networks. This may include new ML algorithms. 

Collaboration between third party providers and network operators may 

bring new sources of data or aggregation capabilities. The declarative 

process in the architecture should extend the capabilities to include third 

parties, and they should be able to include these functionalities in the 

specification so that end users can benefit from such innovative services 

offered by third party providers. 

Notes 

NOTE 1 – In some use cases, ML models may be provided as third-party 

applications.  

NOTE 2 – A smartphone application which interfaces with the sensors on 

the UE is an example of a third-party source of data. 

NOTE 3 – A third-party voice over IP service provider wants to optimize 

call quality over the network by running an ML application that configures 

network parameters. Specification of such an ML application is an 

example of a third-party specification. 

 

7.5 Management of ML functionalities 

Table 7-5 provides requirements regarding the management of ML functionalities. 

Table 7-5 – High-level requirements – Management of ML functionalities 

 

REQ-ML-MNG-001 
The ML architecture is required to support ML model selection at the 

setup time of the ML functionalities. 

Description 

Advances in machine learning suggest that in future networks there would 

be ML models with varied characteristics (e.g., using a variety of 

optimization techniques and weights) that are appropriate for different 

problem spaces and data characteristics. 

In future networks, new sources of data may get added dynamically.  To 

extend the ML applications to such new and heterogeneous sources of 

data, ML model selection has to be done dynamically, based on the data 

provided by the sources. 

Notes 

NOTE– Plug and play of new network functions (e.g. new UPF) into a 

live network may be an example for dynamic on-boarding of new sources 

of data.  

 

REQ-ML-MNG-002 
The ML architecture is required to support ML model training and model 

updates while preventing impact on the network.  

Description 

ML model training has several considerations: use of specific hardware for 

speed, availability of data, parameter optimizations, avoiding bias, 

distribution of training, etc. 

Moreover, in future networks, service disruptions should be avoided while 

model training and updates are performed. 

Notes  



- 15 - 

Y.3172_(Y.IMT2020-ML-Arch) 

 

REQ-ML-MNG-003 

The ML architecture is required to support capabilities to monitor the 

network operations based on the effect of ML and to update the ML 

models and/or policies without impacting the network. 

Description 

The effect of ML on the network needs to be monitored. Various KPIs are 

measured constantly and the impact of machine learning on them as well 

as on the ML functionalities themselves needs to be monitored and 

corrected if needed, continuously.  ML functionalities need to be trained 

for future recognition and handling such corrected scenarios. 

Notes 

NOTE– Continuous improvement of the automated fault recovery process 

workflows is an example of a process where such monitoring and update 

is done in the network. The root cause analysis (RCA) from the fault 

recovery process is provided for configuring the management and 

orchestration functions, and also the effect produced by ML in the network 

is evaluated and used to optimize the ML functionalities themselves. 

 

REQ-ML-MNG-004 
The ML architecture is required to support an orchestration functionality 

to manage all the ML functionalities in the network. 

Description 

The performance of the ML functionalities in the network is monitored 

and when the performance falls below a predefined threshold, the ML 

functionalities are reconfigured to improve it. 

The varied sources of data (e.g. CN, AN) imply that there could be various 

training techniques including distributed training. Complex models may 

be trained using varied data. The performance of such models can be 

determined and compared in an isolated environment. 

Based on such comparisons, network operators can then select the 

appropriate ML functionalities (based on internal policies) for specific ML 

applications.  

Notes 

NOTE 1 – Evaluation involves evaluation of network performance along 

with performance of ML algorithms. 

NOTE 2 – Reselection of ML model is an example of reconfiguration 

done to improve the performance of the ML functionalities. 

 

REQ-ML-MNG-005 
The ML architecture is required to support flexible chaining of ML 

functionalities including multi-level chaining. 

Description 

Flexible chaining of ML functionalities is required to be done based on the 

hosting and positioning on different NFs and levels. This is to enable the 

hybrid or distributed ML functionalities. 

Chaining of ML functionalities may be used to build a complex ML 

functionality. 

Management and orchestration functions provide NOPs with capabilities 

to rapidly design, develop and deploy network services in the technology-

specific underlay networks. Similarly, ML functionalities in the network 

need mechanisms including flexible chaining to keep up with innovation 

in the technology-specific underlay networks. As underlying network 

services evolve and deploy rapidly, so do the ML functionalities on top of 

them, using flexible chaining techniques. This requirement aims to give 

the ML functionalities, the ability to adapt to dynamic service creation and 
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orchestration in the underlying networks. 

Notes  

 

8 Framework of the high-level architecture  

The framework of the high-level architecture described in this clause supports the requirements 

defined in clause 7.  

This clause provides description of the high-level architectural components and the high-level 

architecture itself, and provides guidelines for realisation of the high-level architecture on different 

technology-specific underlay networks.  

This approach to design the architecture provides an ability to analyse both ML solutions which are 

agnostic to technology specific underlying networks and issues specific to integration of ML to such 

underlay networks. An example of the realization of this architectural framework on technology-

specific underlay networks is provided in Appendix I.  

8.1 High-level architectural components 

This clause specifies the high-level architectural components which are essential parts of the 

architectural framework. Integration of such components to a network architecture by interfacing 

with the NFs, along with the placement of the ML functionalities in such a network, forms the 

architecture framework.  

 

Figure 3 – High-level architectural components 

 

The high-level architectural components include the following: 

1) machine learning pipeline. 
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As defined in clause 3, a machine learning pipeline is a set of logical nodes, each with 

specific functionalities, that can be combined to form a machine learning application in a 

telecommunication network.  

NOTE 1 – Machine learning pipeline may be deployed on simulated or live ML underlay 

networks. 

The following describes the nodes of an ML pipeline.  

• SRC (source): This node is the source of data that can be used as input to the ML pipeline.  

NOTE 2 – Potential SRC nodes include user equipment (UE), session management 

function (SMF) [b-ITU-T Y.3104] and application function (AF) [b-ITU-T Y.3104]. 

• C (collector): This node is responsible for collecting data from one or more SRC nodes.  

NOTE 3 – A collector node may have the capability to configure SRC nodes. For 

example, the radio resource control (RRC) protocol [b-3GPP TS 23.501] can be used to 

configure user equipment (UE) acting as a SRC node. The collector node may use vendor 

specific operations, administration and maintenance (OAM) protocols to configure SMF 

acting as a SRC node. Such configurations may be used to control the nature of data, its 

granularity and periodicity while it is generated from the SRC. 

• PP (pre-processor): This node is responsible for cleaning data, aggregating data or 

performing any other pre-processing needed for the data to be in a suitable form so that 

the ML model can consume it. 

• M (model): This is a machine learning model, in a form which is usable in a machine 

learning pipeline.  

NOTE 4 – Example is an ML algorithm implemented in software as a NF [b-ITU-T 

Y.3104].  

• P (policy): This node enables the application of policies to the output of the model node.  

NOTE 5 – This node can be used, for example, to minimize impacts when the output of 

machine learning is applied to a live ML underlay network. Specific rules can be put in 

place by a network operator to safeguard the sanity of the network, e.g., major upgrades 

may be done only at night time or when data traffic in the network is low. 

• D (distributor): This node is responsible for identifying the SINK(s) and distributing the 

output of the M node to the corresponding SINK nodes.  

NOTE 6 – It may have the capability to configure SINK nodes. For example, RRC 

protocol may be used to configure a UE acting as a SINK node. 

• SINK: This node is the target of the ML output, on which it takes action. 

NOTE 7 – For example, a UE acting as a SINK node may adjust the periodicity of 

channel measurement based on ML output. 

 

NOTE 8 - A “service egress point” of a node is a point where services exposed by the node 

(producer role) can be accessed. A “service ingress point” of a node is a point from where 

services from other nodes can be consumed (consumer role). 

 

2) machine learning function orchestrator (MLFO). 

As defined in clause 3, MLFO is a logical node with functionalities that manage and orchestrate 

the nodes of ML pipelines based on ML Intent and/or dynamic network conditions.  

NOTE 9 – MLFO selects and reselects the ML model based on, e.g. its performance.  

NOTE 10 – The placement of the ML pipeline nodes, based on the corresponding network 

capabilities and constraints of the ML application, is the responsibility of the MLFO.   

NOTE 11 – MLFO also provides chaining functionality, i.e., connecting ML nodes together to 

form an ML pipeline. For example, chaining can be used to connect an SRC node instantiated in 

the access network with C and PP nodes instantiated in the core network. The chain itself is 

declared in the ML application specification and its technology-specific implementation in the 
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network is done by the MLFO. The MLFO determines the chaining considering the constraints 

(e.g., timing constraints for prediction). 

NOTE 12 – Figure 4 includes ML Intent to emphasise its important role as input to MLFO. ML 

Intent is a declarative description which is used to specify an ML application. ML Intent does not 

specify any technology-specific network functions to be used in the ML application and provides 

a basis for mapping ML applications to diverse technology-specific network functions. ML 

Intent may use a meta-language specific for machine learning to define ML applications. 

3) ML sandbox. 

ML sandbox is an isolated domain which allows hosting of separate ML pipelines to train, test 

and evaluate them before deploying them in a live network. For training or testing, ML sandbox 

can use data generated from simulated ML underlay networks and/or live networks. 

NOTE 13 – ML sandbox may benefit from ML techniques such as supervised machine learning 

to train, test and evaluate ML models. 

In addition to the above high-level architectural components, the following supporting 

architectural aspects are to be noted: 

o Service-based architecture (SBA) [b-ETSI TS 129 500] may be used to interface ML 

functionalities with ML underlay networks. Similarly, for the ML pipeline in sandbox, SBA 

may be used to interface the ML functionalities with the simulated ML underlay networks.  

This provides a uniform reference point towards the ML overlay for NFs and the simulated 

ML underlay networks, alike.  

SBA may also be used between ML pipeline nodes themselves, and to manage the ML 

functionalities by the MLFO.  

o Data handling reference points are defined between the ML pipeline and the simulated or 

live ML underlay networks. Using these reference points, the impacts to the ML underlay 

networks are localised to the source of data and target of configurations (as a result of ML 

pipeline execution).  

NOTE 14 – Extensions of existing protocols may be used at the data handling reference 

points to minimise the architectural impacts to the ML underlay networks. 

NOTE 15 – Non-SBA protocols need to be used at the data handling reference points in case 

the network functions in the ML underlay networks are not SBA-capable.  

 

With reference to Figure 3, the arrows 2 and 3 show the paths to the ML pipeline for the data 

generated from the simulated ML underlay networks and the ML underlay networks, 

respectively. The arrows 1 and 4 show the paths from the ML pipeline for configuration of 

the target based on ML output in the simulated ML underlay networks and the ML underlay 

networks, respectively. 

 

Appendix II provides the mapping of the architectural components and supporting architectural 

aspects to the high-level requirements provided in clause 7. 

8.2 High-level architecture 

The high-level architecture shown in Figure 4 is derived from the high-level requirements specified 

in clause 7 and builds upon the architectural components described in clause 8.1.  
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Figure 4 – High-level architecture 

The reference points shown in Figure 4 are the following: 

1, 2:  Data handling reference points between simulated ML underlay networks and an ML 

pipeline in ML sandbox subsystem. 

3:  Reference point between ML sandbox subsystem and ML pipeline subsystem. 

4: Reference point between ML pipeline subsystem and ML underlay networks. 

NOTE 1 – This reference point represents the data handling reference points shown as 

arrows 3 and 4 in Figure 3. 

5, 6:  Reference points between Management subsystem and, ML pipeline subsystem and ML 

sandbox subsystem, respectively. 

7:  Reference point between MLFO and other management and orchestration functions of 

Management subsystem. 

8, 9:  Reference points between ML pipeline nodes located in different levels. 

 

The three subsystems of the high-level architecture as shown in Figure 4 are: 

• Management subsystem. This subsystem includes MLFO and other management and 

orchestration functions, e.g. those defined in [ITU-T Y.3111]. 

The management subsystem enables to extend the management and orchestration mechanisms 

used for future networks including IMT-2020 to ML pipeline nodes. This brings uniformity to 

the management of ML functionalities and NFs.  

The MLFO works in coordination with the other functions of the management subsystem to 

manage the ML pipeline nodes.  

NOTE 2 – The reference point(s) between the functions of the management subsystem and NFs 

in the ML underlay networks complies(y) with the reference points defined in the related 

specifications, e.g. [ITU-T Y.3111]. These reference points are out of scope of this 

Recommendation and thus are not shown in Figure 4. 

NOTE 3 – The interaction between MLFO and the other functions of the management subsystem 

may be achieved using service-based architecture (SBA). 

• ML pipeline subsystem. The ML pipeline is a logical pipeline that can be overlaid on existing 

network infrastructures. The services of the MLFO are used for instantiation and setup. 
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Integration aspects of such ML pipeline overlay on technology-specific ML underlay networks 

may require extension or definition of specific protocols and APIs.  

In addition, the following points are to be noted: 

− SBA may be used for interfacing between NFs and ML pipeline nodes as well as between ML 

pipeline nodes themselves. As a first example, a SRC node exposes interfaces for consuming 

data from the NFs and producing data towards the collector (C) node. As a second example, a 

SINK node exposes interfaces for consuming the ML output from the distributor (D) node and 

produces such configurations to the NFs which it interfaces with.  

NOTE 4 – Due to the heterogeneity of NFs and ML underlay networks, SBA may not be 

supported by NFs in the ML underlay networks. In such cases, protocols and APIs specific to 

those ML underlay networks are used between the ML pipeline nodes and the NFs. 

− The placement and chaining of the ML pipeline nodes are controlled by the MLFO and this 

control may be influenced by factors such as:  

▪ Inputs from the ML Intent to the MLFO which may impose constraints on the placement of 

ML pipeline nodes.  

NOTE 5 – The requirement to place an ML model (M) node on a network computing 

resource which provides a specific type of acceleration capability is an example of 

constraints on the placement of an M node. 

▪ Feedback received by the MLFO from the management and orchestration functions of the 

ML underlay networks or from the ML pipeline nodes may provide inputs on the placement 

and chaining of ML pipeline nodes.  

NOTE 6 – Decoupling of the location of the ML pipeline nodes from their functionalities, 

except in the case of performance constraints, is achieved using the placement and chaining 

mechanisms. 

− The deployment of an ML pipeline in future networks including IMT-2020 may span different 

levels. In this case, reference points between nodes located in different levels of an ML 

pipeline are used to allow ML pipeline multi-level distribution.  

NOTE 7 – As shown in Figure 4, an ML pipeline may be distributed over multiple levels, e.g. 

a specific deployment may distribute the pipeline across UE, AN and CN. Based on the 

specific ML application, different ways of distributing the ML pipeline nodes are possible. 

• ML sandbox subsystem. An ML sandbox subsystem allows ML pipelines to adapt to dynamic 

network environments such as those of future networks including IMT-2020 where a variety of 

conditions may change (e.g., air interface conditions, UE position, network capabilities and 

resources). The ML sandbox subsystem includes ML pipeline(s) and simulated ML underlay 

networks, and it is managed by the MLFO according to the specifications in the ML Intent. The 

ML sandbox subsystem allows network operators to study the effect of ML outputs before 

deploying them on live ML underlay networks. Feedbacks from the functions of the management 

subsystem are provided to the ML sandbox subsystem so that the ML pipelines of the ML 

sandbox subsystem can adapt to the dynamically changing network environments.  

The following points are to be noted:  

− The reference point between ML pipeline subsystem and ML sandbox subsystem allows the 

ML pipelines to interface with the ML sandbox subsystem for training and update of ML 

models. 

− Data from the ML underlay networks and/or the simulated ML underlay networks may be 

used to train the ML models in the ML sandbox subsystem. 

− The management of the ML pipeline nodes in the ML sandbox subsystem is also controlled by 

the MLFO. This allows the MLFO to train and select the ML model(s) for a given ML 

application. 
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8.3 General guidelines for realization of the high-level architecture 

General guidelines for realization of the high-level architecture on different technology-specific 

underlay networks are as follows: 

• Instantiation of the ML pipeline nodes: an ML application is described using ML Intent. The 

flow of information in an ML application can be represented by the chaining in an ML pipeline. 

The data from various source nodes, e.g. coming from various underlying networks, need to be 

gathered (by a collector node) and pre-processed (by a pre-processor node) before feeding these 

data to the ML model (model node). The output of the ML model is then used to apply policies 

(by a policy node) that will be implemented (by a SINK node).  

An ML application can be realized by instantiating nodes of the ML pipeline with specific roles 

(e.g., SRC, C, SINK), and associating these nodes to the technology specific underlying 

network functions, based on the corresponding requirements of the ML application and the 

capabilities of the underlying network functions.  

The instantiation is performed by the MLFO in coordination with the other management and 

orchestration functions. 

• Interfacing of ML application with underlying network functions: there are two points of 

specific interfacing with the underlying network functions for an ML application - the SRC and 

the SINK nodes. The SRC nodes may have either an SBA based interface to the associated NFs 

which produce data or a technology-specific interface for non-SBA capable NFs. Similarly, the 

SINK nodes may have an SBA based interface to the associated NFs which enforce the ML 

output policies or a technology-specific interface for non-SBA capable NFs.  

• Management of the ML pipeline: this is done by the MLFO in coordination with the other 

management and orchestration functions. 

• ML model training and evaluation in the ML sandbox: this is controlled by the MLFO 

independently of the ML underlay networks. The reference point between ML sandbox 

subsystem and ML pipeline subsystem is used to transfer trained ML models, data for training 

and ML model updates between the ML sandbox subsystem and the ML underlay networks 

which interact with the live ML pipeline. 

Appendix I gives examples of applying the above guidelines to the realization of the high-level 

architecture on technology-specific underlay networks. 

9. Security considerations 

This Recommendation describes the architectural framework of machine learning which is expected 

to be applied in future networks including IMT-2020: therefore, general network security 

requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-T 

Y.3101].  

It is required to prevent from unauthorized access to, and data leaking from, an ML pipeline, 

whether or not they have a malicious intention, with implementation of mechanisms regarding 

authentication and authorization, external attack protection, etc. 
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Appendix I  

Realisation of the high-level architecture on technology-specific underlay networks 

(This appendix does not form an integral part of this Recommendation.) 

 

Figure I-1 gives an example of realisation of the high-level architecture on an IMT-2020 network 

[b-ITU-T Y.3104] [ITU-T Y.3111].  

 

Figure I-1 – Example of realisation of the high-level architecture in an IMT- 2020 network 

This example of realisation is represented in the following manner: the ML pipeline shows the ML 

pipeline node positions wherever the nodes are hosted, e.g., CN, AN, UE or management functions. 

For example, the ML pipeline represented by arrows 1→2→4→ML pipeline 2 uses inputs from UE 

to make predictions at CN (e.g., MPP-based ML applications). 

NOTE - The sandbox subsystem is not shown for simplicity in Figure I-1, but its functionality is 

applicable also to Figure I-1. 

The following describes different realization instances with respect to requirements identified in 

clause 7: 

  

• Realisation instance in support of requirements in clauses 7.1 and 7.2:  

– Consider arrows 5→4→ML pipeline 2→6: this ML pipeline uses inputs from CN and 

possibly a combination of UE inputs to make predictions at CN and applies them to the 

management functions. This application of ML output can in turn affect configurations in 

different levels (e.g., SON decisions made at CN or closed loop decisions on resource 

allocations done in the network). 

– Consider arrows 1→3→ML pipeline 1→7: this ML pipeline uses inputs from UE and hosts 

an ML model in AN for latency sensitive decisions to be applied in AN itself. 

• Realisation instance in support of requirements in clause 7.3: 
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– Consider arrow 1: this can be realised using RRC. 

– Consider arrows 2, 3, 4, 5, 7: this can be realised as an extension of reference points in CN 

[b-ITU-T Y.3104]. 

– Consider arrow 6: this can be realized via reuse of reference points defined in [ITU-T 

Y.3111]. 

• Realisation instance in support of requirements in clause 7.4: 

– UE is a resource-constrained device, hence only the SRC is instantiated in UE. This 

constraint is specified in the ML Intent. 

• Realization instance in support of requirements in clause 7.5: 

– The collectors in AN and CN are placed by the MLFO based on the specifications of the ML 

applications in the ML Intent. For latency sensitive applications in AN, ML pipeline 1 is 

used. ML pipeline 2 is used for latency tolerant applications. The chaining is done according 

to the requirements specified in the ML Intent. 
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Appendix II 

Mapping of the architectural components and supporting aspects to the requirements in 

clause 8 

 (This appendix does not form an integral part of this Recommendation.) 

 

Table II-1 provides the mapping of the architectural components and supporting aspects to the 

requirements in clause 7. 

Table II-1 – Mapping of the architectural components and supporting aspects to the 

requirements 

Architectural 

components and 

supporting aspects 

Requirements Mapping explanation 

ML pipeline See clauses 7.1 and 7.2. The ML pipeline provides a common 

vocabulary for ML in future networks 

including IMT-2020. By defining the ML 

pipeline nodes, it becomes possible to 

consider the evolution of ML separately from 

the underlay networks.  

Instantiation of these nodes form an 

important part of deployment of ML overlay 

on different underlay networks. The functions 

of these nodes are defined independently of 

their location in the network, and hence this 

allows flexible placement of such nodes in 

the network. Split, merge and chaining of ML 

pipeline nodes allows deploying complex 

functions from these basic nodes. 

MLFO See clauses 7.2, 7.4 and 

7.5 

The MLFO orchestrates and manages the ML 

pipeline nodes. It is also responsible for 

optimal placement and chaining of ML 

pipeline nodes in the network. It implements 

these functions in coordination with the 

management and orchestration functions. The 

declarative specifications of the ML 

applications are supported by the MLFO by 

converting them into underlay-specific 

deployments. It also selects the models and 

reselects them based on the needs of the ML 

applications and other constraints defined in 

the ML Intent. 

ML sandbox See clause 7.5 This subsystem provides the ability to train, 

evaluate and monitor the performance of ML 

models before deploying them in a real 

network. It interfaces with the underlay 
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networks for transfer of data or trained 

models. In addition, it uses the simulated ML 

underlay networks which may generate data 

required for training the ML models. 

ML Intent See clause 7.4 Written in a metalanguage, this architectural 

supporting aspect defines the ML application, 

its needs in terms of data input, configuration 

output, any other constraints or 

characteristics. It is used as input towards the 

functionalities of the MLFO. This is the input 

for MLFO to create a deployable ML pipeline 

(one which conforms to the requirements) on 

specific underlay networks. By standardising 

this architectural aspect, it is possible for 

third party solution providers to integrate 

with the ML pipeline. 

SBA See clause 7.3 This architectural supporting aspect is used to 

interface between the underlay network 

functions and the ML pipeline. It provides the 

necessary loose coupling between the ML 

overlay and the ML underlay networks. SBA 

is also used to interface between the 

simulated ML underlay networks and the ML 

pipeline. It is used to train the ML pipeline 

and to configure the simulated ML underlay 

networks using the ML pipeline. 
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