
3GPP TS 32.158 V15.2.0 (2019-06)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Management and orchestration;

Design rules for REpresentational State Transfer (REST) Solution Sets (SS)

(Release 15)
 [image: image1.jpg]s

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

REST, HTTP, API
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2019, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
General rules
6
4.1
Information models and resources
6
4.1.1
Information models
6
4.1.2
Resources
6
4.1.3
Resource archetypes
6
4.1.4
Mapping of information models to resources
6
4.2
Managed object naming and resource identification
7
4.2.1
Managed object naming
7
4.2.2
Resource identification
7
4.2.3
Mapping of DNs to URIs
7
4.3
Media types
7
4.4
URI structure
8
4.5
Response status codes
8
5
Basic design patterns
8
5.1
Design pattern for creating a resource
8
5.1.1
Creating a resource with identifier creation by the MnS Producer
8
5.1.2
Creating a resource with identifier creation by the MnS Consumer
9
5.2
Design pattern for reading a resource
9
5.3
Design pattern for updating a resource
9
5.4
Design pattern for deleting a resource
10
5.5
Design pattern for subscribe/notify
10
5.5.1
Concept
10
5.5.2
Subscription creation
10
5.5.3
Subscription deletion
11
5.5.4
Notification emission
11
5.5.5
Subscription retrieval
12
6
Advanced design patterns
12
6.1
Design pattern for scoping and filtering
12
6.2
Design pattern for attribute selection
13
6.3
Design pattern for partially updating a resource
13
7
Resource representation formats
14
7.1
Introduction
14
7.2
Top-level object
14
7.3
Data objects
14
7.4
Data arrays
14
7.5
Error objects
15
7.6
Resource objects
15
7.7
Resource objects carried in data objects and arrays
16
8
REST SS specification template
17
Annex A (informative):
Change history
20

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

The present document defines design rules for REpresentational State Transfer (REST) Solution Sets (SS). These rules are applied when specifying REST Solution Sets.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[3]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".

[4]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[5]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[6]
IETF RFC 7159: " The JavaScript Object Notation (JSON) Data Interchange Format".

[7]
draft-wright-json-schema-01 (October 2017): "JSON Schema: A Media Type for Describing JSON Documents".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[8]
draft-wright-json-schema-validation-01 (October 2017: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON".

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[9]
draft-wright-json-schema-hyperschema-01 (October 2017): "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON.

Editor's note: The above document cannot be formally referenced until it is published as an RFC.
[10]
OpenAPI Specification (https://github.com/OAI/OpenAPI-Specification)

[11]
IETF RFC 5789: "PATCH Method for HTTP".
[12]
IETF RFC 7396: "JSON Merge Patch".
[13]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch".
[14]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer".
[15]
XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999 (https://www.w3.org/TR/xpath-10/)

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

CRUD
Create, Retrieve, Update, Delete
DC
Domain Component
DN
Distinguished Name
DNS
Domain Name Service

FQDN
Fully Qualified Doman Name
HTTP
Hypertext Transfer Protocol

JSON
JavaScript Object Notation

LDN
Local Distinguished Name

MnS
Management Service

REST
REpresentational State Transfer

RPC
Remote Procedure Call
TCP
Transmission Control Protocol
URI
Uniform Resource Identifier

4
General rules

4.1
Information models and resources

4.1.1
Information models

An information model is a representation of a system. Typical models do not reflect all facets of the system, but only certain aspects required to solve the management problem the model is designed for. 3GPP follows an object-oriented modelling approach. Models are built from managed object classes. Relationships between classes represent the logical connections. Models are specified formally with class diagrams of the Unified Modelling Language (UML).

The instantiation of a managed object is called managed object instance. All managed object instances together with the relationships between them are depicted in an object diagram.

4.1.2
Resources

HTTP uses a different terminology based on the notion of resources, as defined in clause 2 of RFC 7231 [2]. Each resource is represented by a resource representation as defined in clause 3 of RFC 7231 [2]. Valid resource representations are e.g. XML instance documents or JSON instance documents.

4.1.3
Resource archetypes

Resources can be classified according to their structure and behaviour into resource archetypes. This helps specifying clear and understandable interfaces. The following three archetypes are defined:

-
Document resource: This is the standard resource containing data in form of name value pairs and links to related resources. This kind of resource typically represents a real-world object or a logical concept.

-
Collection resource: A collection resource is grouping resources of the same kind. The resources below the collection resource are called items of the collection. An item of a collection is normally a document resource. Collection resources typically contain links to the items of the collection and information about the collection like the total number of items in the collection. Collection resources can be further distinguished into server-managed and client-managed resources. Collection resources are also known as container resources.

-
Operation resource: Operation resources represent executable functions. They may have input and output parameters. Operation resources allow some sort of fall back to an RPC style design in case application specific actions cannot be mapped easily to CRUD style operations.

4.1.4
Mapping of information models to resources

RESTful SS shall be specified in a way that managed object instances are described by document resources. Collection resources have no equivalent in an information model unless some dedicated collection class is introduced.

4.2
Managed object naming and resource identification

4.2.1
Managed object naming

4.2.1.0
Distinguished Name (DN)

The Distinguished Name (DN) is used in 3GPP to uniquely identify a managed object instance within a specific name space. The DN is a comma (",") separated list of Relative Distinguished Names (RDNs). Each managed object instance has an associated RDN. The sequence of RDNs is governed by name containment relationships in the UML class diagram describing the modelled network. The RDN consists of a naming attribute name separated by an equal sign ("=") from the naming attribute value. The naming attribute name is equal to the class name of the MOI.

In addition to the RDNs associated to a managed object instance the DN may have as leftmost RDN whose naming attribute name is "DC" (Domain Component) and whose value is a domain name. A DN with DC is globally unique.

The DN concept is described in detail in TS 32.300 [3].The following example DN has a DC.

DN = "DC=operatorA.com,subNetwork=south,managedElement=a,eNBFunction=1,cell=1"

4.2.1.1
Global and local namespaces
A DN in the global name space is globally unique and starts with the RDN of the global root. A DN in a local name space starts with the RDN of the local root and is unique only within this name space. A DN in a local namespace is also referred to as Local Distinguished Name (LDN). The DN of the local root relative to the global root is called DN prefix. The concatenation of DN prefix and LDN is equal to the globally unique DN of a managed object.

The local root is typically the root of the network resource model representing the managed network.

4.2.2
Resource identification

HTTP uses a subset of the generic Uniform Resource Identifier (URI) scheme (RFC 3986 [4]) defined in RFC 7230 [5] for target resource identification.

http-URI = "http:" "//" authority path-abempty ["?" query] ["#" fragment]

The path component is an absolute path (one that starts with a single slash character) or empty.
The origin server is identified by the authority component, which includes a host identifier and an optional path TCP port. The hierarchical path component and optional query component serve as an identifier for a potential target resource within that origin server’s name space. The optional fragment component allows for indirect identification of a secondary resource.The host identifier is either an IP address or an indirect identifier such as a FQDN to be resolved with DNS.

URIs are used by HTTP for routing and addressing of target resources. They shall not be used for other purposes or as an alternative for DNs.
4.2.3
Mapping of DNs to URIs

URIs are globally unique. For this reason only a globally unique DN with DC is mappable into a URI. The mapping rules are as follow:

-
The DN prefix is mapped semantically to the authority component of the URI. The syntax of the DN prefix is modified to match the syntax of the authority component.

-
The LDN is mapped semantically to the path component of the URI. The syntax of the LDN is modified to match the syntax of the path component.

When mapping a LDN the equal sign "="shall be used as delineator between the naming attribute name and naming attribute value when constructing a RDN.

URI-RDN = {namingAttributeName} "=" {namingAttributeValue}
The URI-LDN is the concatenation of URI-RDNs separated by a slash "/".
URI-LDN = *("/" RDN)
For example, the LDN

LDN = "subNetwork=south,managedElement=a,eNBFunction=1,cell=1"

maps to

URI-LDN = "/subNetwork=south/managedElement=a/eNBFunction=1/cell=1"

and the LDN

LDN = "managedElement=a,eNBFunction=1,cell=1"

to

URI-LDN = "/managedElement=a/eNBFunction=1/cell=1"

When constructing the authority part from the DN prefix, it shall be reformatted according to the name conventions applying to FQDNs. For example, the DN prefix

DN-prefix = "DC=operatorA.com"

maps to

URI-DN-prefix = "operatorA.com"

and the DN prefix

DN-prefix = "DC=operatorA.com,subNetwork=south"

to

URI-DN-prefix = "south.subNetwork.operatorA.com"

The complete URIs for the examples are

http://operatorA.com/subNetwork=south/managedElement=a/eNBFunction=1/cell=1

http://south.subNetwork.operatorA.com/managedElement=a/eNBFunction=1/cell=1
The constructed URI-DN-prefix is a FQDN that can be registered into a name resolution service such as DNS. The sole presence of a constructed FQDN does not mean it can be resolved to an IP address and there is a server listening at that address.
Using the mapping rule, a DN is mapped predictably into the URI authority component and path component.
The leftmost part of the path component may include one or more path segments ("label")
http://operatorA.com/{label}/subNetwork=south/.../cell=1

allowing to structure the resource hierarchy, for example
http://operatorA.com/3GPPmanagemen/ProvMnS/v1500/subNetwork=south/.../cell=1
The character set allowed in DNs is much bigger than the character set allowed in the path component and authority component of a URI. Care needs to be taken when selecting the naming attribute names und values that the mapping from a DN to a URI does not become impossible as a consequence of not mappable characters.
4.3
Media types

The format of resource representations carried in the message body is indicated by the media type in the Content-Type and Accept header fields. Media types that may be supported are:

-
application/json (RFC 7159 [6])

-
application/merge-patch+json (RFC 7396 [12])
-
application/json-patch+json (RFC 6902 [13])
JSON resource representations shall conform to JSON Schema ([7], [8], [9]).
4.4
URI structure

URIs identifying resources representing managed object instances shall follow a common structure given by

http://{URI-DN-PREFIX}/{root}/{MnSName}/{MnSVersion}/{URI-LDN}
where:

{URI-DN-PREFIX}

indicates the authority part of the URI constructed from the DN prefix.

{root}

indicates an optional root for structuring the resource hierarchy.

{MnSName}

indicates the optional MnS name.

{MnSVersion}

indicates the optional version of the MnS.

{URI-LDN}

indicates the resource path constructed from the LDN.

As seen above, to construct the URI from a DN, it is necessary to map the "DNPrefixPlusRDNSeparator" as defined in clause 7.3 of [3], the “LocalDN” as defined in clause 7.3 of [3], and to add the additional path components "/{root}/{MnSName}/{MnSVersion}".

To allow for a predictive mapping from the URI to the original DN it is necessary to specify "/{MnSName}/{MnSVersion}" in such a way that the beginning of the "LocalDN" can be identified.

4.5
Response status codes

The response status codes as defined in section 6 of RFC 7231 [2] shall be supported.

5
Basic design patterns

5.1
Design pattern for creating a resource

5.1.1
Creating a resource with identifier creation by the MnS Producer

Operations to create a resource shall be specified with the HTTP POST method, when the MnS Producer shall create the identifier of the new resource.

[image: image3.png]MnS Consumer

12201

MnS Consumer

| 1. POST ._.Jresource(ResourceRepresentation) _ |
Representation) |

Created (ResourceRepresentati

MnS Praducer

on)

MnS Praducer

Figure 5.1.1-1: Flow for creating a resource with HTTP POST

The procedure is as follows:

1)
The MnS Consumer sends a HTTP POST request to the MnS Producer. The target URI identifies the parent resource below which the new resource shall be created. The message body shall carry a complete resource representation.

2)
The MnS Producer returns the HTTP POST response. On success, "201 Created" shall be returned. The "Location" header shall be present and carry the URI of the new resource. The URI is constructed by the MnS Producer by creating an identifier for the new resource and appending a new path segment containing this identifier to the request URI. The message body shall carry the complete representation of the new resource. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.1.2
Creating a resource with identifier creation by the MnS Consumer

Operations to create a resource shall be specified with the HTTP PUT method, when the MnS Consumer wishes to impose the identifier of the new resource to the MnS Producer.

[image: image4.png]MnS Consumer MnS Praducer

| 1. PUT .__/resource(ResourceRepresentation) _!
Representation) |

| 2,201 Created (ResourceRepresentation)
2201 Created (ResourceRepresentation) |

MnS Consumer MnS Praducer

Figure 5.1.2-1: Flow for creating a resource with HTTP PUT

The procedure is as follows:

1)
The MnS Consumer sends a HTTP PUT request to the MnS Producer. The target URI identifies the resource to be created. The message body carries the complete resource representation.

2)
The MnS Producer returns the HTTP PUT response. On success, "201 Created" shall be returned. The Location header shall carry the URI of the new resource and the message body the complete representation of the new resource. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.2
Design pattern for reading a resource

Operations to read the representation of a resource shall be specified with the HTTP GET method. The resource to be read is identified with a URI.

[image: image5.png]MnS Consumer I MnS Praducer I

1. GET ..esource '
(L GET.Jesouwee)
1 2. 200 OK (ResourceRepresentation) |
2200 OK [ResourceRepresentation) |

MnS Consumer I MnS Praducer I

Figure 5.2-1: Flow for reading a resource

The procedure is as follows:

1)
The MnS Consumer sends a HTTP GET request to the MnS Producer. The resource to be read is identified with the URI. The message body shall be empty.

a)
If the URI identifies a document resource, the document resource shall be returned.

b)
If the URI identifies a collection resource, all document resources of the collection shall be returned.

2)
The MnS Producer returns the HTTP Get response. On success, "200 OK" shall be returned. The resource representation is carried in the response message body. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.3
Design pattern for updating a resource

Operations to update the complete representation of a resource shall be specified with the HTTP PUT method. The resource to be updated is identified with a URI.

[image: image6.png]MnS Consumer MnS Praducer

>
3_(2,200 OK (ResourceRepresentation) or 204 No Content |

| 1. PUT .__/resource(ResourceRepresentation)

MnS Consumer MnS Praducer

 Figure 5.3-1: Flow for updating a resource

The procedure is as follows:

1)
The MnS Consumer sends a HTTP PUT request to the MnS Producer. The resource to be updated is identified with the URI. The message body carries the new resource representation. Note, the complete resource representation needs to present.

2)
The MnS Producer returns the HTTP PUT response to the MnS Consumer. On success, "200 OK" or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information. In case the resource does not exist, the resource is created in case this is supported (see subclause 5.1.2).

5.4
Design pattern for deleting a resource

Operations to delete the representation of a resource shall be specified with the HTTP DELETE method. The resource to be deleted is identified with a URI in the request message.

[image: image7.png]MnS Consumer I MnS Praducer I

1. DELETE ...resource |
11 DELETE . Jresource o |
| 2.204Nocontent |

MnS Consumer I MnS Praducer I

Figure 5.4-1: Flow for deleting a resource

The procedure is as follows:

1)
The MnS Consumer sends a HTTP DELETE request to the MnS Producer. The resource to be deleted is identified with the URI. The message body is empty.

2)
The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content" shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.5
Design pattern for subscribe/notify

5.5.1
Concept

HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to notifications. These mechanisms need to be modelled based on special subscription resources and the available HTTP methods. When notifications are used the server shall expose at least one subscription resource.

5.5.2
Subscription creation

To subscribe to notifications the subscriber shall send a HTTP POST request to the subscription resource.

[image: image8.png]MnS Consumer

111, POST ... /subscription_resource(Subscrptioninformation) |

MnS Praducer

1220

Created (ResourceRepresentation)

MnS Consumer

MnS Praducer

Figure 5.5.2-1: Flow for creating a subscription

The procedure is as follows:

1)
The MnS Consumer (notification subscriber) sends a HTTP POST to the MnS Producer. The URI shall indicate a container subscription resource. The resources representing existing subscriptions are created below the container resource. The subscriber shall indicate in the message body the URI of the resource notifications shall be sent to (notification sink) and the type of notifications that are subscribed to. Additional filter information may be included in the message body.

2)
The MnS Producer returns "201 Created" on success. The message body carries the representation of the created subscription resource. The Location header shall carry the URI of the created subscription resource. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.5.3
Subscription deletion

To cancel a subscription, the subscriber shall delete the corresponding resource with HTTP DELETE.

[image: image9.png]MnS Consumer MnS Praducer

| 1. DELETE ../subscription_resource _|
1 DELETE . ./subscription fesource , |

1 _ 2. 204 No content
2 MiNocontent |

MnS Consumer MnS Praducer

Figure 5.5.3-1: Flow for deleting a subscription

The procedure is as follows:
1)
The MnS Consumer (notification subscriber) sends a HTTP DELETE to the MnS Producer. The URI shall indicate the subscription resource to be deleted.

2)
The MnS Producer returns the HTTP DELETE response to the MnS Consumer. On success, "204 No Content" shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.5.4
Notification emission

To send a notification on the occurrence of a notifiable event the MnS Producer sends a HTTP POST request to the notification sink.

[image: image10.png]MnS Consumer MnS Praducer

| 1. POST. fnotification_sink(NotificationCantent)
ST netfieation sk (fetieationtontent) |

1 2. 204 No content :
s

MnS Consumer MnS Praducer

Figure 5.5.4-1: Flow for sending a notification

The procedure is as follows:
1)
The MnS Producer sends a HTTP POST to the MnS Consumer. The URI identifies the notification sink. The notification content is included in the message body.

2)
The MnS Consumer returns "204 No Content". The message body shall be empty. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
This design pattern requires the MnS Producer (HTTP server) to contain a reduced feature HTTP client for sending HTTP POST requests, and vice versa, the MnS Consumer (HTTP client) to contain a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.

5.5.5
Subscription retrieval

The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component, to return only the subscriptions related to the client invoking the request.

[image: image11.png]MnS Consumer MnS Praducer

| 1. GET .. Jsubscription_resource |
1 GET.../subscription fesource |

| 2,200 OK (ResourceRepresentation)
2200 OK (ResourceRepresentation) |

MnS Consumer MnS Praducer

Figure 5.5.5-1: Flow for subscription retrieval

The procedure is as follows:

1)
The MnS Consumer sends a HTTP GET to the MnS Producer. The URI specifies the subscription resource to be read.

2)
The MnS Producer returns the HTTP Get response. On success, "200 OK" shall be returned. The representation of the subscription resource is carried in the response message body. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

6
Advanced design patterns

6.1
Design pattern for scoping and filtering
6.1.1
Introduction
Scoping is the process of targeting more than one resource for manipulation with HTTP methods. The URI query component shall be used for scoping resources below and including the resource identified by the URI path component.

Filtering is the process of selecting a subset of the scoped resources based on filtering criteria applied to the scoped resources. The URI query component shall be used for filtering.
Multiple query parameters shall be separated by an ampersand character ("&").
Scoping and filtering may be supported by the HTTP GET method. It is not supported by any other method.
When multiple resources are targeted for retrieval by HTTP GET, the respone message body with the selected resource set shall be constructed according to one of the following rules.

In the first method the resources are basically returned as a flat list of JSON objects. Their location in the hierarchical containment tree needs to be specified by e.g. their URI which needs to be returned for each resource.

In the second method the resources are returned inside the containment tree as specified by the JSON schema definition of the information model. The resources not selected are either not returned at all or returned empty, except for the resource identifiers, when their presence is required in the containment tree. The containment tree present in the response message shall always start with the root resource of the information model.
Allow the containment tree present in the response message body to start with the base resource?
6.1.2
Query parameters for scoping
Scoping is typically based on the resource hierarchy as specified by the name-containment relationship. A base resource is specified by the target URI, and one or more query parameters select one or more levels below and including the base object.
With one parameter the base resource and all resources until the level indicated by the query parameter can be selected. When the value of the query parameter is set to inifinite, the complete subtree starting at the base resource is selected.

Two query parameters for scoping allow for more sophisticated selection methods.
6.1.3
Query parameters for filtering
XPath 1.0 [15] shall be used for filtering scoped resources. A valid XPath expression returns a flat list of selected resources. Name-contained resources included in the selected resources shall be removed before constructing the response message according to clause 6.1.1.
The name of the query parameter shall be "filter".
	scope
	M
	SEQUENCE
 scopeType
 ENUM
 - BASE_ONLY
 - BASE_NTH_LEVEL,
 - BASE_SUBTREE,
 - BASE_ALL
 scopeLevel
 INTEGER
Note:
The "scopeLevel" parameter shall contain valid information, if the value of the "scopeType" parameter is equal to "BASE_NTH_LEVEL" or "BASE_SUBTREE".
The "scopeLevel" parameter shall be ignored, if the value of the "scopeType" parameter is equal to "BASE_ONLY" or "BASE_ALL".
	This parameter scopes a set of managed object instances based on their hierarchy defined by the name-containment relationships between them.

The selection starts from the base object given by the "baseObjectInstance" parameter. Its level is considered to be at zero.

The "scopeType" parameters controls the set of selected managed object instances:
· BASE_ONLY: Selects only the base object

· BASE_NTH_LEVEL: Selects all objects on the level, which is indicated by the "scopeLevel" parameter below the base object.
· BASE_SUBTREE: Select the base object and all of its subordinate objects down to and including the level indicated by the "scopeLevel" parameter.
· BASE_ALL: Select the base object and all of its subordinate objects.

6.2
Design pattern for attribute and sub-attribute selection

6.2.1
Introduction

This design pattern allows to specify attributes within resources selected by the target URI, and the scoping and filtering query parameters.
Often attributes have no scalar values but are complex structured data types with an own hierarchy. In this case it may be desirable to identify not only the complete attribute but also sub-attributes.
The attributes or sub-attributes to be returned shall be specified in the query part of the URI.
Attribute selection or sub-attribute selection may be supported by the HTTP GET method. It is not applicable to any other method.
To construct the response not selected attributes and sub-attributes are removed from the resource representation.
6.2.2
Query parameters for attribute and sub-attribute selection
In case only complete attributes are retrieved the name of the query parameter shall be "attributes". The value of "attributes" shall be a list of the names of the attribute to be selected, separated by a comma (",").
In case it shall be possible to select sub-attributes the syntax of JSON Pointer in JSON String Representation [14] shall be used. The context resource for the construction of the JSON Pointer is the resource identified by the target URI. When multiple sub-attributes shall be selected the corresponding JSON Pointer String Representations shall be separated a comma (","). The name of the query parameter shall be "subattributes".
6.3
Design pattern for partially updating a resource

HTTP PUT allows replacing only the complete resource. For partial resource updates HTTP PATCH (RFC 5789 [11]) shall be used. The set of changes to be applied to the target resource is described in the request message body (patch document). The format of the patch document is identified by its media type.

RFC 7396 [12] specifies a simple format in JSON (JSON Merge Patch) allowing to describe a set of modifications to be applied to the target resource's content. JSON Merge Patch works at the level of name/value pairs contained in a JSON object. The media type is "application/merge-patch+json".
Three types of patches are described in RFC 7396 [12]:

1)
Replacing the value of an already existing name/value pair by a new value.

2)
Adding a new name/value pair.

3)
Removing an existing name/value pair.

JSON Merge Patch does not allow manipulation of arrays other than replacing the complete array. It is not possible to change items in an array or to add new items.
[image: image12.png]MnS Consumer

| 1. PATCH .. fresource(PartialResourceRepresent

MnS Praducer

ation) !

12200 0K

(ResourceRepresentation) or 204 No

Content !

MnS Consumer

MnS Praducer

Figure 6.3-1: Flow for partially updating a resource

The procedure flow is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the URI. The message body carries a set of modification instructions in the form a partial resource representation to be applied to the identified resource.

2)
The MnS Producer returns the HTTP PUT response to the MnS Consumer. On success, "200 OK" or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
6.4
Design pattern for manipulating multiple resources
6.4.1
Introduction

Clause 6.1 discusses a method for retrieving multiple resources with a single GET request. This clause presents methods allowing to manipulate (create, delete, update) multiple resources with a single PATCH request.
6.4.2
Enhanced JSON Merge Patch
Enhanced JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]) allowing to manipulate individual items in an array supposed each item has an identifier that is unique within the name space of the array. The identifier of an array item has to be present in any Enhanced JSON Merge Patch document. This patch format allows to update attributes and sub-attributes, and to create resources with id creation by the MnS consumer.
Open Issues:

What should be the target URI? The document root or "highest" parent resource of all resources to be manipulated?
Deletion of a resource can be indicated by a "null" value. Question is on which node? Maybe "attributes"?
Media type for Enhanced JSON Patch needs to be specified
6.4.3
JSON Patch
JSON Patch (RFC 6902 [13]) allows to manipulate multiple resources with a single PATCH request. The media type is "application/json-patch+json". The target URI shall identify the resource that is the first common parent resource of the resources to be manipulated or any other common parent like the document root.
Examples
Example information model
The following JSON instance document is used for the examples in this chapter.
	{

 "SubNetwork": {

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmn-id": {

 "mcc": 456,

 "mnc": 789

 }
 },

 "ManagedElement": [

 {

 "id": "ME1",
 "attributes": {

 "userLabel": " Berlin NW 1",

 "vendorname": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [
 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552
 }

 }

]
 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": " Berlin NW 2",

 "vendorname": "Company XY",

 "location": "Grunewald"

 }

 }

]

 }

}

Open issue: Add here also the schema and the schema used on the HTTP message bodies.
Retrieval of resources
Retrieval of a single complete resource
The retrieve a complete "YxzFunction"resource the MnS consumer might send the following request.
	GET /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Accept: application/json

The response might look like
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "XyzFunction": {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

}

Attribute and sub-attribute selection on a single resource
To retrieve only the "userLabel" attribute and the "mcc" sub-attribute of the "plmn-id" the MnS consumer might send
	GET /SubNetwork=SN1?subattributes=attributes/userLabel,attributes/plmn-id/mcc HTTP/1.1

Host: example.org

Content-Type: application/json

The response contains only the selected attribute and sub-attribute.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "SubNetwork": {

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "plmn-id": {

 "mnc": 789

 }
 }
 }

}

Alternatively one might send as well

	GET /SubNetwork=SN1?attributes=userLabel&subattributes=attributes/plmn-id/mcc HTTP/1.1

Host: example.org

Content-Type: application/json

Retrieval of multiple complete resources using scoping and filtering

Creation of resources

Creation of a resource with PUT

In this example a new "XyzFunction" resource is created. The target URI specifies the location of the new resource. The "id" of the new resource is "XYZF1" and created by the MnS consumer.
	PUT /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json
{

 "XyzFunction": {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

}

Creation of a resource with POST

When creating a new resource with POST the target URI identifies the parent resource of the new resource to be created. The identifier of the new resource is created by the MnS producer, hence the "id" is equal to "null" in the POST request. If the "id" carries a value, then the MnS producer may consider that as a non-binding recommendation by the MnS consumer.
	POST /SubNetwork=SN1/ManagedElement=ME1 HTTP/1.1

Host: example.org

Content-Type: application/json
{

 "XyzFunction": {

 "id": "null",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 }

}

The POST response carries the location of the new resource.
Add here the POST response
Creation of a resource with JSON Patch

This example shows the creation of a resource with JSON Patch. The target URI identifies the parent resource of the resource to be created.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json

[
 {

 "op": "add",

 "path": "/ManagedElement=ME1",

 "value": {

 "id": "ME1",

 "class": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 1",

 "vendorname": "Company XY",

 "location": "TV Tower"

 }

 }

 }
]

Deletion of a resource
Deletion of a resource with DELETE
Deletion of a resource with JSON Patch

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json

[
 {

 "op": "remove",

 "path": "/ManagedElement=ME1"

 }
]

Complete Update of a resource

Partial update of a resource
JSON Merge Patch
The first example shows how the attribute "attrA" of the "XyzFunction with the "id" of "YXZF1" is changed from "xyz" to "def" using Merge Patch.
	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json
{

 "XyzFunction": {

 "id": "XYZF1",

 "attributes": {

 "attrA": "def"

 }

 }

}

In the second example the sub-attribute "mcc" of the attribute "plmnId" is updated to "654". The employed patch method is again Merge Patch.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json

{

 "SubNetwork": {

 "id": "SN1",

 "attributes": {

 "plmn-Id": {

 "mcc": 654

 }

 }

 }

}

Enhanced JSON Patch
With Enhanced JSON Patch examples look the same as above
JSON Patch
With JSON Patch the examples look like

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json

[
{

 "op": "replace",
 "path": "/XyzFunction=XYZF1/attributes/attrA",
 "value": 654
 }
]

and
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[
 {
 "op": "replace",
 "path": "/SubNetwork=SN1/attributes/plmn-Id/mcc",
 "value": 654
 }
]

Open issue: Should the target URI and the "path" overlap by one path segment.
Manipulating multiple resources
Enhanced JSON Merge Patch
In this example the attribute "userLabel" and the sub-attribute "mcc" of the "subNetwork" resource is updated. A new "XyzFunction" resource is created as well as a new "ManagedElement" resource.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/enhmerge-patch+json
{

 "SubNetwork": {

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW-1",

 "plmn-id": {

 "mcc": 456

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF3",

 "attributes": {

 "attrA": "fgh",

 "attrB": 555

 }

 }

]

 },

 {

 "id": "ME3",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorname": "Company XY",

 "location": "Spandau"

 }

 }

]

 }

}

JSON PATCH
The same resource modifications as in the previous chapter expressed using JSON Patch are given by
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json

[
 {

 "op": "replace",
 "path": "/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1/attributes/userLabel",
 "value": "Berlin NW-1"
 },
 {

 "op": "replace",
 "path": "/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1/attributes/plmn-id/mcc",
 "value": 654
 },
 {

 "op": "add",
 "path": "/SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {

 "id": "XYZF3",

 "attributes": {

 "attrA": "fgh",

 "attrB": 555

 }

 }
 },
 {

 "op": "add",
 "path": "/SubNetwork=SN1/ManagedElement=ME3",
 "value": {

 "id": "ME3",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorname": "Company XY",

 "location": "Spandau"

 }

 }

 }
]

7
Resource representation formats

7.1
Introduction

According to clause 4.3 the media type specifies only that JSON is used as resource representation format carried in the HTTP request and HTTP response message bodies. Some resource patterns are quite common and it is desirable to use a common pattern throughout different APIs. This clause identifies some patterns frequently encountered and provides a JSON schema for them.

7.2
Top-level object

A single JSON object shall be at the top-level of the document carried in the message body of all HTTP requests and HTTP responses.

{"type": "object"}

Example:

{}

Members of the top-level object can be either a data object, a data array or an error object.

7.3
Data objects

Data objects are carried in HTTP requests and in HTTP responses in case of success. One and only one data object shall be a member of a top-level object. If a data object is present, no error object shall be present.

{

 "type": "object",

 "properties": {

 "data": {

 "type": "object",

 "properties": {}

 }

 }

}

Example:

{

 "data": {}

}

7.4
Data arrays

Data arrays are carried in HTTP requests and in HTTP responses when data is transferred. One and only one data array shall be a member of a top-level object. If a data array is present, no error object shall be present.

{

 "type": "object",

 "properties": {

 "data": {

 "type": "array",

 "items": {}

 }

 }

}

Example JSON instance:

{

 "data": []

}

7.5
Error objects

Error objects are carried in HTTP responses in case of failure. One and only one error object shall be a member of a top-level object.

{

 "type": "object",

 "properties": {

 "error": {

 "type": "object"
 "properties": {}
 }

 }

}

Example JSON instance:

{

 "error": {}

}

7.6
Resource objects

Resource objects are representations of managed object instances. They shall be compliant to the following JSON schema:

{

 "type": "object",

 "properties": {

 "href": { "type": "string" },

 "class": { "type": "string" },

 "id": { "type": "string" },

 "attributes": {

 "type": "object",

 "properties": {}

 }

 },
 "required": ["id"]
}

The "attributes" object has no properties in this generic schema. The "attributes" object properties shall be specified elsewhere.
Example JSON schema:
{

 "type": "object",

 "properties": {

 "href": { "type": "string" },

 "class": { "type": "string" },

 "id": { "type": "string" },

 "attributes": {

 "type": "object",

 "properties": {

 "attribute1": { "type": "string" },

 "attribute2": { "type": "integer" }

 }

 }

 }

Attribute definitions defined elsewhere are referenced, for example:

{
 "type": "object",

 "properties": {

 "href": { "type": "string" },

 "class": { "type": "string" },

 "id": { "type": "string" },

 "attributes": {

 "$ref": "http://3gpp.org/28623/genericNrm.json#definitions/managedElement"

 }

 }

}
7.7
Resource objects carried in data objects and arrays

When a resource object is carried in a data object the schema is given by

{

 "type": "object",

 "properties": {

 "data": {

 "type": "object",

 "properties": {

 "href": { "type": "string" },

 "class": { "type": "string" },

 "id": { "type": "string" },

 "attributes": {

 "type": "object",

 "properties": {}
 }

 }

 }

 }

}
Example JSON instance:
{

 "data": {

 "href": "/subnetwork/south/managedElement/6",

 "class": "managedElement",

 "id": "6",

 "attributes": {

 "attribute1": "This is a string.",

 "attribute2": 39

 }

 }

}
Multiple resource objects are carried in a data array.

{

 "type": "object",

 "properties": {

 "data": {

 "type": "array",

 "items": {
 "type": "object",

 "properties": {

 "href": { "type": "string" },

 "class": { "type": "string" },

 "id": { "type": "string" },

 "attributes": {
 "type": "object",

 "properties": {}

 }
 }
 }

 }

 }

}
Example JSON instance:

{

 "data": [{

 "href": "/subnetwork/south/managedElement/6",

 "class": "managedElement",

 "id": "6",

 "attributes": {

 "attribute1": "This is a string.",

 "attribute2": 39

 }

 },

 {

 "href": "/subnetwork/south/managedElement/5",

 "class": "managedElement",

 "id": "5",

 "attributes": {

 "attribute1": "This is another string.",

 "attribute2": 139

 }

 }]

}
8
REST SS specification template

This clause contains the REST SS specification template.

W
Mapping of operations

W.1
Introduction

Table W.1-1: Mapping of IS operations to SS equivalents

	IS operation
	HTTP Method
	Resource URI
	Qualifier

	
	
	
	

	
	
	
	

W.2
Operation <operation 1>
W.3
Operation <operation 2>
X
Usage of HTTP

Y
Resources

Y.1
Resource structure

Y.2
Resource definitions

Y.2.1
Resource <resource 1>
Y.2.1.1
Description

Y.2.1.2
URI

Y.2.1.3
HTTP methods

Y.2.1.3.1
<method 1>

This method shall support the URI query parameters specified in table Y.2.1.3.1-1.

Table Y.2.1.3.1-1: URI query parameters supported by the <method 1> on this resource
	Name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

This method shall support the request data structures specified in table Y.2.1.3.1-2 and the response data structures and response codes specified in table Y.2.1.3.1-3.

Table Y.2.1.3.1-2: Data structures supported by the <method 1> request body on this resource

	Data type
	P
	Cardinality
	Description

	
	
	
	

Table Y.2.1.3.1-3: Data structures supported by the <method 1> response body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	
	
	
	
	

Y.2.1.3.2
<method 2>

Y.2.2
Resource <resource 2>
Z
Data type definitions

Z.1
General

Table Z.1-1: Data types defined in the present document
	Data type
	Reference
	Description

	
	
	

Table Z.1-2: Data types imported

	Data type
	Reference
	Description

	
	
	

Z.2
Structured data types

Z.2.1
Type <TypeName 1>

Table Z.2.1-1: Definition of type <TypeName 1>

	Attribute name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Z.2.2
Type <TypeName 2>

Z.3
Simple data types and enumerations

Z.3.1
General

This subclause defines simple data types and enumerations that are used by the data structures defined in the previous subclauses.

Z.3.2
Simple data types

Table Z.3.2-1: Simple data types

	Type Name
	Type Definition
	Description

	
	
	

Z.3.3
Enumeration <EnumType1>

Table Z.3.3-1: Enumeration < EnumType1>

	Enumeration value
	Description

	
	

Z.3.4
Enumeration <EnumType2>

Annex A (normative)

OpenAPI specification

It contains this leading paragraph:

"This clause describes the capabilities of the service in the structure of the OpenAPI Specification Version 3.0.1 [10]. The OpenAPI document is represented in the JSON format option."

Annex A (informative):
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-09
	SA#81
	
	
	
	
	Upgrade to change control version
	15.0.0

	2018-09
	
	
	
	
	
	Editorial fix (EditHelp/MCC)
	15.0.1

	2018-12
	SA#82
	SP-181051
	0001
	1
	F
	Extend resource representation format descriptions
	15.1.0

	2019-06
	SA#84
	SP-190378
	0003
	1
	F
	Correct the DN to URI mapping rules
	15.2.0

