24

3GPP TSG-SA5 Meeting #125AH
S5-194437
Sapporo, JAPAN, 25 - 28 June 2019

Revision of S5-19318

Source:

Ericsson

Title:
Rel-16 pCR 32.160 v120 YANG style guide
Document for:
Approval

Agenda Item:
4.3.5
1
Decision/action requested

The group is asked to approve this contribution.
2
References

[1]

3GPP TS32.160 " Management and orchestration; Management service template"
[2]

pCR 194192: " Rel-16 pCR 32.160 v120 YANG style guide"
3
Rationale

This contribution asks to include the mapping of stage 2 to stage 3 Yang in clause 6 “6
NRM Stage 3 definition rules” of [1].

The Yang guidelines agreement is document in pCR 194192. This pCR places all Yang guidelines in one clause and removes all existing clauses in clause 6.

A separate pCR submission will place all JSON guidelines in as one clause in clause 6.

4
Detailed proposal

First Change
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 28.533: "Management and orchestration; Architecture framework".

[3]
3GPP TS 32.156: "Telecommunication management; Fixed Mobile Convergence (FMC) Model Repertoire"

[4]
ITU-T Recommendation M.3020 (07/2017): "Management interface specification methodology".

[5]
3GPP TR 21.801: "Specification drafting rules".

[6]
3GPP TS 28.622: "Telecommunication management; Generic Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS)".

[7]
3GPP TS 28.541: "Management and orchestration; 5G Network Resource Model (NRM); Stage 2 and stage 3".

[8]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)".

[9]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".

[10]
ITU-T Recommendation M.3020 (07/2011): "Management interface specification methodology" – Annex E "Information type definitions – type repertoire".

[12]
3GPP TS 28.532: " Management and orchestration; Generic management services"
[x1]
IETF RFC8528: "YANG Schema mount "
Second Change
6
NRM Stage 3 definition rules

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

6.Y
Stage 3 YANG style and example
The following chapters specify how specific Stage to constructs should be mapped to YANG. Each chapter may include the following sections:
· The chapter of Reference [3] for which mapping is specified.

· An example model that will be mapped.
· Mapping rules.
· An example of the resulting YANG statements.
6.Y.1
InformationObjectClass – abstract
6.Y.1.0
Introduction

Reference [3] clause 5.4.2
6.Y.1.1
YANG mapping

An abstract class shall be mapped to a “grouping”. The name of the “grouping” will be <IocName>Grp. The “grouping” shall contain all attributes of the class. The naming attribute shall only be contained as a YANG comment, because all other attributes will be contained in a YANG “non-presence container” named “attributes”, however the “key leaf” must be contained immediately by the “list”, it cannot be inside a child “container”.
// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is either not included or

 // included only as a comment not as a real definition

 // leaf id {

 // type string;

 // description “naming attribute of the IOC”;

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}
}
	

6.Y.2
Naming attribute

6.Y.2.0
Introduction

Reference [3] clause 3.1
6.Y.2.1
Yang mapping
The “leaf” that is mapped from the naming attribute shall be used in the YANG “key” statement. This is usually called “id” as defined in the Top_ class in TS 28.620 Umbrella Information Model (UIM), clause 4.3.8.
6.Y.3
InformationObjectClass – concrete

Reference [3] clause 5.3.2
6.Y.3.1
YANG mapping

A concrete class shall be mapped to a “list” that “uses” a “grouping”. The “grouping” shall be named <IocName>Grp. It shall contain all attributes of the class in the same manner as the “grouping” for an abstract class. The “list” shall be named <IocName>. The NamingAttribute shall be used as a key. All other attributes shall be placed inside a “container” named “attributes”. The “container attributes” will facilitate asking for all attributes of an object instance with a simple subtree or XPath filter.
//concrete class

grouping MyConcreteClassGrp {
 // contains all attributes in the same manner as

 // a grouping for abstract class

}

list MyConcreteClass {

 key namingAttribute; // usually named ‘id’
 leaf namingAttribute {…}

 container attributes {
 uses MyConcreteClassGrp ;
 }
 //YANG lists representing contained classes

}

6.Y.4
Generalization relationship - inheritance from another class

6.y.5.0
Introduction

Reference [3] clause 5.2.5
Example model: Class MyManagedFunction inherits from class ManagedFunction.
6.Y.4.1
YANG mapping
Generalization/Inheritance relationships are mapped to the inheriting class using the “grouping” of the inherited class in its own “grouping”.
// Inheritance
grouping ManagedFunctionGrp {

 // Attributes of ManagedFunction
}

grouping MyManagedFunctionGrp {

 uses ManagedFunctionGrp;

 //additional attributes

}

list MyManagedFunction {

 key id;

 leaf id {}

 container attributes {

 uses MyManagedFunctionGrp;
 }
}

6.Y.5
Name containment
6.y.5.0
Introduction

Reference [3] clause 5.2.4 - Composite aggregation association relationship
Example model: The classes ManagedElement. and MyClass are defined in YANG module TS1. According to the stage2 definition ManagedElement contains MyClass
. Another YANG module (TS2) defines class GnodeB. According to the stage2 definition ManagedElement contains GnodeB.

6.Y.5.1
YANG mapping

The containment of classes defined in the same YANG module is mapped as embedded “lists”.
Containment of classes defined in different YANG modules is mapped using the “augment” statement.
// Class containment

module TS1 {
 grouping MyClassGrp {

 // subnetwork attributes

 }

 grouping ManagedElementGrp {

 // managedElement attributes

 }

 list ManagedElement {

 key id;
 leaf id {}

 attributes {
 use ManagedElementGrp;
 }
 list MyClass {

 key id;
 leaf id {}

 attributes {
 uses MyClassGrp;
 }
 }
 // place to insert/augment managedFunctions e.g. EnodeB
 }
}

module TS2 {
 import _TS1 { prefix ts1; };

 grouping GNodeBGrp {

 // GNodeB attributes

 }

 augment /ts1:ManagedElement {

 list GNodeB {

 key id;
 leaf id {}

 attributes {
 uses GNodeBGrp;
 }
 // lists representing child classes in the same module
 }

 }
}

6.Y.6
Recursive containment - reference based solution

The NRM information object class stage 2 definition contains one case where a class contains itself (so called recursive containment): the It is the SubNetwork class.

The name containment that a class has with itself in the stage 2 definition shall be modeled using a pair of ”leaf-list” references between the instances of the class. The references shall be named “leaf-list parents {…}” and “leaf-list containedChildren {…}”. Note the 2 reference “leaf-lists” should be defined directly under the “list” defining the class not in its “grouping” because the “path” statements are specific to each class, so the “leaf-lists” must not be inherited.

 list SubNetwork {

 key id;

 leaf id {..}

 container attributes {

 uses SubNetworkGrp;

 leaf-list parents {

 description "Reference to all containg SubNetwork instances

 in strict order from the root subnetwork down to the immediate

 parent subnetwork.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetworks.

 This reference MUST NOT be present for the top level SubNetwork and

 MUST be present for other SubNetworks.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 leaf-list containedChildren{

 description "Reference to all directly contained SubNetwork instances.

 If subnetworks form a containment hierarchy this is

 modeled using references between the child SubNetwork and the parent

 SubNetwork.";

 type leafref {

 path "../../../SubNetwork/id";

 }

 }

 }

The following instance data example shows how the reference values specify the SubNetwork hierarchy:

Top level: subnet=root

 | \ +----------------+

 | +--------+ |

 | | |

Level 1: subnet=A1 subnet=B1 subnet=C1

 | \ +----------------+

 | +--------+ |

 | | |

Level 2: subnet=A2 subnet=B2 subnet=C2

 | \ +----------------+

 | +--------+ |

 | | |

Level 3: subnet=A3 subnet=B3 subnet=C3

Top level: id=root parents=null containedChildren= A1,B1,C1

Level 1: id=A1,(B1,C1) parents=root containedChildren = A2,B2,C2

Level 2: id=A2,(B2,C2) parents=root,A1 containedChildren = A3,B3,C3

Level 3: id=A3,(B3,C3) parents=root,A1,A2 containedChildren = A4,B4
When reading/writing self-contained classes only the last such class instance needs to be specified in the Netconf request as that uniquely identifies the exact instance. The following Netconf request could be used to retrieve all attributes
of SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <!-- SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22 -->

 <filter type="subtree"/>

 <SubNetwork>

 <id>B2</id>

 <NRFrequency>

 <id>22</>

 <attributes/>

 </NRFrequency>

 </SubNetwork>

 </get-config>

 </rpc>

There is no need to specify the ancestors SubNetwork=root, SubNetwork=A1 as any subNetwork can be addressed directly.

6.Y.7
Multi-root management tree

YANG supports multi-rooted managed models natively; the standardized IETF models have many root “list”/”container” nodes.

6.Y.8
Alternative containment

Stage 2 models allows multiple different name-containment hierarchies. A particular name-containment hierarchy implemented by a specific vendor/product can be discovered in run-time, by reading the content of the ietf-yang-library and the ietf-yang-schema-mount modules.

YANG provides multiple possible methods to model alternative containment hierarchies.

In cases where the number of YANG modules affected by the alternative containment is small, the use of a feature-controlled augmentation is proposed.

 augment "/SubNetwork" {

 if-feature ExternalsUnderSubNetwork ;

 uses ExternalNRCellCUWrapper;

 }

In cases where the number of YANG modules affected by the alternative containment is large (cca. more than 8), the following mapping is proposed (using the optional containment of SubNetwork and ManagedElement as an example):

- If the ManagedElement is a root class, no further documentation or implementation steps are required.

- If the ManagedElement shall be contained under Subnetwork it shall be mounted under the SubNetwork “list” using the YANG schema mount mechanism as described in RFC8528.[x1]
Mounted schemas will appear in Netconf, the CLI and management GUIs as if they were part of a common containment hierarchy.

Yang Schema Mount provides vendor the flexibility of arranging the containment tree in accordance of operator intention, and provides a way for a consumer to discover the actual mount and containment hierarchy in run-time.
// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is included only as a comment

 // not as a real definition

 // leaf id {

 // type string;

 // description “naming attribute of the IOC”;

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}

}

//concrete class

grouping MyConcreteClassGrp {...}

list MyConcreteClass {

 key namingAttribute; // see uses separate clause about naminAttribute

 leaf namingAttribute {…}

 container attributes {

 uses MyConcreteClassGrp ;

 }

 //YANG lists representing contained classes

}

// Inheritance

grouping ManagedFunctionGrp {

 //basicAttributes

 // except naming attribute

}

grouping MyManagedFunctionGrp {

 uses ManagedFunctionGrp;

 //additional attributes

}

list MyManagedFunction {

 key id;

 leaf id {}

 container attributes {

 uses MyManagedFunctionGrp;

 }

}

// Class containment

//TS1

grouping SubnetworkGrp {

 // subnetwork attributes

}

grouping ManagedElementGrp {

 // managedElement attributes

}

list Subnetwork {

 key id;

 leaf id {}

 attributes {

 use SubnetworkGrp;

 }

 list ManagedElement {

 key id;

 leaf id {}

 attributes {

 uses ManagedElementGrp;

 }

 // place to insert/augment managedFunctions e.g. EnodeB

 }

}

//TS2

import _3gpp-yang-model-ts1 { prefix ts1; };

grouping GNodeBGrp {

 // GNodeB attributes

}

augment /ts1:Subnetwork/ts1:ManagedElement {

 list GNodeB {

 key id;

 leaf id {}

 attributes {

 uses GNodeBGrp;

 }

 // lists representing child classes in the same TS

}

3GPP

