Page 1

3GPP TSG-SA5 Meeting #125AH
S5-194192

Sapporo, JAPAN, 25 - 28 June 2019

Source:

Ericsson

Title:
Rel-16 pCR 32.160 v120 YANG style guide
Document for:
Approval

Agenda Item:
4.3.5
1
Decision/action requested

In this box give a very clear / short /concise statement of what is wanted.
2
References

TBD

First Change
Y
Stage 3 YANG style and example
Y.1
InformationObjectClass – Abstract

Reference [TS 32.156 Model repertoire] clause 5.4.2
Y.1.1
YANG mapping

An abstract class shall be mapped to a “grouping”. The name of the grouping will be <IocName>Grp. The grouping contains all attributes of the class. The naming attribute shall only be contained as a YANG comment, because all other attributes will be contained in a non-presence container named “attributes”, however the key leaf must be contained immediately by the list, it cannot be inside a child container.

	// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is included only as a comment

 // not as a real definition

 // leaf id {

 // type string;

 // description “naming attribute of the IOC”;

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}

}

Y.2
Naming Attribute

Reference [TS 32.156 Model repertoire] clause 3.1
Y.2.1
Yang Mapping
The leaf that is mapped from the naming attribute shall be used in the YANG “key” statement. This is usually called “id” as defined in the Top_ class in TS 28.620 Umbrella Information Model (UIM), clause 4.3.8.
Y.3
InformationObjectClass – Concrete

Reference [TS 32.156 Model repertoire] clause 5.3.2
Y.3.1
YANG mapping

A concrete class shall be mapped to a “list” that “uses” a “grouping”. The grouping shall be named <IocName>Grp. The list shall be named <IocName>. The NamingAttribute shall be used as a key. All other attributes shall be placed inside a container named “attributes”. This will facilitate asking for all attributes of an object instance with a simple subtree or XPath filter.

Y.2
Generalization relationship - Inheritance from another class

Reference [TS 32.156 Model repertoire] clause 5.2.5
Class MyManagedFunction inherits from class ManagedFunction.
Y.2.1
YANG mapping
Generalization/Inheritance relationships are mapped to the inheriting class using the “grouping” of the inherited class in its own grouping.
Y.3
Recursive Containment - Reference Based Solution

The stage 2 contains one case where a class contains itself (so called recursive containment). It is the SubNetwork instance that name-contains another SubNetwork instance.

Classes are modeled as list. We need to model the stage 2 level of containment beween the instances of the class. This should be modeled as leaf/leaf-list references between the instance.

list SubNetwork {

 key id;

 uses Top_Grp;

 leaf parentSubNetwork {

 config false;

 type leafref {

 path ../id ;

 }

 }

 leaf-list childSubNetworks {

 config false;

 type leafref {

 path ../id ;

 }

 }

 container attributes {

 uses SubNetGrp;

 }

 //child classes

}

One example is:
Top level: subnet=root

 | \ +----------------+

 | +--------+ |

 | | |

Level 1: subnet=A1 subnet=B1 subnet=C1

 | \ +----------------+

 | +--------+ |

 | | |

Level 2: subnet=A2 subnet=B2 subnet=C2

 | \ +----------------+

 | +--------+ |

 | | |

Level 3: subnet=A3 subnet=B3 subnet=C3

Top level: id=root parentSubNetwork=null childSubNetworks= A1,B1,C1

Level 1: id=A1,(B1,C1) parentSubNetwork=root childSubNetworks= A2,B2,C2

Level 2: id=A2,(B2,C2) parentSubNetwork=A1 childSubNetworks= A3,B3,C3

Level 3: id=A3,(B3,C3) parentSubNetwork=A2 childSubNetworks= A4,B3

When reading/writing self-contained classes only the last such class instance need to be specified as that uniquely identifies the xact instance.

Retrieving attributes of SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22

 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <!-- SubNetwork=root, SubNetwork=A1, SubNetwork=B2, NRFrequency=22 -->

 <filter type="subtree"/>

 <SubNetwork>

 <id>B2</id>

 <NRFrequency>

 <id>22</>

 <attributes/>

 </NRFrequency>

 </SubNetwork>

 </get-config>

 </rpc>

There is no need to specify the ancestors SubNetwork=root, SubNetwork=A1 as the subnetwork can be addressed directly.

Y.4
Multiroot management tree

YANG supports multi-rooted managed models. The standardized IETF models have many root list/container nodes.

Y.5
Alternative Containment

Stage 2 models allows multiple different name-containment hierarchies. A particular name-containment hierarchy can be discovered in run-time, using the ietf-yang-library and the ietf-yang-schema-mount modules.

YANG provides multiple possible methods to model alternative containment hierarchies.

In cases where the number of alternatives is small, the use of a feature controlled augmentation is proposed.
 augment "/SubNetwork" {

 if-feature ExternalsUnderSubNetwork ;

 uses ExternalNRCellCUWrapper;

 }

 augment "/OlafNetwork" {

 if-feature ExternalsUnderOlafNetwork;

 uses ExternalNRCellCUWrapper;

 }

In cases where the number of alternatives is large, the following scheme is proposed:
· If the ManagedElement is a root class, no further documentation or implementation steps are required.

· If ManagedElement shall be contained under Subnetwork it shall be mounted under the list subnet3gpp:SubNetwork using the YANG schema mount mechanism as described in RFC8528.

Mounted schemas will appear in Netconf, the CLI and management GUIs as if they were part of a common containment hierarchy.

Yang Schema Mount provides vendor the flexibility of arranging the containment tree in accordance of operator intention, and also provides a way for consumer to discover the actual mount and containment hierarchy in run-time.

// abstract class MyClass_

grouping MyClass_Grp {

 // contains all contained attributes

 // the leaf of the namingAttribute is included only as a comment

 // not as a real definition

 // leaf id {

 // type string;

 // description “naming attribute of the IOC”;

 // }

 leaf attribute1 {..}

 leaf-list attribute2 {..}

}

//concrete class

grouping MyConcreteClassGrp {...}

list MyConcreteClass {

 key namingAttribute; // see uses separate clause about naminAttribute

 leaf namingAttribute {…}

 container attributes {

 uses MyConcreteClassGrp ;

 }

 //YANG lists representing contained classes

}

// Inheritance

grouping ManagedFunctionGrp {

 //basicAttributes

 // except naming attribute

}

grouping MyManagedFunctionGrp {

 uses ManagedFunctionGrp;

 //additional attributes

}

list MyManagedFunction {

 key id;

 leaf id {}

 container attributes {

 uses MyManagedFunctionGrp;

 }

}

