

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2017-2020

SG2-C161

STUDY GROUP 2

Original: English

Question(s): Q7/2 Geneva, 19-28 February 2019

CONTRIBUTION

Source: Beijing University of Posts and Telecommunications

Title: Draft X.rest: Guidelines for defining REST-based managed objects and

management interfaces

Purpose: Proposal

Contact: WANG Zhili

BUPT

China

Tel: +86 10 61198090 ext. 8726

Fax: +86 10 62283412

Email: zlwang@bupt.edu.cn

Contact: YU Peng

BUPT

China

Tel: +86 10 61198098 ext. 8710

Fax: +86 10 62283412

Email: yupeng@bupt.edu.cn

Contact: QIU Xuesong

BUPT

China

Tel: +86 10 61198065

Fax: +86 10 62283412

Email: xsqiu@bupt.edu.cn

Contact: LI Wenjing

BUPT

China

Tel: +86 10 61198090 ext. 8501

Fax: +86 10 62283412

Email: wjli@bupt.edu.cn

Contact: LIN Wei

Inspur

China

Tel: +86 10 56701901

Fax: +86 10 56701818

Email: lin.wei@inspur.com

Keywords: Distributed processing; (REST), managed objects, network management interfaces,

JSON, JSON Schema.

Abstract: This document defines a set of guidelines for managed object modelling and a

management interface for REST-based network management. It composes a

framework for REST-based network management interfaces along with draft Q.rest.

It specifies how REST-based management interfaces should be defined. It covers

generic accessing methods of XML-based managed objects, information modelling

in REST/HTTP and JSON schema. Some HTTP requests/responses and JSON

schema are provided for defining some basic data types: generic managed object

(MO) and generic MO accessing methods. This document and draft Q.rest together

compose a framework for REST-based network management interfaces with a wide

range of applications.

mailto:zlwang@bupt.edu.cn
mailto:yupeng@bupt.edu.cn
mailto:xsqiu@bupt.edu.cn
mailto:wjli@bupt.edu.cn
mailto:lin.wei@inspur.com

- 2 -

SG2-C161

Draft Recommendation ITU-T X.rest:

Guidelines for defining REST-based managed objects and management interfaces

1 Scope

The network management architecture defined in [ITU-T M.3010] introduces the use of multiple

management protocols. So far, the GDMO/CMIP, CORBA GIOP/IIOP, SMI/SNMP, Web

Service/SOAP are possible choices at the application layer. Based on the management interface

specification methodology defined in [ITU-T M.3020], more technology-based paradigms can be

introduced into network management interfaces, and REST/SOAP is now an additional paradigm

for network management.

This draft Recommendation, together with [ITU-T Q.rest] sets out to define a framework for

defining how interfaces supported by management systems and network elements should be

modelled using REST/JSON schema. It is within the scope of this Recommendation to provide the

following guidelines or instructions:

– principles for REST interface definitions;

– containment relationship and naming rules for managed entities;

– generic accessing methods for managed objects;

– inheritance of managed objects and interfaces;

– information modelling guidelines for REST/JSON based interfaces;

– style conventions for REST/HTTP and JSON schema specifications;

– common data type and exception definitions.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications

management network.

[ITU-T M.3020] Recommendation ITU-T M.3020 (2011), Management interface specification

methodology.

[ITU-T M.3160] Recommendation ITU-T M.3160 (2008),Generic Network Management

Information model - protocol neutral.

[RFC 3986] IETF RFC 3986: Uniform Resource Identifier (URI): Generic Syntax.

[RFC 7230] IETF RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax

and Routing.

[RFC 7231] IETF RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content.

[RFC 7232] IETF RFC 7232, Hypertext Transfer Protocol (HTTP/1.1): Conditional

Requests.

- 3 -

SG2-C161

[RFC 5789] IETF RFC 5789, PATCH Method for HTTP.

[RFC 6902] IETF RFC 6902, JavaScript Object Notation (JSON) Patch.

[RFC 6901] IETF RFC 6901, JavaScript Object Notation (JSON) Pointer.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

Editor’s Note: to be extended.

3.2 Terms defined in this Recommendation

This Recommendation does not define any new terms.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

BNF Backus-Naur Form

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

GDMO Guidelines for the Definition of Managed Objects

GIOP General Inter-ORB Protocol

HTTP Hyper Text Transfer Protocol

IIOP Internet Inter-ORB Protocol

JSON JavaScript Object Notation

REST REpresentational State Transfer

SMI Structure of Management Information

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

TMN Telecommunications Management Network

URI Unified Resource Identifier

XML extensible Markup Language

XSD XML Schema Definition

Editor’s Note: to be extended.

5 Conventions

A few conventions are followed in this Recommendation to make the reader aware of the purpose

of the text. While most of the Recommendation is normative, paragraphs succinctly stating

mandatory requirements to be met by a management system (managing and/or managed) are

preceded by a boldface "R" enclosed in parentheses, followed by a short name indicating the subject

of the requirement, and a number. For example:

https://baike.baidu.com/item/JavaScript

- 4 -

SG2-C161

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an "O"

instead of an "R". For example:

(O) EXAMPLE-2 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Examples of JSON are included in this Recommendation and normative JSON schema specifying

the data types, base classes and other modelling constructs of the framework are included in Annex

A. The JSON are written in a 10 point courier typeface:
{

 "title": "root",

 "items": {

 "title": "array item"

 }

}

6 Overview of a REST-based management framework

REST-based technologies have been widely used in the IT industry. Appendix I provides more

information on the features of web services technology. REST technology is similar to Web

Services technology, and can be used in network management interfaces.

This Recommendation together with [ITU-T Q.rest] sets up a framework for defining how

interfaces supported by management systems and network elements should be modelled using

REST APIs and JSON schema.

The REST-based management framework include the following aspects:

1) Managed object and interface definition guidelines:

– definition of managed objects using JSON schema;

– accessing methods for MOs;

– inheritance of MOs and interface operations;

– information modelling guidelines for REST-based interface operations;

– style idioms for JSON schema specifications.

2) REST supporting services for network management:

– definition of a REST-based notification services;

– definition of a REST-based heartbeat service;

– definition of a REST-based multiple object operations (MOO) service;

– definition of a REST-based containment service.

This Recommendation mainly deals with the managed object and interface definition guidelines,

and draft [ITU-T Q.rest] mainly deals with the REST-based supporting services for network

management. The two Recommendations together form a REST-based management framework.

- 5 -

SG2-C161

7 Principles for REST-based interface design

This clause identifies some interface design considerations that should be addressed by this

framework through REST interfaces. It provides the modelling principles for REST-based managed

objects and their accessing methods.

The REST-based design considerations related to REST APIs and JSON repertoire and modelling

concerns super-classes, naming of managed objects and service-oriented interfaces, operations and

notifications.

This Recommendation, along with [ITU-T Q.rest], defines a lightweight generic use of REST-based

interface design patterns. The management and controlling functions are defined using HTTP

methods, not an individual management object class.

The framework has the following principles to define a REST-based management information

model and interfaces.

– All interface interactions are defined as HTTP methods, each operation includes a request

and an optional corresponding response when needed.

– Each MOC is defined as an resource when exchanged through the management interface,

and each attribute or state of the MOC is defined as an element in the resource.

– The naming of MOC instances follows the concept of a URI, which can be accessed using a

HTTP request.

– There are four basic accessing methods for managed objects in the traditional TMN

management paradigm, which are: createMO, deleteMO, getMOAttributes,

setMOAttribute. These methods are redefined in this management framework using HTTP

POST, HTTP DELETE, HTTP GET, and HTTP PUT/PATCH. These methods are

applicable for every MOC instances, and the URI is used to indicate which instances are

accessed using these methods.

– Other interface control functions are defined as HTTP POST methods against an specific

resource.

– Common data types are defined in JSON schema which can be shared by application-

specific interface definitions.

– Notifications sent from the agent to the manager should follow the format and behaviour

defined in [ITU-T Q.rest]. The control of notification management services are also defined

in [ITU-T Q.rest].

8 Definition of a generic managed object using JSON schema

8.1 REST role in management interfaces

To support the software objects representing manageable resources, a base class is defined for use

in modelling network resources. Other MOCs (managed object class) in information models must

be derived from this base class in order to operate within this framework. Some generic accessing

methods and some other extended funcare defined to provide interfaces to manage MOs.

- 6 -

SG2-C161

Managing

system
RESTful

service

MO MOMO ...

Managed

system

RESTful

service
service supporting

REST APIs

MO Managed object

REST-based interface

Figure 1 – RESTful services role

Figure 1 shows how a managing system accesses a managed system that supports a web services

interface. A web services interface acts as an intermediate entity that enables a managing system to

manage proper MOs in a managed system representing manageable resources.

8.2 Definition of managed objects using JSON schema

An MO is the OSI management view of a resource that is subject to management, such as a

connection or an item of physical equipment. Thus, an MO is the abstraction of such a resource that

represents its properties for the purpose of management. An MO may include attributes that provide

information used to characterize itself and operations that represent its behaviours. The purpose of

the framework is to provide a collection of capabilities to manage these MOs. MOs need some

approaches to describe their properties and behaviours. In REST-based technology, an MO is a

managed entity that represents a manageable resource in terms of shared state and behaviour where

state and behaviour are separated through outsourcing of the behaviour to an assigned so-called

"managing entity" (e.g., a service and its interface) that takes a steward role with regard to the

behaviours of its allocated managed entities. Since an MO's state and behaviour can be separated,

state can be described by JSON schema and behaviour by REST APIs. One important benefit of

using an JSON document to store an MO's state is that REST APIs can also use JSON schema to

describe the data type of its exchanged messages, and these JSON-based MOs' information can be

exchanged without any modification.

8.2.1 Definition of a generic managed object class

A managed object class is a further abstraction of managed objects. All network resources have

some common attributes and all MOCs shall inherit, either directly or indirectly, from a super class,

namely a ManagedObject. Using ManagedObject to define new MOCs will be easier and faster and

provide better maintenance. As mentioned above, all MOCs are described in JSON schema and the

data type of ManagedObject is given in Table 1 and the attributes can be found in Table 2.

Table 1 – Data type of super class ManagedObject

ManagedObject:

 type: object

 Required: :

- objectClass

- objectInstance

properties:

 objectClass:

 type: string

 objectInstance:

 type: string

 Format: uri

 creationSource:

 $ref: ‘#/definitions/SourceIndicator’

- 7 -

SG2-C161

SourceIndicator:

type string

enum:

 - ResourceOperation

 - ManagementOperation

 - unknown

Table 2 – Attributes of super class ManagedObject

Attribute name Support qualifier Read qualifier Write qualifier

objectClass Mandatory Mandatory –

objectInstance Mandatory Mandatory –

creationSource Optional Mandatory –

As shown in Table 2, ManagedObject is made up of three attributes including objectClass,

objectInstance, and creationSource. An attribute has an associated value with an specific data type.

The attribute objectClass is used to identify the class type of this MO instance. The attribute

objectInstance is used to uniquely identify an MO instance, and the data type is string with the

format of uri, which will be further explained in formula (1). The attribute creationSource indicates

whether an MO is created automatically in a managed system, or by a managing system through a

management operation, or unknown.

In network management, each MOI is uniquely identified by the object instance name. Considering

the REST feature, each managed object can be regarded as a resource, and the URI as the unique

identifier of the resource can naturally be the only instance of the managed object. Resources in

REST include document resources, collection resources, and task resources. The object instance is

named URI string conforming to the following BNF paradigm specification.
URI = {URI-prefix}/{ResourcePath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

ResourcePath={DocumentResourcePath}|{CollectionResourcePath}|{TaskR

esourcePath}

DocumentResourcePath = *("/" RDN)

CollectionResourcePath=*("/"RDN)"/"{namingAttributeName}

TaskResourcePath=*("/"RDN) ["/" {namingAttribute}] "/" {actionName}

RDN={namingAttributeName} "=" {namingAttributeValue}

(1)

The attributes in the above formula should be the naming attribute of an MOC.

A complete JSON schema definition for the generic ManagedObject is defined in clause A.1.

(R) OBJECT-1. All the classes used to model resources on a managed system shall inherit (directly

or indirectly) from the ManagedObject described above and defined in the JSON schema in

clause A.1. The capabilities described above shall be supported.

8.2.2 Inheritance relationship of managed objects

Inheritance is an important concept in the object-oriented mechanism. When defining a new object

class, in order to reuse the definition of the existing object class, some or all of the features defined

in the existing object class can be inherited as the characteristics of the new object class. New object

Commented [WZL1]: Editor’s Note: To be confirmed.

- 8 -

SG2-C161

classes can also define additional features. In network management, all manageable managed object

classes inherit directly or indirectly from the ManagedObject base class, and extend their own

unique attribute definitions based on public attributes to more clearly express their own feature

information . In JSON Schema, the inheritance of an attribute is represented by "allOf".

Taking a managed element in a telecommunication network as an example, a managed element may

be composed of multiple frames, each of which includes several racks, and multiple slots are

included in a rack, and circuit packs performing various functions are inserted into the slots.

According to the inheritance relationship in [ITU-T M.3100], the related object classes and the

inheritance relationship between each object class can be shown in Figure 2.

Figure 2 – An example for inheritance relationship

Table 3 – Data type of Equipment and EquipmentHolder by extension

Equipment:

 allOf:

- $ref: ‘#/definitions/Managedobject’

- properties:

 ID:

 type: integer

 userLabel:

 type: string

 - required:

 - ID

 - userLabel

EquipmentHolder:

 allOf:

- $ref: ‘#/definitions/Equipment’

- properties:

 equiepmentHolderType:

 type: string

 holderStatus:

 $ref: “#/definitions/holderStatusType’

 - required:

 - equiepmentHolderType

 - holderStatus

Some managed objects may need to support multiple inheritance, and the “allOf” syntax of JSON

Schema itself supports multiple inheritance. In addition, JSON Schema is only used to describe the

attribute information of managed objects.

- 9 -

SG2-C161

8.2.3 Common attributes and data types

The following table shows some common attributes as well as some common data types that can be

shared by this framework.

Table 5 Standard attributes and data types

Attribute name Data type Description

administrativeState AdministrativeStateType See [ITU-T M.3701] for more details

availabilityStatus AvailabilityStatusSetType See [ITU-T M.3701] for more details

backedUpStatus BackedUpStatusType See [ITU-T M.3701] for more details

controlStatus ControlStatusSetType See [ITU-T M.3701] for more details

creationSource (Note) SourceIndicatorType See [ITU-T M.3701] for more details

externalTime ExternalTimeType

objectClass (Note) string It indicates an MOC

objectInstance (Note) uri It indicates an MO instance

operationalState OperationalStateType See [ITU-T M.3701] for more details

proceduralStatus ProceduralStatusSetType See [ITU-T M.3701] for more details

standbyStatus StandbyStatusType See [ITU-T M.3701] for more details

systemLabel string It indicates a label for a system.

unknownStatus UnknownStatusType See [ITU-T M.3701] for more details

usageState UsageState See [ITU-T M.3701] for more details

NOTE – These attributes are inherited by all managed objects.

The detailed JSON definitions for the above data types can be found in clause A.1.

8.2.4 Containment relationship of managed objects

Different from the inheritance relationship, the containment relationship is more reflected in the affiliation

between various network resources. As mentioned above, a switch device may include several racks, and one rack

may contain several chassis. A chassis can contain a number of slots, and a board that performs various functions

is inserted into the slot. There may be various ports on the board. In a containment relationship, an object class (or

object instance) used to contain other managed objects is called a superior, and an included object class (or object

instance) is called a subordinate. The names of the superiors and subordinates here are relative, and the

subordinates of one object can be the superiors of another object. The relation type ContainmentRelationshipType

is defined in JSON Schema, which defines five attributes including the relationship name, the parent class name,

the parent class multiplicity, the subclass name, the subclass multiplicity, and the named property, and is shown in

Figure 5.

- 10 -

SG2-C161

Figure 3 – The JSON Schema for ContainmentRelationshipType

8.2.5 Association relationship of managed objects
In addition to the inheritance and containment relationships, there are also association relationship between

managed objects, which are abstractions of network resources. An operation on one managed object may

influence the attributes of another one or more managed objects. There are many types of associations, such as

business relationships, control relationships, primary and secondary relationships, backup relationships, grouping

relationships, peer relationships, and so on. The management system must be able to detect the existence and

change of this association, and can align or coordinate the relationship through appropriate operations. Therefore,

various association relationships between managed objects must be modelled.

For the definition of association relationship, the JSON Schema of AssociationRelationshipType is defined.

The attributes of the association relationship include: association name, association direction, from association

class name, from association class attribute name, from association multiplicity, to association class name, to

association class attribute name, to association multiplicity. The types of the attributes are all string type. The

JSON Schema definition of the association type is shown in Figure 4.

Figure 4 – The JSON Schema for AssociationRelationshipType

- 11 -

SG2-C161

9 Accessing methods for managed objects

10 Inheritance of managed objects and interface operations

10.1 Attributes inheritance of managed objects

10.2 Considerations for the inheritance of interface operation

11 Information modelling guidelines for REST-based interfaces

12 Compliance and conformance

12.1 Standards document compliance

12.2 System conformance

12.3 Conformance statement guidelines

- 12 -

SG2-C161

Annex A

Common REST-based JSON schema definitions

In this annex, the common definitions of REST interfaces as well as some common JSON schema

based data types are defined.

A.1 JSON schema definitions for common data types and a generic managed object

Editor’s Note: to be extended.
ManagedObject:

 type: object

 Required: :

- objectClass

- objectInstance

properties:

 objectClass:

 type: string

 objectInstance:

 type: string

 Format: uri

 creationSource:

 $ref: ‘#/definitions/SourceIndicator’

SourceIndicator:

type string

enum:

 - ResourceOperation

 - ManagementOperation

 - unknown

- 13 -

SG2-C161

Appendix I

Background for REST and HTTP technologies

I.1 Background

REST technology is now broadly used in IT Industry. In some organization and fora, they have

started the research work on how to apply REST technology in network management field as an

alternative interface technology.

When using a REST technology in network management interfaces, some guidelines on how to use

it to defined interface and managed entities, as well as some supporting services should be

provided. These guidelines, supporting services and some common definitions of generic managed

objects together can be called the framework for REST-based paradigm.

The purpose of this document is trying to provide some related information in order to establish the

framework for defining REST based network management interface and supporting services, so that

in the future, specific REST-based interface definition can follow those guidelines, and reuse some

common services.

I.2 Short review of REST and HTTP

I.2.1 REST design principles

REST stands for REpresentational State Transfer. It is an architectural style defined by the

following principles:

(1) Client-server architecture

REST follows a client-server architecture. Client and server are linked by the uniform interface. The

server is concerned with data storage. The client manipulates this data with create, read, update and

delete (CRUD) operations. This architecture allows the client and server to evolve independently.

(2) Stateless servers

REST servers are stateless, meaning that no client context is stored on the server. It is the client

holding the session state. Each request from a client contains all the information required to service

the request.

(3) Cacheability

REST is cacheable. The client and any intermediary can cache responses, helping to improve

system scalability and performance.

(4) Layered System

REST is a layered system. A client cannot know if it is interacting with the end server or an

intermediate server on the way to the end server. Each component has only knowledge about the

component it is interacting with. All components are independent and easily replaceable or

extendable. This improves system scalability and enables load-balancing.

(5) Code on demand

Code on demand is an optional REST feature. It allows servers to transfer executable code to the

client, thereby extending the functionality of the client.

(6)Uniform interface

- 14 -

SG2-C161

The uniform interface is the most important aspect of REST. Client and server communicate via the

uniform interface. It is characterized by the following

- Resource identification: The key concept is to abstract information into resources. These

resources have a unique resource identification. Requests are directed towards resources.

- Resource representation: Each resource has one or multiple representations. Representations

can be in e.g. XML, JSON or HTML. Resource representations are exchanged over the wire

together with any representation metadata. The metadata provides information about the

representation, such as its media type, the date of last modification, or even a checksum.

- Self-descriptive messages: Messages must be self-descriptive. All the information required to

process the message is included in the message.

- Hypermedia as the engine of application state (HATEOAS): This refers to the capability of the

server to send hyperlinks to the client allowing the client to traverse and dynamically discover

resources without referring to external documentation.

I.2.2 HTTP methods

HTTP has several methods can be used, which are listed in Table 1:

HTTP methods Explanations

HTTP GET The HTTP GET method requests a representation of the resource

specified by the URI. It is used to retrieve one or multiple resources

from the server. The query component of the URI can be used for

filtering purposes in case more than one resource is scoped by the path-

abempty part of the URI. Only those resources passing the filtering

criteria are returned.

HTTP HEAD The HTTP HEAD method returns only the headers that are returned

with a HTTP GET method together with the message body, except for

the payload header fields. This method can be used to check if

resources exist.

HTTP POST The POST method sends data in the message body to the server. In

contrast to HTTP PUT, replacing the resource representation, it

requests the target resource to process the representation enclosed in

the request according to the resource’s own specific semantics. With

this method, it is possible to create a new resource.

When a new resource is created, 201 (Created) is returned. The

returned Location header carries the URI of the created resource. The

URI of the new resource is created by the server. The response message

body contains a representation of the created resource.

HTTP PUT The HTTP PUT method requests that the resource representation of the

target resource be created or replaced with the representation enclosed

in the request message payload. This method replaces always the

complete resource representation. Partial resource modifications are

not possible. If a resource at the URI specified in the request does not

exist yet, the server creates a new resource at this URI.

Conditional requests (RFC 7232) using e.g. the entity tag (ETag) can

be used to prevent accidentally overwriting modifications made to a

resource by another client ("lost update problem").

- 15 -

SG2-C161

HTTP DELETE The DELETE method requests that the origin server deletes the

resource identified by the Request-URI. This does not imply that the

underlying information is deleted as well.

HTTP CONNECT

HTTP OPTIONS

HTTP TRACE

HTTP PATCH The HTTP PUT method only allows a complete resource replacement.

For this reason, a new method, HTTP PATCH, has been defined by

IETF in RFC 5789 for partial resource modifications. The set of

changes to be applied is described in the request message body.

HTTP have already provided several methods to carry the interaction capabilities between

managing and managed systems.

I.3 Benefits of introducing REST into Network management domain

REST provides a simplified mechanism to connect applications regardless of the technology or

devices they use, or their location. They are based on industry standard protocols with universal

vendor support that can leverage the internet for low cost communications, as well as other

transport mechanisms. The loosely coupled messaging approach supports multiple connectivity and

information sharing scenarios via services that are self describing and can be automatically

discovered.

REST solutions uses HTTP as its operation protocols, which have been broadly used in the IT-

industry for years, and it is mature and cost effective. The following features can be made use of

when it is applied in the network management domain.

1) Good interoperability

REST solution has a good support for is universally interoperable, as far as the application support

the globally used protocol HTTP, it can be connected to the REST environment.

2) Loosely coupled

Loosely coupled systems require a much simpler level of coordination and allow for more flexible

reconfiguration, compared to tightly coupled systems.

REST solutions are self-describing software modules which encapsulates discrete functionality.

REST-based services are accessible via standard Internet communication protocol HTTP directly.

These services can be developed in any technologies (like C++, Java, .NET, PHP, Pearl etc.) and

any application can access these services. So, the REST-based services are loosely coupled and can

be used by applications developed in any technologies.

3) Broadly used

With the more rapid development of Internet-based technologies, REST-based services are now

broadly used in IT services industry, for example e-business, business-to-business applications.

4) Low cost

REST APIs are open standards, and many tools, products, technologies is based on HTTP

applications. This gives organizations a wide variety of choices, and they can select configurations

that best meet their application requirements. Developers can enhance their productivity because

with low cost, rather than having to develop their own solutions, they can choose from a ready

market of off-the-shelf application components or third-party tools.

- 16 -

SG2-C161

	Draft Recommendation ITU-T X.rest:
	Guidelines for defining REST-based managed objects and management interfaces
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of a REST-based management framework
	7 Principles for REST-based interface design
	8 Definition of a generic managed object using JSON schema
	8.1 REST role in management interfaces
	8.2 Definition of managed objects using JSON schema
	8.2.1 Definition of a generic managed object class
	8.2.2 Inheritance relationship of managed objects
	8.2.3 Common attributes and data types
	8.2.4 Containment relationship of managed objects
	8.2.5 Association relationship of managed objects

	9 Accessing methods for managed objects
	10 Inheritance of managed objects and interface operations
	10.1 Attributes inheritance of managed objects
	10.2 Considerations for the inheritance of interface operation

	11 Information modelling guidelines for REST-based interfaces
	12 Compliance and conformance
	12.1 Standards document compliance
	12.2 System conformance
	12.3 Conformance statement guidelines
	A.1 JSON schema definitions for common data types and a generic managed object

	I.1 Background
	I.2 Short review of REST and HTTP
	I.2.1 REST design principles
	I.2.2 HTTP methods
	HTTP has several methods can be used, which are listed in Table 1:

	HTTP have already provided several methods to carry the interaction capabilities between managing and managed systems.
	I.3 Benefits of introducing REST into Network management domain

