
3GPP TSG-SA5 Meeting #125
S5-193149
Newport Beach, US, 8-12 April 2019

Revision of S5-19xxxx
Source:
Ericsson

Title:

YANG solution style guide
Document for:
Discussion and endorsement
Agenda Item:

1 Decision/action requested

Discussion and approval
Table of Contents

11
Decision/action requested

33
References

34
Rationale

35
Proposal

35.1
Introduction

35.1.1
Scope

35.1.2
Goals

45.1.3
Principles

45.1.4
Standard Compliance

45.2
General Rules

45.3
Modeling Rules

45.3.1
Unique YANG Module names BASIC

45.3.2
Unique YANG Namespace

55.3.3
Unique YANG Module Prefixes

55.3.4
Module Structure BASIC

55.3.5
Module Header Statements

55.3.6
Provide Description and Reference Statements

55.3.7
YANG Module Revisions

65.3.8
Allowed YANG key value types BASIC

65.3.9
Multiple keys BASIC

65.3.10
Use X.731 Style state data nodes

65.3.11
Import without revision BASIC

65.3.12
ManagedElement/Subnetwork as a root for 3GPP modules BASIC

75.3.13
Avoid cardinality Limitations

75.3.14
Modeling of conditionally Mandatory Model parts

75.3.15
Use YANG Version 1.1 BASIC

75.3.16
Don’t use YANG statements with the default meaning

75.3.17
Avoid Naming Conflicts resolved by Namespace

85.3.18
Use Actions instead of RPCs

85.3.19
YANG deviation statement

85.3.20
Vendor Extensions BASIC

85.3.21
Reuse Standards from Other Standard Organizations

95.3.22
Module Documentation

95.3.23
YANG Constructs Not to be Used – Not needed

95.4
Managed object naming and resource identification

95.4.1
Naming Convention for YANG Schema node Identifiers

95.4.2
Referencing YANG based Managed Object

106
Mapping from Stage 2 Models to YANG

106.1
Object Orientation and YANG

106.2
InformationObjectClass - Abstract

106.2.1
YANG mapping

116.3
InformationObjectClass – Concrete

116.3.1
YANG mapping

116.4
Generic Abstract class

116.4.1
YANG mapping

126.1
Class containment

126.1.1
YANG mapping

136.2
Attribute – Single value, nonstructured

136.2.1
YANG mapping

136.3
Attribute – Single value, structured

136.3.1
YANG mapping

146.4
Attribute multivalue, non-structured

146.4.1
YANG mapping

166.5
Attribute multivalue, structured

166.5.1
YANG mapping

176.6
supportQualifier

176.6.1
YANG mapping

176.7
isInvariant on attribute

176.7.1
YANG mapping

186.8
isReadable/isWritable

186.8.1
YANG mapping

186.9
isNotifyable

196.9.1
YANG mapping

196.10
isOrdered

196.10.1
YANG mapping

196.11
isUnique

196.11.1
YANG mapping

196.12
type

196.12.1
YANG mapping

196.13
allowedValues

196.13.1
YANG mapping

196.14
default

196.14.1
YANG mapping

196.15
multiplicity and cardinality

196.15.1
YANG mapping

206.16
isNullable

206.16.1
YANG mapping

206.17
Association relationship

206.17.1
YANG mapping

206.18
Aggregation relationship

206.18.1
YANG mapping

206.19
Dependency relationship

206.19.1
YANG mapping

206.20
Xor constraint

206.20.1
YANG mapping

206.21
dataType

206.21.1
YANG mapping

216.22
enumeration

216.22.1
YANG mapping

216.23
choice

216.23.1
YANG mapping

216.24
Association class

216.24.1
YANG mapping

216.25
Vendor extensions augmenting an existing module

216.25.1
YANG mapping

226.26
References

226.26.1
YANG mapping

227
Translation between Distinguished Names and YANG Instance-Identifiers

2 References
[1] 3GPP TS 32.300 Name convention for Managed Objects

[2] TS 32.153, Telecommunication management; Integration Reference Point (IRP) technology specific templates, rules and guidelines
[3] IETF, RFC 7950 The YANG 1.1 Data Modeling Language

[4]
IETF, RFC 8407 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models
[5]
IETF, RFC 6241 Network Configuration Protocol (NETCONF)

[6]
IETF, RFC 8040 RESTCONF Protocol

[7]
IETF, draft-ietf-netmod-yang-instance-file-format
[8] 3GPP TR 21.801
Technical Specification Group Services and System Aspects; Specification drafting rules

3 Rationale
As 3GPP starts to define YANG Solution Sets it is needed that the solution sets and any included YANG modules follow common design pricinples and a common style. Commonality makes reading the modules easier and will serve as a guideline for future YANG Module designers and reviewers making their job easier. It will also make implementing these YANG models simpler.
Commonality should include areas like documentation rules, style, naming conventions, YANG constructs to be used or avoided, addressing principles, naming rules for modeling items like YANG Module names, namespaces and prefixes.
Currently this document contains both rules and examples . This will be cleaned up when rules are agreed.
4
 Proposal

4.1 Introduction

4.1.1 Scope

The rules and guidelines of this documents shall apply to all 3GPP defined YANG modules and submodules.
4.1.2 Goals

· Uniformity across 3GPP

· Easy translation from stage 2 information models

· Allow interworking between management tools based both on Distinguished Names and “conventional” 3GPP models on one hand and 3GPP based YANG models using Instance-Identifiers and leafrefs on the other
· Allow interworking with non-3GPP YANG models

4.1.3 Principles
· Different style for 3GPP and non-3GPP models. While a common YANG style would be advantageous, we chose to align 3GPP YANG style with the 3GPP Information models and accept that the 3GPP and IETF YANG styles are somewhat different

· A restricted set of YANG shall be used in order to align with the 3GPP information models

· While 3GPP uses Object oriented modeling, YANG is not object oriented. We don’t always try to emulate object orientation where it would lead to ugly YANG models
· We do not propose a full algorithmical mapping as that would be a big document and would often lead to ugly YANG models

· It shall be possible to programatically map between different formats used to identify resources. For YANG that means, that mapping between DNs and YANG Instance-Identifiers (or YANG leafrefs) shall be possible. Mapping one-way and then applying the reverse mapping shall result in the original DN or Instance-Identifier.

4.1.4 Standard Compliance

A product can claim full compliance to a 3GPP YANG solution set if it implements/supports and advertises all included YANG modules without deviations.

If deviations are used (except deviations listed below) only partial compliance can be claimed.

Compliant deviation list: TBD.

Vendors extensions via the augment statement or with additional YANG modules do not impact compliance.
4.2 General Rules

Resources are described as data nodes (leaf, leaf-list, container, list) instead of Classes and Attributes.

See basic mapping in clause “Mapping from Stage 2 Models to YANG”.
4.3 Modeling Rules

4.3.1 Unique YANG Module names BASIC
The names of 3GPP YANG modules SHALL start with the “_3gpp” prefix.

4.3.2 Unique YANG Namespace
A the namespace of a 3GPP YANG module’s namespace MUST have the following form:

 urn:3gpp:sa5:<module-name>

Reference: https://tools.ietf.org/html/draft-ietf-netmod-rfc6087bis-20#section-4.9

4.3.3 Unique YANG Module Prefixes

3GPP YANG Modules shall use the "3gpp" suffix.

e.g. prefix nrmtype -> prefix nrmtype3gpp

Note: To ensure that the prefix (in the yang prefix statement) is globally unique a prefix-suffix shall be used. While global uniqueness of prefixes is not mandatory most SW implementations have problems and need workarounds in case conflicting prefixes are found.

4.3.4 Module Structure BASIC
When modeling a piece of functionality, using a separate module shall be preferred over using a submodule. Submodules shall only be used when the functionality can only be deployed with the enclosing YANG module.

Note: Using separate modules allows the user to deploy the functionality separately or in “any” combination with other modules, while using a submodule forces the user to deploy the functionality always together with the enclosing module.
4.3.5 Module Header Statements

A module’s, organization and description statements shall be present. The organization shall include the string "3GPP"

4.3.6 Provide Description and Reference Statements
A description statement shall be present for each YANG schema node and whenever relevant a reference statement to the relevant section of a standard document should also be provided. As an exception for individual leafs, leaf-lists,enums, case statements, typedef statements, where the schema node’s name describes it sufficiently the description may be omitted.
4.3.7 YANG Module Revisions
4.3.8 A "revision" statement shall be present for each published version of a module. The "revision" statement shall have a "reference" substatement identifing the published 3GPP TS number, the version number and the name of the 3GPP TS in which the module is defined.
4.3.9 YANG module files with the same content shall have the same revision in different versions of the same TS and even in different 3GPP releases. If otherwise unchanged, a YANG module shall not be updated just because it is included in a new 3GPP TS/release.
4.3.10 Allowed YANG key value types BASIC
YANG keys shall always have a type that is derived from one of the following types; int8, int16, int32, int64, uint8, uint16, uint32, uint64, string, enumeration, instance-identifier, boolean, identityref or a leafref referencing one of the previous types.
Note: Using types empty, bits, union, decimal64 or binary is allowed in YANG, but shall not be used in 3GPP models, because it is difficult to use the YANG key leaf’s value in an RDN’s attributeValue.

4.3.11 Multiple keys BASIC
YANG lists with multiple keys shall not be used to represent IOCs.
Note: Multiple keys can not be translated into RDNs.
YANG lists with multiple keys may be used to represent complex attributes that have a multiplicity > 1. See example in [1] and [Error! Reference source not found.].

4.3.12

4.3.13 Use X.731 Style state data nodes

Leafs, leaf-lists that represent states of OAM objects shall use state values as defined in X.731 from _3gpp-types.yang library (to be defined). This is valid for any operational, administrative, usage or availability state except where 3GPP extends X.731.
4.3.14 Import without revision
 BASIC
When importing other YANG modules, do not specify an import:revision-date. If the revision date is specified, error corrections to the imported module cannot be used by the importing module.
4.3.15 ManagedElement/Subnetwork as a root for 3GPP modules BASIC
YANG modules defined by 3GPP shall form a single containment hiereachy under a common root (ManagedElement/SubNetwork) as long as stage 2 has this structure.
A single network node behind an IP OAM address shall contain a single ManagedElement list entry. This may include multiple different Managed Functions. The different Managed Functions may belong to different 3GPP network generations (3G, LTE or 5G) or network parts (RAN, Core Network).

Each Managed Function shall be defined in a separate YANG module and shall use the YANG augment statement to extend the ManagedElement.

Note: YANG modules defined by other organisations or by vendors will usually not be contained under the single 3GPP root: e.g. the ietf-yang-library YANG module defines its own top level containers.
4.3.16 Avoid cardinality Limitations
Limiting the cardinality of Managed Functions and other model elements shall be avoided in the 3GPP models, unless it is a requirement of the Stage 2 model. Avoid limiting cardinality both by the usage of the max-elements statement or by using a container node instead of a list node.
This rule does not concern lower limits using the min-elements statement.

Note: No one expects an implementation to support an infinite number of elements, so vendors should add a max-elements statement limiting infinite cardinality. While some vendors might think it is natural to include only a single ManagedFunction of a certain type in a MangedElement others might implement multiple instances.
4.3.17 Modeling of conditionally Mandatory Model parts
In some cases a class/attribute is defined in stage 2 as optional but has a description statement saying it must be present based on a condition. If possible this condition shall be modeled with a formal statement in YANG.
· if the condition can be specified in XPath: use YANG mandatory=true or min-elements>1 statement AND a YANG “when” statement to specify the condition.
· If the condition can not be specified using XPath: use yang mandatory=false and the original description statement to specify when the data node must be present
·

·
4.3.18 Use YANG Version 1.1 BASIC
YANG version 1.1 shall be used.
4.3.19 Don’t use YANG statements with the default meaning

YANG statements config, mandatory, max-elements, min-elements, ordered-by, status, yin-element have a specific meaning even if they are absent. E.g. if the config statement is missing that is equivalent the situation where “config true” is specified. The default value for these statements should not be explicitly declared in a YAM.

4.3.20 Avoid Naming Conflicts resolved by Namespace

Models shall not contain multiple schema nodes under the same point in the containment hierarchy with the same name where the naming conflict is resolved only by the use of namespaces.
Note: Such conflicts may occur when an augment statement adds schema nodes with an already used name.
The uniqueness of DNs (which don’t contain namespace information) cannot be guaranteed in this situation.
4.3.21 Use Actions instead of RPCs
RPCs should not be used, use actions instead.
Note: Access control is more difficult on RPCs. Actions are connected to a specific part of the model limiting their visibility, while RPCs have a global visibility. Limiting visibility to the the specific part of the model is good practice. Too many RPCs make CLI help cluttered.
4.3.22 YANG deviation statement
Deviations shall never be part of a 3GPP defined module.
If a vendor does not manage to implement the 3GPP YANG module as defined, it shall specify this fact and the specific deviations in a vendor defined YANG module using YANG deviation statements.

Note: deviations are seen as evil, but it is still better to formally document them using the YANG deviation statement that a management system can understand , than to describe them only in plain English.
4.3.23 Vendor Extensions BASIC
Vendors wishing to extend a 3GPP YANG module with additional attributes (leafs), classes (lists), actions (actions) shall define these additional items in a separate vendor YANG module. and use the augment statement to add the items to the 3GPP standard YANG module. The 3GPP YANG module shall not be changed. The managed element shall advertise support for both the standard and the vendor YANG module. See section 1.
Vendor extensions can be placed into a separate vsdata “wrapper” list as done traditionally in 3GPP, but they can also be added as individual leafs, leaf-list, actions, lists, containers following IETF YANG practice.

4.3.24 Reuse Standards from Other Standard Organizations
Whenever there is a suitable existing standard from another standard organization, industry forum its usage should be preferred before defining a 3GPP model covering the same scope.

3GPP models shall link to and reference YANG models from other standard organizations/industry forum whenever applicable.
List: ietf-types, ietf-inet-types,
TODO: Ask Technical SubComitte about licensing, any problems. AP) Ping
4.3.25 Module Documentation
In a 3GPP document defining a particular YANG solution set with a YANG module, the tree representation of the YANG module (as defined in IETF RFC 8340 YANG Tree Diagrams) and a short description of the module and its main branches shall always be present.
Note: Just providing the module itself is not enough.
AP) Ask SA5 to recognize that the one of the rapertour has to generate this from the final YANG file.
4.4 YANG Constructs Not to be Used – Not needed

The following YANG constructs SHALL NOT be used in 3GPP YANG models as they are not available in the Stage 2 modeling terminology, thus not needed.

· Anydata

· AnyXml

· Rpc – use actions instead

· Deviation
4.5 Managed object naming and resource identification
4.5.1 Naming Convention for YANG Schema node Identifiers
YANG shall follow the stage 2 naming for IOCs and attributes as governed by 3GPP TS 32.156.

Note: Different naming conventions should be used in 3GPP models than in IETF models. While most Standard Organizations and vendors follow the kebab-case naming convention described in RFC8407 3GPP based models and models extending or deviating them (i.e. models that define the containment hierarchy under ManagedElement) should follow the 3GPP naming conventions as described in 3GPP TS 32.156.

4.5.2 Referencing YANG based Managed Object

Generally YANG constructs like Instance-Identifiers and leafrefs should be used even if Stage 2 defines this as an DN.
4.5.2.1 Translating between DNs and Instance-Identifier

/ex:system[id=’1’]/ex:user[id=’fred’]
DN: system=1, user=fred
4.5.2.2 LDN to Instance-Identifier
Automatic translation should be possible however knowledge of the YANG model is needed for the translation. The instance-identifier contains more information than the LDN (namespace/prefix). This additional information must be retrieved from the YANG models.
4.5.2.3 Instance-Identifier to LDN

Automatic translation without knowledge of the YANG model is possible.

Instance-Identifier examples:

/topnre:ManagedElement[id=’NR_Paris_8562’]
/nrdne:ENBFunction[id=’34’]
/nrdne:EUtranCellFDD[id=’cell65’]
Can be mapped to an LDN without model information
ManagedElement=NR_Paris_8562,
ENBFunction=34,
EUtranCellFDD=cell65

4.6 Mapping from Stage 2 Models to YANG

4.6.1 Object Orientation and YANG

While 3GPP modeling is based on UML and object-oriented design YANG is not object-oriented. While it is possible to mimic objects in YANG using groupings and lists the mapping is somewhat problematic. In case where there is no reuse foreseen for a particular object class, there is no need to do a grouping-based mapping, the content of the IOC may be mapped directly to the container or a list.
InformationObjectClass - Abstract
4.6.2 YANG mapping

InformationObjectClass – Concrete
4.6.3 YANG mapping

The NamingAttribute shall be used as a key.

4.7 Generic Abstract class
4.8 A generic class is defined in a technical specification (TS1). Another abstract (or concrete) class wants to inherit from it. The generic class may be defined in a separate specifation (TS2).
YANG mapping
4.9 Class containment
Technical specification (TS1) defines one abstract class managedFunctionGrp and 2 concrete clases subnetwork and managedElement.The containment of managedElement in subnetwork is modeled as an embeded list as they are both defined in the same TS.
TS2 defines a concrete class gnbcuFunction that is based on the abstract class managedFunctionGrp and is contained in ManagedElement class. The containment is modeled with an augment as it is a containment relationship between two different specifications.
4.9.1 YANG mapping

4.10 Attribute – Single value, nonstructured
The multiplicity of the attribute is either 0..1 or 1..1.
4.10.1 YANG mapping

4.11 Attribute – Single value, structured
myStructuredAttribute

member1

member2
4.11.1 YANG mapping

The individual leafs/membes will not be wrapped in any extra container or list.

Note: this make the YANG model shorter and easier to read.
4.12 Attribute multivalue, non-structured
Name mySimpleMultivalueAttribute
It is recommended that stage 2 design should avoid simple, non-unique readwrite multivalue attributes as the YANG mapping is complex.
4.12.1 YANG mapping
If the attribute is unique or readOnly map it to a leaf-list.
4.12.2 If the attribute is not unique map it to a list with an additional dummy index.
4.13 Attribute multivalue, structured
Name myStructuredMultivalueAttribute
· member1

· member2
· member3
YANG needs either a single unique member or that a group of members together can form a unique compound key. The key(s) needs to be selected manually, by a modeler understanding the model’s design.
If no member or group of members are guaranteed to be unique, an additional dummy index must be added.
It is recommended that stage 2 design should avoid structured readwrite multivalue attributes without unique members.
4.13.1 YANG mapping

If the attribute is unique or readOnly map it to a leaf-list.

If the attribute is not unique map it to a list with an additional dummy index.
If the attribute may be reused in multiple places an alternate mapping using reusable groupings should be used.

supportQualifier
4.13.2 YANG mapping

Mandatory is the default case in YANG.

Conditional-Mandatory: Use the when statement whenever a formal condition can be formulated, or use the description statement otherwise.
Optional: Use the feature/if-feature statement indicate optionality
Conditionaly optional: Use the feature/if-feature statement combined with either a when statement or some description text

Conditional: Use the feature/if-feature statement combined with either a when statement or some description text

Try to miminize the number of features used, by grouping the conditions.
isInvariant on attribute
4.13.3 YANG mapping

isWritable=false attributes are always invariant, isWritable=true attributes are never invariant.
The combination of isInvariant=true AND isWritable=true can not be represented in YANG. In YANG does not differentiate between an initial setting and a subsequent changing of an attribute.

It is recommended that stage 2 design should avoid writable invariant attributes.

As an option we could define a YANG extension statement for-3gppext: isInvariant, however extensions are not understood or enforced observed by standard YANG tools, they need extra SW implementation.
4.14 isReadable/isWritable
4.14.1 YANG mapping

isReadable=false attributes can not be represented in YANG. The only similar use-case for this supported by YANG is for encoded attributes. These can be read but only in an encrypted form. See iana-crypt-hash module.
isReadable=true AND isWritable=false is represented as config false ; in YANG. As config=flase is inherited down the containment tree, it should not be placed on each leaf, leaf-list, etc. once the containing list/container is marked config false;
isReadable=true AND isWritable=true is represented as config true ; in YANG. Config true ; should not be explicitly declared as that is the default case.
It is recommended that stage 2 design should avoid using isReadable=false attributes..

4.15 isNotifyable
No mapping needed. Notifications should be based on the new IETF YangPush solutions following:

draft-ietf-netconf-netconf-event-notifications
draft-ietf-netconf-restconf-notif
draft-ietf-netconf-yang-push
draft-ietf-netconf-subscribed-notifications
draft-ietf-netconf-notification-capabilities
Whether individual classes or attributes are notifyable will be represented in instance data
4.15.1 YANG mapping

None
4.16 isOrdered

4.16.1 YANG mapping

4.16.2 ordered-by user ; statement
4.17 isUnique
4.17.1 YANG mapping

unique “attribute” ; statement
4.18 type
4.18.1 YANG mapping

type statement
4.19 allowedValues
4.19.1 YANG mapping

for integers: YANG enumeration OR range with specific values

for string: YANG enumeration OR a regular expression with alternatives
4.20 default
4.20.1 YANG mapping

for simple isNullable=false attribute use the YANG default statement; otherwise YANG default statement and 3GPP default property mean differentthings.

Define a _3gpp:initial-value YANG extension statement

Keep the default values only as a part of the description statement
4.21 multiplicity and cardinality
4.21.1 YANG mapping

min-elements, max-elements YANG statement
4.22 isNullable
4.22.1 YANG mapping

isNullable= true -> mandatory false; note, this should not be explicitly declare as this is the default case.

isNullable=false -> mandatory true;
4.23 Association relationship
4.23.1 YANG mapping

Map to refernces between tho model entities using leafs with leafref or instance-identifier types. require-instance shall be set to true for bidirectional associations, and false for unidirectional associations.
TODO: add example
4.24 Aggregation relationship
4.24.1 YANG mapping

Map to a uses statement using the grouping defined for the grouping of the aggregated abstract class.
4.25 Dependency relationship
4.25.1 YANG mapping

Use a must or when statement whenever a formal condition can be formulated, or use the description statement otherwise.
4.26 Xor constraint
4.26.1 YANG mapping

Choice statement
4.27 dataType
4.27.1 YANG mapping

predefined datatypes:

· integer -> One of the 8 YANG integer types

· string - > string

· Boolean -> boolean
user-defined datatypes: YAG typedef statement
4.28 enumeration
4.28.1 YANG mapping

enumeration YANG type
4.29 choice
4.29.1 YANG mapping

Yang choice statement
4.30 Association class
4.30.1 YANG mapping

Same as for a class, but also including some leafs, leaf-lists representing the associations
4.31 Vendor extensions augmenting an existing module
4.31.1 YANG mapping

Add vendor extensions using the YANG augment statement.

A vendor decided to add an extra leaf to the module ietf-system. The vendor addition is placed in a separate vendor-system-ext.yang module that augments the original standard module. The vendor addition can be just a single attribute/leaf, but it can also include dozens of classes/list as needed. The extensions may be placed in a”vsdata” list following previous 3GPP practice.
4.32 References
YANG mapping
	3GPP Stage 2 Construct
	YANG Construct
	Comment

	DN Reference
	Instance-identifier
	Globally unique, needs an additional local-prefix

	LDN reference
	Instance-identifier
	Locally unique

	Reference inside configuration
	Instance-identifier/leafref
	References inside a configuration

	DN-Prefix
	Attribute in ME local-prefix
	Union of DN-Prefix, FQDN, IpAddress, plain string
e.g. /local-prefix=”mynode.acme.com”

4.32.1

·
·
·
·
·
4.32.2

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

4.32.3

4.32.4
4.32.4.1

4.32.4.2

4.32.4.3

4.32.4.4 Translation between Distinguished Names and YANG Instance-Identifiers

The below example shows how addressing an object is done in YANG and using DNs.

DN Example:

ManagedElement=NR_Paris_8562,
ENBFunction=34,
EUtranCellFDD=cell65

Instance-Identifier examples:
/topnre:ManagedElement[id=’NR_Paris_8562’]
/nrdne:ENBFunction[id=’34’]
/nrdne:EUtranCellFDD[id=’cell65’]
Translating from a YANG instance-identifier to an LDN is possible automatically without knowledge of the YANG models.

Translating from an LDN to a YANG instance-identifier automatically is possible, but requires the knowledge of the YANG models because the LDN does not contain the naespace/prefix information,
// abstract class

grouping mmyAbstractClassGrp {

 // contains all contained attributesattributes and actions,

 // notifications

}

//concrete class

list MyClass {

 key id;

 uses myClassGrp;

 //YANG lists representing contained classes

}

// Generic Abstract Class

//In Technical Specification TS1 – generic classlist MyClass {

 key id;

 uses myClassGrp;

 //YANG lists representing contained classes

}grouping managedFunctionGrp {

 //basicAttributes

}

// In Technical Specification TS2 - using the generic class

grouping myManagedFunctionGrp {

 uses managedFunctionGrp;

 //additional attributes

}

list myManagedFunction {

 key id;

 uses myManagedFunctionGrp;

}

// Class containment

// TS1

grouping subnetworkGrp {

 // subnetwork attributes

}

grouping managedElementGrp {

 // managedElement attributes

}

grouping managedFunctionGrp {

 // managedFunction attributes

}

list subnetwork {

 key id;

 use subnetworkGrp;

 list managedElement {

 key id;

 uses managedElementGrp;

 // place to insert/augment managedFunction

 }

}

//TS2

grouping gnbcuFunctionGrp {

 uses ts1: managedFunctionGrp;

 // additional attributes

}

augment /ts1:subnetwork/ts1:managedElement {

 list gnbcuFunction {

 key id;

 uses managedFunctionGrp;

 // list for other classes in the same TS

}

// attribute single value, nonstructured

llist MyClass {

 key id;

 uses myClassGrp;

 lists representing contained classes

}eaf myLeaf { type xxx ;

}

// attribute single value, structured

list MyClass {

 key id;

 uses myClassGrp;

 lists representing contained classes

}leaf member1 { type xxx; }

leaf member2 { type xxx; }

//Attribute multivalue, non-structured

// attribute is unique or read-only

leaf-list mySimpleMultivalueAttribute1 {

 type xxx;

}

// attribute is non-unique and read-write

list mySimpleMultivalueAttribute2-wrap {

 key dummyIndex;

 leaf dummyIndex { type uint32 ; }

 my mySimpleMultivalueAttribute2 type xxx;

}

list MyClass {

 key id;

 uses myClassGrp;

 lists representing contained classes

}

// 6.5	Attribute multivalue, structured

// member1 and member3 together are unique

list myStructuredMultivalueAttribute-wrap MyClass {

 key “idmember member3”;

 uses myClassGrp;

 lists representing contained classesleaf member1 { type xxx; }

 leaf member2 { type yyy; }

 leaf member3 { type zzz; }

}

// if no unique member(s) can be found

list myStructuredMultivalueAttribute-wrap {

 key dummyIndex;

 leaf dummyIndex { type uint32 ; }

 leaf member1 { type xxx; }

 leaf member2 { type yyy; }

 leaf member3 { type zzz; }

}

grouping pLMNId {

 description “PLMN-Id= Mobile Country Codes (MCC) &

 Mobile Network Codes(MNC)”;

 leaf MCC {

	 type t_mcc; /* String */

	}

 leaf MNC {

	 type t_mnc;

	}

}

list pLMNIdList {

 key "MCC MNC";

 config true;

 description "a list of PLMN-Ids";

 ordered-by user;

 uses types3gpp:pLMNId;

}

module vendor-system-etx {

 import ietf-system { prefix sys; }

	augment /sys:system {

		leaf user-label {

			type string;

	}…}}

module _3gpp-GNBCUCPFunction {

 import _3gpp-ManagedElement { prefix me3gpp; }

 import _3gpp-ManagedFunction { prefix mf3gpp; }

	augment /me3gpp:ManagedElement {

 list GNBCUCPFunction {

 key id;

 leaf id {	type string;}

 … other leafs, lists, etc. …

 uses /mf:ManagedFunction;

}}}	

module vendor-system-etx {

 import ietf-system { prefix sys; }

	augment /sys:system {

		leaf user-label {

			type string;

	}…}}

grouping pLMNId {

 description “PLMN-Id= Mobile Country Codes (MCC) &

 Mobile Network Codes(MNC)”;

 leaf MCC {

	 type t_mcc; /* String */

	}

 leaf MNC {

	 type t_mnc;

	}

}

list pLMNIdList {

 key "MCC MNC";

 config true;

 description "a list of PLMN-Ids";

 ordered-by user;

 uses types3gpp:pLMNId;

}

leaf-list swimmers { type string;}

// swimmers are unique or readOnly

list swimmers {

// swimmers may not be unique and are config true / readWrite

 key id;

 leaf id { type int; }

 leaf swimmer { type string; }

}

�Let’s discuss this, and how about reision of YANG module itself?

�Only in description or should use “when” condition

3GPP

