3GPP TSG SA WG5 (Telecom Management) Meeting #123
S5-191225
21-25 January 2019, Montreal, Canada
revision of S5-19xxxx
Source:
Ericsson
Title:
pCR 32.160 Implement Edithelp comments
Document for:
Approval
Agenda Item:
6.4.5
1
Decision/action requested

The group is asked to approve this contribution
2
References

[1]

3
Rationale

The contribution proposes to implement the comments from the Edithelp review.

1) Remove references not referred to.

2) Remove “keep with next” in Table 5.1.1-1

3) Notes are informative text can not have requirements. Replace “shall” where applicable in Y4.
4) As the occurrences of “must” in this document are not in quoted text they shall be replaced. Replace “must” where applicable in Y4

5) When a clause or subclause has text below the title, there can be no subclauses below. Applies to 6.3.2 and 6.3.3
4
Detailed proposal

First change
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 28.533: "Management and orchestration; Architecture framework".

[3]
3GPP TS 32.156: "Telecommunication management; Fixed Mobile Convergence (FMC) Model Repertoire"

[4]
ITU-T Recommendation M.3020 (07/2017): "Management interface specification methodology".

[5]
3GPP TR 21.801: "Specification drafting rules".

[6]
3GPP TS 28.622: "Telecommunication management; Generic Network Resource Model (NRM) Integration Reference Point (IRP); Information Service (IS)".

[7]
3GPP TS 28.541: "Management and orchestration; 5G Network Resource Model (NRM); Stage 2 and stage 3".

[8]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)".

[9]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".

[10]
ITU-T Recommendation M.3020 (07/2011): "Management interface specification methodology" – Annex E "Information type definitions – type repertoire".

Second change
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

Third change
The MnS template uses type definition as one characteristic to describe class attributes and operation/notification parameters. The valid type definitions that can be used and their semantics are defined in [3].
Usage of fonts for the specific cases of class/attribute names etc., in addition to the general font requirements in the 3GPP drafting rules in 3GPP TR 21.801 [5], shall be according to the following table.
Table 5.1.1-1
	Item
	Font

	Class names
	Courier New

	Attribute names
	Courier New

	Operation names
	Courier New

	Parameter names
	Courier New

	Assertion names
	Courier New

	Notification names
	Courier New

	Exception names
	Courier New

	State names
	Arial

	Matching Information
	Courier New

	Information Type
	Courier New

	Legal Values
	Courier New

	NOTE:
These font requirements do not apply to UML diagrams.

5.1.2
Management service components

A management service combines elements of management service components type A, B and C [1].

Fourth change
Y4
Overview

Yb
Management service name

Management service name should be replaced with the name of the Management Service (MnS).

"b" represents a number, starting at 1 and increasing by 1 with each new definition of a Management Service.

Yb.1
Operations and notifications

Yb.1.a
Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

Yb.1.a.1
Definition

Yb.1.a.1.1
Description
This subclause shall be written in natural language.

Information on traceability back to one or more requirements supported by this operation should also be defined here, in the following form:

	Referenced TS
	Requirement label
	Comment

	3GPP TS 32.xyz [xy]
	REQ-SM-CON-23
	Optional clarification

	3GPP TS 32.xyz [xy]
	REQ-SM-FUN-11
	Optional clarification

Yb.1.a.1.2
Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition shall be true before the operation is invoked. An example is given here below:

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-condition are provided in a table. An example of such a table is given here below:

	Assertion Name
	Definition

	notificationCategoriesNotAllSubscribed
	At least one notificationCategory identified in the notificationCategories input parameter is supported by an MnS producer and is not a member of the ntfNotificationCategorySet attribute of an NtfSubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

	notificationCategoriesParameterAbsentAndNotAllSubscribed
	The notificationCategories input parameter is absent and at least one notificationCategory supported by MnS producer is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

Yb.1.a.1.3
Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition shall be true after the completion of the operation. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the
pre-condition. An example is given here below:

subscriptionDeleted OR allSubscriptionDeleted
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the post-condition shall be provided in a table. An example of such a table is given here below:

	Assertion Name
	Definition

	subscriptionDeleted
	The ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well.

	allSubscriptionDeleted
	In the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well.

Yb.1.a.1.4
Exceptions

List of exceptions that can be raised by the operation. Each element shall be a tuple (exceptionName, condition, ReturnedInformation, exitState).

Yb.1.a.1.4.c

exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

This information shall be provided in a table. An example of such a table is given here below:

	Exception Name
	Definition

	ope_failed_existing_subscription
	Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified.

Returned information: output parameter status is set to OperationFailedExistingSubscription.

Exit state: Entry State.

NOTE: An example of an exception can be a situation where an operation is raised and the required information between a consumer and producer cannot be conveyed via the input and output parameters.

Yb.1.a.2
Input parameters

List of input parameters of the operation. Each element shall be a tuple (Parameter Name, Support Qualifier, Information Type (see [10] and note 1) and an optional list of Legal Values supported by the parameter, Comment). Legal Values for the Support Qualifier are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Support Qualifier
	Information Type / Legal Values
	Comment

	eventIdList
	M
	SET OF INTEGER / --

	One or more event identifiers

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

Yb.1.a.3
Output parameters

List of output parameters of the operation. Each element tuple (Parameter Name, Support Qualifier, Matching Information / Information Type (see [10]) (Note 1) and an optional list of Legal Values supported by the parameter, Comment). Legal Values for the Support Qualifier are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Support Qualifier
	Matching Information /
Information Type / Legal Values
	Comment

	eventTime
	M
	AlarmInformation.alarmRaisedTime /
GeneralizedTime / --
	The parameter carries the

· alarmRaisedTime in case notificationType carries notifyNewAlarm,

· alarmChangedTime in case notificationType carries notifyChangedAlarm,

· alarmClearedTime in case notificationType carries notifyClearedAlarm.

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

This table shall also include a special parameter ’status’ to indicate the completion status of the operation (success, partial success, failure reason etc.).
Yb.1.a.4
Result

Yb.1.a.4,1
Error messages

This subclause presents error messages in case the operation is not successful.

This subclause does not need to be present when there are no error messages to define.
Yb.1.a.4,2
Constraints

This subclause presents constraints for the operation or its parameters.

This subclause does not need to be present when there are no constraints to define.
Yb.1.a
Notification NotificationName (supportQualifier)

NotificationName shall be the name of the notification followed by a qualifier indicating whether the notification is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO) or SS-Conditional (C).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a notification.

Yb.1.a.1
Definition

This subclause shall be written in natural language.

Information on traceability back to one or more requirements supported by this notification should also be defined here, in the following form:

	Referenced TS
	Requirement label
	Comment

	3GPP TS 32.xyz [xy]
	REQ-SM-CON-23
	Optional clarification

	3GPP TS 32.xyz [xy]
	REQ-SM-FUN-11
	Optional clarification

Yb.1.a.2
Input parameters

List of input parameters of the notification. Each element is a tuple (Parameter Name, Qualifiers, Matching Information / Information Type (see [10]) (Note 1) and an optional list of Legal Values supported by the parameter, Comment).

The column "Qualifiers" contains the two qualifiers, Support Qualifier and Filtering Qualifier, separated by a comma. The Support Qualifier indicates whether the attribute is Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C). The Filtering Qualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N).

This information shall be provided in a table. An example of such a table is given here below:

	Parameter Name
	Qualifiers
	Matching Information /
Information Type / Legal Values
	Comment

	managerReference
	M,Y
	ntfSubscriber.ntfManagerReference / STRING / --
	It specifies the reference of the consumer to which notifications shall be sent.

	alarmType
	M,Y
	AlarmInformation.eventType / ENUMERATED /
"Communications Alarm": a communication error alarm.

"Processing Error Alarm": a processing error alarm.

"Environmental Alarm": an environmental violation alarm.
"Quality Of Service Alarm": a quality of service violation alarm.

"Equipment Alarm": an alarm related to equipment malfunction.
	

NOTE:
Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the definition can be provided only once. When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

Yb.1.a.3
Triggering event

The triggering event for the notification to be sent is the transition from the information state defined by the "from state" subclause to the information state defined by the "to state" subclause.

Yb.1.a.3.1

From state

This subclause is a collection of assertions joined by AND, OR, and NOT logical operators. An example is given here below:

alarmMatched AND alarmInformationNotCleared
Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "from state" are provided in a table. An example of such a table is given here below:
	Assertion Name
	Definition

	alarmMatched
	The matching-criteria-attributes of the newly generated network alarm has values that are identical (matches) with ones in one AlarmInformation in AlarmList..

	alarmInformationNotCleared
	The perceivedSeverity of the newly generated network alarm is not Cleared.

Yb.1.a.3.2

To state

This subclause contains a collection of assertions joined by AND, OR and NOT logical operators. When nothing is said in a to-state regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the from-state. An example is given here below:

resetAcknowledgementInformation AND perceivedSeverityUpdated

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "to state" are provided in a table. An example of such a table is given here below:
	Assertion Name
	Definition

	resetAcknowledgementInformation
	The matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated according to the following rule:
ackTime, ackUserId and ackSystemId are updated to contain no information; ackState is updated to "unacknowledged".

	perceivedSeverityUpdated
	The perceivedSeverity attribute of matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated.

Yb.2
Managed information

Fifth change
6.3
Stage 2 definition to YANG Mapping

6.3.1
Relation to stage 2

-
Stage 2 model element defines the semantics. The stage 3 maps the stage 2 model elements into stage 3 model elements keeping the same semantics.
-
The stage 3 model elements shall not be dependent on the protocol used for transporting the model elements .

6.3.2
Node Mapping
6.3.2.1
Mapping table
	Stage 2 Artifact
	YANG Artifact

	Abstract IOC
	grouping

	Concrete IOC
	container

	Concrete Super IOC
	grouping and container (see note 1)

	Simple type
	build-in type or derived type (see note 2)

	Complex type
	grouping

	Attribute – simple type
	leaf

	Attribute – complex type
	container (note 3)

	Attribute list – simple type
	leaf-list

	Attribute list – complex type
	list (note 3)

	NOTE 1:
The Concrete Super IOC is defined as grouping to be reused by its inheriting classes, then mapped to Container uses this grouping.

NOTE 2:
Built-in type is a YANG data type defined in the YANG language. Derived type is a type that is derived from a built-in type or another derived type by using typedef statement.

NOTE 3:
Define the attribute as grouping and mapped to container or list in contained IOC. Because in YANG, complex type with more than one item can only be defined using grouping. Grouping can only use by grouping, container and list.

6.3.2.2
Example of Abstract IOC in YANG

 grouping EP_RP {

 leaf id {

 type nrm-type:t_dn;

 }

 leaf userLabel {

 type string;

 }

 leaf farEndEntity {

 type nrm-type:t_dn;

 }

}

6.3.2.3
Example of Concrete IOC in YANG

 container SMSFFunction {

 uses mf:ManagedFunction;

list pLMNId {

 key "MCC MNC";

 uses nrm-type:pLMNId;

 }

container EP_N20 { uses ep-rp:EP_N20; }

container EP_N21 { uses ep-rp:EP_N21; }

container EP_MAP_SMSC { uses ep-rp:EP_MAP_SMSC; }

}

6.3.2.4
Example of Concrete Super IOC in YANG

 grouping SubNetwork {

uses top:Top;

 leaf id {

 type nrm-type:t_dn;

 }

 leaf dnPrefix {

 type string;

 }

 leaf userLabel {

 type string;

 }

 leaf userDefinedNetworkType {

 type string;

 }

 leaf-list setOfMcc {

 type nrm-type:t_mcc;

 }

 }

 container SubNetwork {

uses SubNetwork;

}

6.3.2.5
Example of simple type

Built-in type:

string, uint16, etc.

Derived type:

 typedef t_mcc {

 type string {

 pattern '[02-79][0-9][0-9]';

 }

 }

 typedef t_mnc {

 type string {

 pattern '[0-9][0-9][0-9]|[0-9][0-9]';

 }

 }

6.3.2.6
Example of complex type

 grouping pLMNId {

 leaf MCC {

 type t_mcc;

 }

 leaf MNC {

 type t_mnc;

 }

 }

6.3.2.7
Example of attribute with simple type

 container AMFFunction {

 uses mf:ManagedFunction;

 leaf sBIFQDN {

 type inet:domain-name;

 }

 leaf weightFactor {

 type uint8;

 }

...

 }

6.3.2.8
Example of attribute with complex type

 container AMFFunction {

 uses mf:ManagedFunction;

 container aMFIdentifier {

 uses nrm-type:aMFI;

 }

...

 }

6.3.2.9
Example of attribute list with simple type

 container AMFFunction {

 uses mf:ManagedFunction;

 leaf-list s-NSSAI {

type nrm-type:t_s-NSSAI;

 }

...

 }

6.3.2.10
Example of attribute list with complex type

 container AMFFunction {

 uses mf:ManagedFunction;

 list pLMNId {

 key "MCC MNC";

 uses nrm-type:pLMNId;

 }

...

 }

6.3.3
Relationship Mapping
6.3.3.1
Mapping table
	Stage 2 Artifact
	YANG Artifact

	Inheritance from abstract supper IOC
	uses the grouping defined for the supper IOC

	Inheritance from concrete supper IOC
	augment on the container for the supper IOC or uses the grouping defined for the supper IOC

	Association or aggregation (single contained instance)
	leaf (see note 1, note 2)

	Association or aggregation (multiple contained instances)
	leaf-list (see note 3)

	Composition or Name Containing (single contained instance)
	container (inside containing IOC) (see note 4)

	Composition or Name Containing (multiple contained instances)
	list (inside containing IOC) (see note 5)

	
	

	
	

	
	

	NOTE 1:
The contained IOC is defined/mapped as a container.

NOTE 2:
There are two options:

Option 1: Set type of the leaf to type of contained IOC’s Id (for example, DN), the value of the leaf is the value of the contained instance’s id.

Option 2: Set type of the leaf to leafref, the value of the leaf is the node path of the contained instance

NOTE 3:
There are two options:

Option 1:
Use leaf-list statement, set the type of the item in the list to type of contained IOC’s Id (for example, DN), the value of the item is the value of the contained instance’s id.

Option 2:
Use leaf-list statement, set type of the item in the list to leafref, the value of the item is node path of the contained instance.

NOTE 4:
The contained IOC is defined as grouping, then mapped to container inside the containing IOC.

NOTE 5:
The contained IOC is defined as grouping, then mapped to list inside the containing IOC.

6.3.3.2
Example of Inheritance from abstract supper IOC

[image: image1.emf]EP_RPEP_E1

 grouping EP_RP {

 leaf id {

 type nrm-type:t_dn;

 }

 leaf userLabel {

 type string;

 }

 leaf farEndEntity {

 type nrm-type:t_dn;

 }

}

 grouping EP_E1 {

 uses EP_RP;

 container localAddress {

uses local-address;

 }

 leaf remoteAddress {

type inet:ip-address;

 }

}

6.3.3.3
Example of Inheritance from concrete supper IOC

[image: image2.emf]SubnetworkNetwork Slice

 grouping SubNetwork {

uses top:Top;

 leaf id {

 type nrm-type:t_dn;

 }

 leaf dnPrefix {

 type string;

 }

 leaf userLabel {

 type string;

 }

 leaf userDefinedNetworkType {

 type string;

 }

 leaf-list setOfMcc {

 type nrm-type:t_mcc;

 }

 }

 container SubNetwork {

uses SubNetwork;

}

Option 1: Augument on the container

module NetworkSlice {

augment subnet:SubNetwork{

 leaf nSSIId {

 mandatory "true";

 config "false";

 description "";

 type nrm-type:t_dn;

 }

...

}

}

Option 2: Uses grouping

 module NetworkSlice {

 container NetworkSlice {

uses subnet:SubNetwork;

 leaf nSSIId {

 mandatory "true";

 config "false";

 description "";

 type nrm-type:t_dn;

 }

...

}

}

6.3.3.4
Example of association or aggregation (single contained instance)

[image: image3.emf]Network Slice SubnetNetwork Slice

11

 container NetworkSliceSubnet {

 leaf id {

 type nrm-type:t_dn;

 }

 leaf dnPrefix {

 type string;

 }

...

 leaf State {

 type string;

 }

...

}

 Option 1: Set type of the leaf to type of contained IOC’s Id

container NetworkSlice {

 uses subnet:SubNetwork;

 leaf nSSIId {

 type nrm-type:t_dn;
 }

}

 Option 2: Set type of the leaf to leafref, the value of the leaf is the node path

container NetworkSlice {

 uses subnet:SubNetwork;

 leaf nSSI {

 type leafref {

path ‘nss:NetworkSliceSubnet/id’;

 }

 }

}

6.3.3.5
Example of association or aggregation (multiple contained instances)

[image: image4.emf]Network Slice SubnetNetwork Slice

11..*

 container NetworkSliceSubnet {

 leaf id {

 type nrm-type:t_dn;

 }

 leaf dnPrefix {

 type string;

 }

...

 leaf State {

 type string;

 }

...

}

 Option 1: Set type of the leaf to type of contained IOC’s Id

container NetworkSlice {

 uses subnet:SubNetwork;

 leaf-list nSSIId {

 type nrm-type:t_dn;
 }

}

 Option 2: Set type of the leaf to leafref, the value of the leaf is the node path

container NetworkSlice {

 uses subnet:SubNetwork;

 leaf-list nSSI {

 type leafref {

path ‘nss:NetworkSliceSubnet/id’;

 }

 }

}

6.3.3.6
Example of composition (single contained instance)

 grouping EP_F1C {

uses EP_RP;

 }

 container GNBDUFunction {

 uses mf:ManagedFunction;

container EP_F1C { uses ep-rp:EP_F1C; }

...

 }

6.3.3.7
Example of composition (multiple contained instances)

 grouping EP_F1U {

uses EP_RP;

 }

 container GNBDUFunction {

 uses mf:ManagedFunction;

list EP_F1U { uses ep-rp:EP_F1U; }

...

 }

End of changes
