Page 1

3G TS 32.106-3 V3.0.1b (2000-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Part 3: Notification IRP: CORBA Solution Set Version 1:1
(Release 1999)
[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

Configuration Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
7
4
Architectural Features
8
4.1
Notification Services
8
4.1.1
Support of Push and Pull Interface
8
4.1.2
Support of multiple notifications in one push operation
8
5
Mapping
9
5.1
Operation mapping
9
5.2
Operation parameter mapping
10
5.3
Notification parameter mapping
14
5.4
Attribute mapping
14
6
Use of OMG Notification StructuredEvent
14
7
IRPAgent’s Behaviour
17
7.1
Subscription
17
7.2
IRPAgent Supports Multiple Categories of Notifications
17
7.3
IRPAgent’s Integrity Risk of attach_push_b Method
17
8
Example
19
Appendix A: Notification IRP CORBA IDL
20
Annex A (informative): Change history
25

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the NEs and NRs, and they may be initiated by the operator or functions in the OSs or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single action on a network element of the 3G network or as part of a complex procedure involving actions on many network elements.

The N interface for Configuration Management is built up by a number of Integration Reference Points (IRPs) and a related Name Convention, which realise the functional capabilities over this interface. The basic structure of the IRPs is defined in [1] and [2]. For CM, a number of IRPs (and the Name Convention) are defined herein, used by this as well as other technical specifications for telecom management produced by 3GPP. All these documents are included in Parts 2-N the 3G TS 32.106.

This document consitutes 32.106 Part 3 (32.106-3) - Notification IRP CORBA Solution Set.
IRP Solution Set version: The version of this CORBA Solution Set is 1:1, where the first “1” means that it corresponds to the Information Service [5] version 1, and the second “1” means that it is the first CORBA Solution Set corresponding to this Information Service version.
1
Scope

This document specifies the CORBA Solution Set (SS) for the IRP whose semantics is specified in Notification IRP: Information Service (IS) [5].
2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.736: Security Alarm Reporting Function

[2]
OMG Notification Service OMG TC Document telecom/98-11-01

[3]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996. (Clause 4 contains the Event Service Specification.)

[4]
3G TS 32.106-8: “Name Convention for Managed Objects”
[5]
3G TS 32.106-2: “Notification IRP: Information Service”
[6]
3G TS 32.111-2: “Alarm IRP: Information Service”
[7]
3G TS 32.111-3: “Alarm IRP: CORBA solution set, version 1:1”
[8]
ITU-T Recommendation X.733: Alarm Reporting function
[9]
3G TS 32.101: "3G Telecom Management principles and high level requirements".

[10]
3G TS 32.102: "3G Telecom Management architecture".
[11]
3G TS 32.106-1: “3G Configuration Management”.
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply: Please refer to [9],[10] and [11].

·
·

·
·

·
·
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CORBA
Common Object Request Broker Architecture (OMG)

EC
Event channel (OMG)

IDL
Interface Definition Language (OMG)
IS
Information Service

NC
Notification Channel (OMG)

NE
Network Element

EM
Element Manager

OMG
Object Management Group

SS
Solution Set

UML
Unified Modelling Language (OMG)

4
Architectural Features

The overall architectural feature of Notification IRP is specified in Reference [5]. This clause specifies features that are specific to the CORBA solution set.

4.1
Notification Services

In the CORBA solution set, notifications are emitted by IRPAgent using CORBA Notification service [2].

CORBA Event service [3] provides event routing and distribution capabilities. CORBA Notification service provides, in addition to Event service, event filtering and support for quality of service as well.

A subset of CORBA Notification Services shall be used to support the implementation of notification. This CORBA Notification service subset, in terms of OMG Notification Service [2] defined methods, is identified in this document.

4.1.1
Support of Push and Pull Interface

The IRPAgent shall support the OMG Notification push interface model. Additionally, it may support the OMG Notification pull interface model as well.

4.1.2
Support of multiple notifications in one push operation

For efficiency, IRPAgent uses the following OMG Notification Service [2] defined interface to pack multiple notifications and push them to IRPManager using one method push_structured_events. The method takes as input a parameter of type EventBatch as defined in the OMG CosNotification module [2]. This data type is a sequence of Structured Events (see clause 4). Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter. The amount of time IRPAgent will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

IRPAgent may push EventBatch with only one Structured Event.

The OMG Notification Service [2] defined IDL module is shown below.

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

5
Mapping

5.1
Operation mapping

Notification IRP: IS [5] defines semantics of operations visible across this IRP.

The table below maps the operations defined in Notification IRP: IS [5] to their equivalents (methods) in this SS. It also qualifies if a method is mandatory (M) or optional (O)

Table 1: Mapping from IS Operation to SS Equivalents

IS Operations in [5]
SS Methods
Qualifier

subscribe
attach_push, attach_push_b, attach_pull
M, O, O

unsubscribe
detach
M

get Notification IRPVersion
get_notification_IRP_version
M

get Subscription Status
get_subscription_status
O

getSubscriptionIds
get_subscription_ids
O

change Subscription Filter
If subscription is established using attach_push method, the SS equivalent shall be change_subscription_filter. The IDL specification of this method is included in the Appendix. This method is optional.

If subscription is established using attach_push_b method, the SS equivalent shall be modify_constraints. The method is defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull method, the SS equivalent shall be modify_constraints. The method is defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix. If IRPAgent supports the optional attach_pull method, it shall support this method as mandatory.
See box on the left.

suspend Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, IRPManager cannot suspend subscription.

If subscription is established using attach_push_b, the SS equivalent shall be suspend_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

resume Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, IRPManager cannot resume subscription.

If subscription is established using attach_push_b, the SS equivalent shall be resume_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix. If IRPAgent supports the optional attach_push_b method, it shall support this method as mandatory.

If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

get Notification IRP Categories
get_notification_IRP_categories
O

5.2 Operation parameter mapping

Reference [5] defines semantics of parameters carried in operations across the Notification IRP. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS subscribe parameters to SS attach_push equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Category
string notification_category
O

filter
string filter (See note below table.)
O

subscriptionId
string subscription_id
M

status
CommonIRPConstDefs::Signal

AttachException, ParameterNotSupportedException, InvalidParameterException
M

Note: The grammar of the filter string is extended_TCL defined by OMG Notification Service [2]. This grammar shall be the only one used for Alarm IRP: CORBA SS.

Table 3: Mapping from IS subscribe parameters to SS attach_push_b equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Category
string notification_category
O

filter
string filter
O

subscriptionId
string subscription_id
M

Not specified in IS
CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference (See note below table.)
M

status
CommonIRPConstDefs::Signal
AttachException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

Note: IRPAgent provides this reference to which IRPManager can invoke methods to manage the subscription. Valid methods are not defined in this IRP. OMG CORBA Notification Service defines these methods. Read interface SequencePushSupplier:proxySupplier, CosNotifyComm::SequencePushSupplier{}. IRPManager is expected to invoke connect_sequence_push_consumer() of this interface to connect its own cosNotifyComm::sequencePushConsummer with this reference. After successful connection, IRPAgent pushes sequence of Structured Events towards IRPManager.

Table 4: Mapping from IS subscribe parameters to SS attach_pull equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Category
string notification_category
O

filter
string filter
O

subscriptionId
string subscription_id
M

Not specified in IS.
CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference
M

status
CommonIRPConstDefs::Signal
AttachException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

Table 5: Mapping from IS unsubscribe parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionId
string subscription_id
O

status
CommonIRPConstDefs::Signal DetachException,InvalidParameterException
M

Table 6: Mapping from IS getNotificationIRPVersion parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

versionNumber List
CommonIRPConstDefs::VersionNumberSeq version_number_list
M

status
CommonIRPConstDefs::Signal GetNotificationIRPVersionException,InvalidParameterException
M

Table 7: Mapping from IS getSubscriptionStatus parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
string subscription_id
M

notification CategoryList
NotificationIRPConstDefs::NotificationCategorySeq notification_category_list
M

filterInEffect
string filter_in_effect
O

subscription State
NotificationIRPConstDef::SubscriptionState subscription_state
O

timeTick
long time_tick
O

status
CommonIRPConstDefs::Signal

GetSubscriptionStatusException,OperationNotSupportedException,InvalidParameterException
M

Table 8: Mapping from IS getSubscriptionIds parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionIdList
NotificationIRPConstDefs::SubscriptionIdSeq subscription_id_list
M

status
CommonIRPConstDefs::Signal

GetSubscriptionIdsException,OperationNotSupportedException,InvalidParameterException
M

Table 9: Mapping from IS changeSubscriptionFilter parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
string subscription_id
M

filter
string filter
M

status
CommonIRPConstDefs::Signal ChangeSubscriptionFilterException,OperationNotSupportedException,InvalidParameterException
M

Table 10: Mapping from IS suspendSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service [2] and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service [2] and it returns a void. Therefore, there is no SS equivalent for this IS parameter. This suspend_connection method can throw OMG Notification Service [2] defined exception called ConnectionAlreadyInactive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 11: Mapping from IS resumeSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service [2] and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status
If subscription is established using attach_push, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_push_b, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service [2] and returns a void. Therefore, there is no SS equivalent for this IS parameter. This resume_connection method can throw OMG Notification Service [2] defined exception called ConnectionAlreadyActive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 12: Mapping from IS getNotificationIRPCategories parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

notification CategoryList
NotificationIRPConstDefs::NotificationCategorySeq notification_category_list
M

eventTypeList
NotificationIRPConstDefs::EventTypesSeq event_type_list
O

extendedEvent TypeList
NotificationIRPConstDefs::ExtendedEventTypesSeq extended_event_type_list
O

status
CommonIRPConstDefs::Signal

GetNotificationIRPCategoriesException,OperationNotSupportedException
M

5.3
Notification parameter mapping

Notification IRP: IS [5] defines a generic notify and its parameters. This SS does not provide the mapping of these parameters to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] extends the generic notify for its specific use. Their corresponding SS documents shall define the mapping from their specific notification parameters (defined in their IS document) to their SS equivalents. The SS documents shall qualify their SS equivalents as well.

5.4
Attribute mapping

Notification IRP: IS [5] defines the semantics of common attributes carried in notifications. This SS does not provide the mapping of these attributes to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] identify and qualify these common attributes for use in their environment. Their corresponding SS documents define the mapping of these attributes to their SS equivalents.

6
Use of OMG Notification StructuredEvent
Notification IRP: IS [5] defines attributes that are commonly present in notifications of all notification categories such as notifications emitted from Alarm IRP IRPAgent.

In CORBA SS, OMG defined StructuredEvent [2] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the common attributes defined in [5].

The composition of OMG StructuredEvent is:

Header

 Fixed Header

 Domain_name

 Type_name

 Event_name

 Variable Header

Body

 Filterable_body_fields

 Remaining_body

Following table shows the OMG Structured Event attributes (middle column) that are used to carry the common notification attributes defined in Notification IRP: IS [5].

Table 13: Attributes of StructuredEvent
Common attributes defined in Notification IRP: IS [5]
Attribute defined by OMG Structured Event
Comment

There is no corresponding SS attribute.
domain_name
It indicates that the StructuredEvent, carried in the Notification, is defined by a specific 3GPP IRP such as Alarm IRP, as opposed to OMG specified Telecommunication, healthcare, utility, finance, etc. It indicates the CORBA SS version number as well.

It is a string. Legal values are defined in interface IRPNotificationCategoryValue.

For Alarm IRP version 1:1, the value is IRPNotificationCategoryValue.alarmIRPVersion_1_1,

eventType
type_name
It indicates event types as defined in ITU-T TMN Recommendations.

For Alarm IRP version 1:1, i.e., the value of domain_type is IRPNotificationCategoryValue.alarmIRPVersion_1_1. The legal values of this are:

EVENT_COMMUNICATIONS_ALARM (section 8.1.1 of [8]), EVENT_QUALITY_OF_SERVICE_ALARM (section 8.1.1 of [8]), EVENT_PROCESSING_ERROR_ALARM (section 8.1.1 of [8]), EVENT_EQUIPMENT_ALARM (section 8.1.1 of [8]), EVENT_ENVIRONMENTAL_ALARM (section 8.1.1 of [8]), EVENT_PHYSICAL_VIOLATION [1], EVENT_INTEGRITY_VIOLATION [1], EVENT_SECURITY_VIOLATION [1], EVENT_TIME_DOMAIN_VIOLATION [1], EVENT_OPERATIONAL_VIOLATION [1]

The bracketed number of each type indicates the reference where the semantics of the type is specified.

It is a string. See interface EventTypeValue of module CommonIRPConstDefs of this IRP IDL for all possible legal values.

extended EventType
event_name
The legal values carried in this attribute are specified by the IRP using the notification. For example, Alarm IRP: CORBA SS [7] defines and uses the following values:

NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED, NOTIFY_FM_CLEARED_ALARM and NOTIFY_FM_ALARM_LIST_REBUILT.

It is a string. See the constant string definition of the IRP using the notification. For example, for Alarm IRP: CORBA SS [7], see module AlarmIRPConstDefs of the IDL file.

Since each IRP except Notification IRP specifies its own set of extendedEventType, the values specified by each IRP are only unique within one IRP. For uniqueness among all IRPs’ specification, the values of extendedEventType shall be coupled with the notification category, the value carried in domain_name of the same notification.

There is no corresponding SS attribute.
variable Header

managed Object Class, managed Object Instance
One NV (name-value) pair of filterable_ body_fields
Name of NV pair is a string, AttributeNameValue.managedObjectInstance.

Value of NV pair is a string. Syntax and semantics of this string conform to the Managed Object string representation specified in [4]. Note that two SS attributes are carried in this one NV pair since the string representation specified in [4] can convey the semantics of managedObjectClass and managedObjectInstance in one string.

notificationId
One NV pair of filterable_ body_fields
Name of NV pair is a string, AttributeNameValue.notificationId.

Value of NV pair is an unsigned long.

eventTime
One NV pair of filterable_ body_fields
Name of NV pair is a string, AttributeNameValue.eventTime.

Value of NV pair is an IRPTime.

systemDN
One NV pair of filterable_ body_fields
Name of NV pair is a string, AttributeNameValue.systemDN.

Value of NV pair is a string. Syntax and semantics of this string conforms to the Managed Object string representation specified in [4].

There is no corresponding SS attribute.
remaining_ Body

7
IRPAgent’s Behaviour

This clause describes some IRPAgent’s behaviour not captured by IDL.

7.1
Subscription

IRPManager can invoke multiple attach_push, multiple attach_push_b or multiple attach_pull using different manager_reference(s). As far as IRPAgent is concerned, the IRPAgent will emit notifications to multiple "places" with their independent filter requirements. IRPAgent will not know if the notifications are going to the same IRPManager.

If IRPManager invokes multiple attach_push, attach_push_b or attach_pull using the same manager_reference and notification_category, IRPAgent shall throw AlreadySubscribedException to all invocations except one.
IRPManager can invoke multiple attach_push using the same manager_reference and different notification_category. If IRPAgent supports the notification category requested, IRPAgent shall accept the invocation; otherwise, it throws UnsupportedCategoryException. IRPAgent shall have similar behaviour for attach_push_b and attach_pull.
When IRPManager is in subscription by invoking attach_push, IRPManager can change the filter constraint, using change_subscription_filter, applicable to the notification category specified in the attach_push.

When IRPManager is in subscription by invoking attach_push_b, IRPManager can change the filter constraint during subscription using the OMG defined Notification Service Filter Interface. IRPManager shall not use change_subscription_filter; otherwise it shall get an exception.
7.2
IRPAgent Supports Multiple Categories of Notifications

IRPAgent may emit multiple categories of Notifications. A notification category is defined as the different kinds of notifications specified by one IRP such as Alarm IRP [7]. IRPAgent may have mechanism for IRPManager to pull for notifications of multiple categories.

IRPManager can query IRPAgent about the categories of notifications supported by using get_notification_IRP_categories.

IRPManager uses a parameter, notification_category, in attach_push, attach_push_b and attach_pull to specify one category of notifications wanted. IRPManager, by invoking multiple attach_push, attach_push_b, or attach_pull methods specifying different categories in each invocation can receive multiple categories of notification from IRPAgent.

IRPManager uses a NULL string in notification_category of attach_push, attach_push_b and attach_pull to specify all IRPAgent supported categories of notifications wanted. If IRPManager uses attach_push with NULL string in notification_category and if the operation is successful, IRPAgent shall reject subsequent attach_push operation, regardless if the notification_category contains a NULL-string or a specific notification category. IRPAgent shall have similar behaviour for attach_push_b and attach_pull.

7.3
IRPAgent’s Integrity Risk of attach_push_b Method

In the case that IRPAgent implements this method by extending or using OMG compliant Notification Service, the following IRPManager behaviour illustrates a risk to IRPAgent’s integrity.

Given the object reference (IOR) of the SequenceProxyPushSupplier (as the mandatory output parameter of the subject method), IRPManager can invoke sequenceProxyPushSupplier.MyAdmin method.

IRPManager can then obtain the consumer admin object of the proxy. Then IRPManager can invoke consumerAdmin.MyChannel to get the IOR of the Notification Channel. IRPManager then can call eventChannel.MyFactory which will provide IRPManager the IOR of the EventChannelFactory itself. IRPManager can then able to invoke methods directly on the EventChannelFactory, like get_channels which lists all channel numbers and create_channel which allows IRPManager to create any number of additional channels.

A malicious IRPManager can, given access to the EventChannelFactory, get a list of existing channels and start connecting them together at random thus compromising the IRPAgent’s integrity. Deployment of this attach_push_b needs strong authentication and authorisation mechanism in place.

Note that attach_push is mandatory. IRPAgent compliant to this IRP shall implement it. Note also that attach_push_b is optional. It is recommended that IRPAgent concerned with integrity risk should not implement the attach_push_b option.

8
Example

The following is an example of Notification related to alarm.

If type_name == NOTIFY_FM_NEW_ALARM, then the filterable_body_field attributes can contain:

{

systemDN, “…”;

alarmId, “abce232”,

notificationId, 4467,

managedObjectInstance, “…”,

eventTime, …,

probableCause, 3,

perceivedSeverity, 2,

specificProblems, “xxx”,

additionalText, “…”,

…

}

Appendix A: Notification IRP CORBA IDL

/* ## Module: CommonIRPConstDefs

This module contains definitions commonly used among all IRPs such as Alarm IRP.

==

*/

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

#include <CosTime.idl>

module CommonIRPConstDefs {

 /*

 Definition imported from CosTime. The time refers to time in Greenwich

 Time Zone. It also consists of a time displacement factor in the form

 of minutes of displacement from the Greenwich Meridian.

 */

 typedef TimeBase::UtcT IRPTime;

 enum Signal {OK, FAILURE, PARTIAL_FAILURE};

 typedef sequence <string> VersionNumberSeq;

 /*

 This interface encapsulates all TMN ITU-T defined event types.

 */

 interface EventTypeValue {

 const string OBJECT_CREATION = "x0";

 const string OBJECT_DELETION = "x1";

 const string ATTRIBUTE_VALUE_CHANGE = "x2";

 const string STATE_CHANGE = "x3";

 const string RELATIONSHIP_CHANGE = "x4";

 const string COMMUNICATIONS_ALARM = "x5";

 const string PROCESSING_ERROR_ALARM = "x6";

 const string ENVIRONMENTAL_ALARM = "x7";

 const string QUALITY_OF_SERVICE_ALARM = "x8";

 const string EQUIPMENT_ALARM = "x9";

 const string INTEGRITY_VIOLATION = "x10";

 const string SECURITY_VIOLATION = "x11";

 const string TIME_DOMAIN_VIOLATION = "x12";

 const string OPERATIONAL_VIOLATION = "x13";

 const string PHYSICAL_VIOLATION = "x14";

};

};

#endif

/* ## Module: NotificationIRPConstDefs

This module contains definitions specific to Notification IRP.

==

*/

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

module NotificationIRPConstDefs {

 /*

 This is a sequence of string identifying notification category.

 The string must be one of that in IRPNotificationCategoryValue{}.

 */

 typedef sequence <string> NotificationCategorySeq;

 /*

 This is a sequence of strings identifying event types of a particular

 notification category.

 The string must be one of that in EventTypeValue{}.

 */

 typedef sequence <string> EventTypePerNotificationCategorySeq;

 typedef sequence <EventTypePerNotificationCategorySeq> EventTypesSeq;

 /*

 This is a sequence of strings identifying extended event types of

 a particular notification category.

 The string must be one of that in ExtendedEventTypeValue{}.

 */

 typedef sequence <string> ExtendedEventTypePerNotificationCategorySeq;

 typedef sequence <ExtendedEventTypePerNotificationCategorySeq>

 ExtendedEventTypesSeq;

 /*

 This information object associates the notification ID with the DN of

 the managed object that emits that notification.

 */

struct CorrelatedNotificationType {

string source;

 /*

 If notifID scope of uniqueness is across IRPAgent, this source

 may contain a NULL string. If the scope of uniqueness is per

 managed object instance, this source shall contain a non-NULL string.

 If this source contains a non-NULL string, it shall contain the

 string representation of DN of the managed object instance.

 See Name Convention for Managed Object for the specification of

 the string representation of DN.

 */

unsigned long
notifID;

};

 /*

 This is a sequence of Correlated Notification.

 */

typedef sequence <CorrelatedNotificationType> CorrelatedNotificationSetType;

 /*

 This is a sequence of strings identifying Subscription Ids.

 */

typedef sequence <string> SubscriptionIdSeq;

 /*

 This interface encapsulates valid strings carried in domain_name of

 structured event header. It carries the name of IRP and its

 corresponding CORBA SS version number.

 */

 interface IRPNotificationCategoryValue {

 const string alarmIRPVersion_1_1 = "1f1"; //alarm IRP 1:1

 const string configurationIRPVersion_1_1 = "1c1"; //CM IRP 1:1

 };

 /*

 This interface encapsulates string used in the name of the Name Value

 pair of the structured event.

 */

interface AttributeNameValue {

const string notificationId = "a";

const string correlatedNotifications = "b";

const string eventTime = "c";

const string systemDN = "d";

const string managedObjectClass = "e";

const string managedObjectInstance = "f";

const string problableCause = "g";

const string perceivedSeverity = "h";

const string specificProblem = "i";

const string additionalText = "j";

const string alarmId = "k";

const string ackUserId = "l";

const string ackTime = "m";

const string ackSystemId = "n";

const string ackState = "o";

const string backedUpStatus = "p";

const string backUpObject = "q";

const string thresholdInfo = "r";

const string trendIndication = "s";

const string stateChangeDefinitions = "t";

const string monitoredAttributes = "u";

const string proposedRepairedActions = "v";

};

 /*

 This indicates if the subscription is active (not suspended) or inactive.

 */

 enum SubscriptionState {INACTIVE, ACTIVE, DONTKNOW};

};

#endif

/* ## Module: NotificationIRPSystem

 This module implements capabilities of IRPAgent specified in Notification

 IRP: Information Service version 1 and its equivalents in Notification

 IRP: CORBA Solution Set version 1:1.

 ==

*/

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

#include "CosNotifyComm.idl"

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

module NotificationIRPSystem {

/*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception AttachException { string reason; };

 exception DetachException { string reason; };

 exception GetNotificationIRPVersionException { string reason; };

 exception GetSubscriptionStatusException { string reason; };

 exception GetSubscriptionIdsException { string reason; };

 exception ChangeSubscriptionFilterException { string reason; };

 exception GetNotificationIRPCategoriesException { string reason; };

 exception ParameterNotSupportedException { string parameter; };

 exception InvalidParameterException { string parameter; };

 exception OperationNotSupportedException {};

interface NotificationIRPOperations {

 /* ## Operation: attach_push

 */

 CommonIRPConstDefs::Signal attach_push (

 in Object manager_reference,

 in long time_tick,

 in string notification_category,

 in string filter,

 out string subscription_id

)

 raises (AttachException,ParameterNotSupportedException,InvalidParameterException);

 /* ## Operation: attach_push_b

 */

CommonIRPConstDefs::Signal attach_push_b (

in Object manager_reference,

in long time_tick,

in string notification_category,

in string filter,

out string subscription_id,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

)

 raises (AttachException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);

 /* ## Operation: attach_pull

 */

CommonIRPConstDefs::Signal attach_pull (

 in Object manager_reference,

 in long time_tick,

 in string notification_category,

 in string filter,

 out string subscription_id,

 out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

)

 raises (AttachException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);

 /* ## Operation: detach

 */

CommonIRPConstDefs::Signal detach (

in Object manager_reference,

in string subscription_id

)

 raises (DetachException,InvalidParameterException);

 /* ## Operation: get_notification_IRP_version

 */

CommonIRPConstDefs::Signal get_notification_IRP_version (

out CommonIRPConstDefs::VersionNumberSeq version_number_list

)

 raises (GetNotificationIRPVersionException,InvalidParameterException);

 /* ## Operation: get_subscription_status

 */

CommonIRPConstDefs::Signal get_subscription_status (

in string subscription_id,

out NotificationIRPConstDefs::NotificationCategorySeq

notification_category_list,

out string filter_in_effect,

out NotificationIRPConstDefs::SubscriptionState subscription_state,

out long time_tick

)

 raises (GetSubscriptionStatusException,OperationNotSupportedException,InvalidParameterException);

 /* ## Operation: get_subscription_ids

 */

 CommonIRPConstDefs::Signal get_subscription_ids (

 in Object manager_reference,

 out NotificationIRPConstDefs::SubscriptionIdSeq subscription_id_list

)

 raises (GetSubscriptionIdsException,OperationNotSupportedException,InvalidParameterException);

 /* ## Operation: change_subscription_filter

 */

CommonIRPConstDefs::Signal change_subscription_filter (

in string subscription_id,

in string filter

)

 raises (ChangeSubscriptionFilterException,OperationNotSupportedException,InvalidParameterException);

 /* ## Operation: get_notification_IRP_categories

 */

CommonIRPConstDefs::Signal get_notification_IRP_categories (

out NotificationIRPConstDefs::NotificationCategorySeq

notification_category_list,

out NotificationIRPConstDefs::EventTypesSeq event_type_list,

out NotificationIRPConstDefs::ExtendedEventTypes

Seqextended_event_type_list

)

 raises (GetNotificationIRPCategoriesException,OperationNotSupportedException);

};

};

#endif

Annex A (informative):
Change history

This annex lists all change requests approved for this document since the specification was first approved by 3GPP TSG-SA.

Change history

TSG SA#
Version
CR
Tdoc SA
New Version
Subject/Comment

S_07
2.0.0
-
SP-000012
3.0.0
Approved at TSG SA #7 and placed under Change Control

Post S5#10
3.0.0
-
- S5-000227
3.0.1
Updated by MCC staff with editorial changes according to documentation rules.

S_S5#11
3.0.1
-
 ?
3.0.1a
 Updated according to S5#10bis (S5-000192) and S5#11 (decision to create separate parts for main body and earlier annexes). To be agreed at S5#11bis and approved at S5 #12, together with possible new updates according to S5#11bis.

S_04
3.0.0
003
SP-99308
3.1.0
Conditions on use of authentication information

SA5 internal Change history

SA/SA5 meeting
Version
Tdoc SA/SA5
New version
Subject/comment

Post S5#11bis
3.0.1a
S5C000047
3.0.1b
Updated according to agreements at meeting #11bis (including 32.106 split into 8 parts).

PAGE 1

