
3GPP TS 32.158 V0.3.0 (2018-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Design rules for REpresentational State Transfer (REST) Solution Sets (SS)

(Release 15)
 [image: image1.jpg]
[image: image2.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2017, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
General rules
6
4.1
Information models and resources
6
4.1.1
Information models
6
4.1.2
Resources
6
4.1.3
Resource archetypes
6
4.1.4
Mapping of information models to resources
7
4.2
 Managed object naming and resource identification
7
4.2.1
Managed object naming
7
4.2.2
Resource identification
7
4.2.3
Mapping of DNs to URIs
7
4.3
Media types
8
4.4
URI structure
8
4.5
Versioning
8
4.6
Response status codes
8
5
Basic design patterns
8
5.1
Design pattern for creating a resource
8
5.1.1
Creating a resource with identifier creation by the IRPAgent
8
5.1.2
Creating a resource with identifier creation by the IRPManager
9
5.2
Design pattern for reading a resource
9
5.3
Design pattern for updating a resource
10
5.4
Design pattern for deleting a resource
10
5.5
Design pattern for subscribe/notify
11
5.5.1
Concept
11
5.5.2
Subscription creation
11
5.5.3
Subscription deletion
11
5.5.4
Notification emission
12
5.5.5
Subscription retrieval
12
6
Advanced design patterns
12
6.1
Design pattern for scoping and filtering
12
6.2
Design pattern for attribute selection
13
7
Resource representation formats
13
7.1
Introduction
13
7.2
Collection pattern
13
7.3
Link pattern
13
8
REST SS specification template
13
Annex A (informative): Change history
16

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction
1
Scope

The present document …

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[A1]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (https://www.ietf.org/rfc/rfc7231.txt).
[A2]
3GPP TS 32.300: "Name convention for managed objects".

[A3]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax" (https://www.ietf.org/rfc/rfc3986.txt).

[A4]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing" (https://www.ietf.org/rfc/rfc7230.txt).

[A5]
IETF RFC 7159: " The JavaScript Object Notation (JSON) Data Interchange Format" (https://www.ietf.org/rfc/rfc7159.txt).

[A6]
IETF Internet-Draft: "JSON Schema: A Media Type for Describing JSON Documents" (https://tools.ietf.org/html/draft-wright-json-schema-01).

[A7]
IETF Internet-Draft: "JSON Schema Validation: A Vocabulary for Structural Validation of JSON" (https://tools.ietf.org/html/draft-wright-json-schema-validation-01).
[A8]
IETF Internet-Draft: "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON" (https://tools.ietf.org/html/draft-wright-json-schema-hyperschema-01).
[A9]
OpenAPI Specification (https://github.com/OAI/OpenAPI-Specification)

3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
3.2
Symbols

For the purposes of the present document, the following symbols apply:
3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

CRUD
Create, Retrieve, Update, Delete

DN
Distinguished Name

HTTP
Hypertext Transfer Protocol
JSON
JavaScript Object Notation
LDN
Local Distinguished Name

REST
REpresentational State Transfer
RPC
Remote Procedure Call

URI
Uniform Resource Identifier

4
General rules

Editor’s note: The terms IRPManager and IRPAgent will be replaced once the new terms used in the SBA are agreed.
4.1
Information models and resources

4.1.1
Information models
An information model is a representation of a system. Typical models do not reflect all facets of the system but only certain aspects required to solve the management problem the model is designed for. 3GPP follows an object-oriented modelling approach. Models are built from managed object classes. Relationships between classes represent the logical connections. Models are specified formally with class diagrams of the Unified Modelling Language (UML).

The instantiation of a managed object is called managed object instance. All managed object instances together with the relationships between them are depicted in an object diagram.

4.1.2
Resources

HTTP uses a different terminology based on the notion of resources, as defined in clause 2 of RFC 7231 [A1]. Each resource is represented by a resource representation as defined in clause 3 of RFC 7231 [A1]. Valid resource representations are e.g. XML instance documents or JSON instance documents.

4.1.3
Resource archetypes

Resources can be classified according to their structure and behaviour into resource archetypes. This helps specifying clear and understandable interfaces. The following three archetypes are defined:

Document resource: This is the standard resource containing data in form of name value pairs and links to related resources. This kind of resource typically represents a real-world object or a logical concept.

Collection resource: A collection resource is grouping resources of the same kind. The resources below the collection resource are called items of the collection. An item of a collection is normally a document resource. Collection resources typically contain links to the items of the collection and information about the collection like the total number of items in the collection. Collection resources can be further distinguished into server-managed and client-managed resources. Collection resources are also known as container resources.

Operation resource: Operation resources represent executable functions. They may have input and output parameters. Operation resources allow some sort of fall back to an RPC style design in case application specific actions cannot be mapped easily to CRUD style operations.

4.1.4
Mapping of information models to resources

RESTful SS shall be specified in a way that managed object instances are described by document resources. Collection resources have no equivalent in an information model unless some dedicated collection class is introduced.

4.2

Managed object naming and resource identification

4.2.1
Managed object naming

According to TS 32.300 [A2] a Distinguished Name (DN) is used in 3GPP to uniquely identify a managed object instance within a specific name space. A DN is the concatenation of Relative Distinguished Names (RDNs). A RDN is a name value pair. The name is the naming attribute of the managed object, which is equal to the class name of the managed object.

A DN in the global name space is globally unique and starts with the RDN of the global root. A DN in a local name space starts with the RDN of the local root and is unique only within this name space. A DN in a local namespace is also referred to as Local Distinguished Name (LDN). The DN of the local root relative to the global root is called DN prefix. The concatenation of DN prefix and LDN is equal to the globally unique DN of a managed object.

The local root is typically the root of the network resource model representing the managed network.

4.2.2
Resource identification

HTTP uses a subset of the generic Uniform Resource Identifier (URI) scheme (RFC 3986 [A3]) defined in RFC 7230 [A4] for target resource identification.

http-URI = "http:" "//" authority path-abempty ["?" query] ["#" fragment]

The path component can thus be an absolute path (one that starts with a single slash character) or empty.

4.2.3
Mapping of DNs to URIs

The slash "/"shall be used as delineator between the naming attribute name and naming attribute value when constructing a RDN. The naming attribute name shall be equal to the class name.
RDN = "/"{namingAttribute} "/" {namingAttributeValue}

The LDN is the concatenation of RDNs separated as well by a slash "/".
LDN = *("/" RDN)

The LDN is mapped to the rightmost part of the path component of URIs. The DN prefix is mapped to the remainder of the path component and to the authority.

URIs ending with a naming attribute value identify a document resource representing a managed object instance.

URIs ending with a naming attribute name (class name) identify a collection resource representing all managed object instances (document resources) of this class directly below the collection resource.

In the following example the DN prefix is identical to the URI authority component, the network resource model has at its root an instance of class SubNetwork.

http://operator.com/subnetwork/south/managedelement/abc

The DN prefix may include, besides the authority component, additional RDNs

http://operator.com/country/germany/subnetwork/south/managedelement/abc

or additional path segments

http://operator.com/germany/subnetwork/south/managedelement/abc
4.3
Media types

The format of resource representations carried in the message body is indicated by the media type in the Content-Type and Accept header fields. Media types that shall be supported are:
-
application/json (RFC 7159 [A5])

JSON resource representations shall conform to JSON Schema ([A6], [A7], [A8]).
4.4
URI structure

URIs shall follow a common structure given by

URI = {URI-prefix}/{resourcepath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

where:
{irpRoot}
indicates the scheme ("http" or "https"), the host name and optional port, and an optional prefix path.
{irpName}
indicates the IRP name.
{irpVersion}
indicates the version of the IRP.

4.5
Versioning

4.6
Response status codes

The response status codes as defined in section 6 of RFC 7231 [A1] shall be supported.
5
Basic design patterns

Editor’s note: The terms IRPManager and IRPAgent will be replaced once the new terms used in the SBA are agreed.
5.1
Design pattern for creating a resource

5.1.1
Creating a resource with identifier creation by the IRPAgent

Operations to create a resource shall be specified with the HTTP POST method, when the IRPAgent shall create the identifier of the new resource.

[image: image3.png]
Figure 5.2.1.1: Flow for creating a resource with HTTP POST
The procedure is as follows:

1. The IRPManager sends a HTTP POST request to the IRPAgent. The target URI identifies the parent resource below which the new resource shall be created. Only container resources are valid target resources. The message body carries the resource representation.

2. The IRPAgent returns the HTTP POST response. On success, "201 Created" shall be returned. The "Location" header shall be present and carry the URI of the new resource. The URI is constructed by the IRPAgent by creating an identifier for the new resource and appending it to the request URI. The message body shall carry the representation of the new resource. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.1.2
Creating a resource with identifier creation by the IRPManager

Operations to create a resource shall be specified with the HTTP PUT method, when the IRPManager wishes to impose the identifier of the new resource to the IRPAgent.

[image: image4.png]
Figure 5.2.2.1: Flow for creating a resource with HTTP PUT
The procedure is as follows:

1. The IRPManager sends a HTTP PUT request to the IRPAgent. The target URI identifies the resource to be created. The message body carries the complete or partial resource representation.

2. The IRPAgent returns the HTTP PUT response. On success, "201 Created" shall be returned. The Location header shall carry the URI of the new resource and the message body the complete representation of the new resource. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.2
Design pattern for reading a resource

Operations to read the representation of a resource shall be specified with the HTTP GET method. The resource to be read is identified with a URI.
[image: image5.png]
Figure 5.3.1: Flow for reading a resource
The procedure is as follows:

1. The IRPManager sends a HTTP GET request to the IRPAgent. The resource to be read is identified with the URI. The message body shall be empty.

2. The IRPAgent returns the HTTP Get response. On success, "200 OK" shall be returned. The resource representation is carried in the response message body. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.3
Design pattern for updating a resource

Operations to update the complete representation of a resource shall be specified with the HTTP PUT method. The resource to be updated is identified with a URI.
[image: image6.png]
 Figure 5.4.1: Flow for updating a resource
The procedure is as follows:

1. The IRPManager sends a HTTP PUT request to the IRPAgent. The resource to be updated is identified with the URI. The message body carries the new resource representation.

2. The IRPAgent returns the HTTP PUT response to the IRPManager. On success, "200 OK" or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.4
Design pattern for deleting a resource
Operations to delete the representation of a resource shall be specified with the HTTP DELETE method. The resource to be deleted is identified with a URI.

[image: image7.png]
Figure 6.5.1: Flow for deleting a resource
The procedure is as follows:

1. The IRPManager sends a HTTP DELETE request to the IRPAgent. The resource to be deleted is identified with the URI. The message body is empty.

2. The IRPAgent returns the HTTP DELETE response to the IRPManager. On success, "204 No Content" shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

5.5
Design pattern for subscribe/notify

5.5.1
Concept
HTTP is based on requests and responses. There is no built-in support for notifications and subscriptions to notifications. These mechanisms need to be modelled based on special subscription resources and the available HTTP methods. When notifications are used the server shall expose at least one subscription resource.
5.5.2
Subscription creation

To subscribe to notifications the subscriber shall send a HTTP POST request to the subscription resource.

[image: image8.png]
Figure 5.6.2-1: Flow for creating a subscription
The procedure is as follows:

1. The IRPManager (notification subscriber) sends a HTTP POST to the IRPAgent. The URI shall indicate a container subscription resource. The resources representing existing subscriptions are created below the container resource. The subscriber shall indicate in the message body the URI of the resource notifications shall be sent to (notification sink) and the type of notifications that are subscribed to. Additional filter information may be included in the message body.
3. The IRPAgent returns "201 Created" on success. The message body carries the representation of the created subscription resource. The Location header shall carry the URI of the created subscription resource. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.

5.5.3
Subscription deletion

To cancel a subscription, the subscriber shall delete the corresponding resource with HTTP DELETE.
[image: image9.png]
Figure 5.6.3-1: Flow for deleting a subscription

The procedure is as follows:
1. The IRPManager (notification subscriber) sends a HTTP DELETE to the IRPAgent. The URI shall indicate the subscription resource to be deleted.

2. The IRPAgent returns the HTTP DELETE response to the IRPManager. On success, "204 No Content" shall be returned. The message body is empty. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.

5.5.4
Notification emission

To send a notification on the occurrence of a notifiable event the IRPAgent sends a HTTP POST request to the notification sink.
[image: image10.png]
Figure 5.6.4-1: Flow for sending a notification
The procedure is as follows:
1. The IRPAgent sends a HTTP POST to the IRPManager. The URI identifies the notification sink. The notification content is included in the message body.

2. The IRPManager returns "204 No Content". The message body shall be empty. On failure, the appropriate error code shall be returned. The response massage body may provide additional error information.
This design pattern requires the IRPAgent (HTTP server) to contain a reduced feature HTTP client for sending HTTP POST requests, and vice versa, the IRPManager (HTTP client) to contain a reduced feature HTTP server for receiving HTTP POST requests and sending HTTP POST responses.
5.5.5
Subscription retrieval
The subscriber can retrieve the information about a specific subscription by sending a HTTP GET request to the URI returned by the server upon creation of this subscription. Information about all subscriptions of a subscriber can be read by invoking a HTTP GET on the parent subscription resource whilst instructing the server, using the query component, to return only the subscriptions related to the client invoking the request.
[image: image11.png]
Figure 5.6.5-1: Flow for subscription retrieval
The procedure is as follows:

1. The IRPManager sends a HTTP GET to the IRPAgent. The URI specifies the subscription resource to be read.

2. The IRPAgent returns the HTTP Get response. On success, "200 OK" shall be returned. The representation of the subscription resource is carried in the response message body. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.

6
Advanced design patterns

6.1
Design pattern for scoping and filtering

Scoping is the process of targeting more than one resource for manipulation with HTTP methods. The URI query component shall be used for scoping resources below the resource identified by the URI path component.

Editor’s note: The meaning of “below” in the sentence above shall be clarified with a new clause in an appropriate place explaining the URI resource hierarchy and its correspondence to the hierarchy of managed object instances in network resource models.

Filtering is the process of selecting a subset of the scoped resources based on filtering criteria applied to the scoped resources. The URI query component shall be used for filtering.
No query language is specified in the present document.

6.2
Design pattern for attribute selection

This design pattern allows to select the attributes to be returned by the GET method. This pattern is not applicable to any other HTTP methods.

The attributes to be returned are specified in the query part of the URI with a key value pair. The key is "fields", the value is equal to the attribute names separated by a comma.
7
Resource representation formats

7.1
Introduction

According to clause 4.3 the media type specifies only that JSON is used as resource representation format. Some resource patterns are quite common and it is desirable to use a common pattern throughout the different APIs. This clause identifies some patterns frequently encountered and provides a JSON schema skeleton for them.

7.2
Collection pattern

7.3
Link pattern
8
REST SS specification template

This clause contains the REST SS specification template.
W
Mapping of operations

W.1
Introduction
Table W.1-1: Mapping of IS operations to SS equivalents

	IS operation
	HTTP Method
	Resource URI
	Qualifier

	
	
	
	

	
	
	
	

W.2
Operation <operation 1>
Editor’s note: It is ffs if a sequence diagram with associated description should be provided here.

W.3
Operation <operation 2>
X
Usage of HTTP

Y
Resources

Y.1
Resource structure

Y.2
Resource definitions
Y.2.1
Resource <resource 1>
Y.2.1.1
Description
Y.2.1.2
URI

Y.2.1.3
HTTP methods
Y.2.1.3.1
<method 1>
This method shall support the URI query parameters specified in table Y.2.1.3.1-1.

Table Y.2.1.3.1-1: URI query parameters supported by the <method 1> on this resource
	Name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

This method shall support the request data structures specified in table Y.2.1.3.1-2 and the response data structures and response codes specified in table Y.2.1.3.1-3.

Table Y.2.1.3.1-2: Data structures supported by the <method 1> request body on this resource

	Data type
	P
	Cardinality
	Description

	
	
	
	

Table Y.2.1.3.1-3: Data structures supported by the <method 1> response body on this resource

	Data type
	P
	Cardinality
	Response

codes
	Description

	
	
	
	
	

Y.2.1.3.1
<method 2>
Y.2.2
Resource <resource 2>
Z
Data type definitions
Z.1
General
Table Z.1-1: Data types defined in this specification
	Data type
	Reference
	Description

	
	
	

Table Z.1-2: Data types imported
	Data type
	Reference
	Description

	
	
	

Z.2
Structured data types

Z.2.1
Type <TypeName 1>
Table Z.2.1-1: Definition of type <TypeName 1>

	Attribute name
	Data type
	P
	Cardinality
	Description

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Z.2.2
Type <TypeName 2>
Z.3
Simple data types and enumerations
Z.3.1
General

This subclause defines simple data types and enumerations that are used by the data structures defined in the previous subclauses.
Z.3.2
Simple data types
Table Z.3.2-1: Simple data types

	Type Name
	Type Definition
	Description

	
	
	

Z.3.3
Enumeration <EnumType1>

Table Z.3.3-1: Enumeration < EnumType1>

	Enumeration value
	Description

	
	

Z.3.4
Enumeration <EnumType2>

Annex A (normative)

OpenAPI specification

It contains this leading paragraph:

"This clause describes the capabilities of the service in the structure of the OpenAPI Specification Version 3.0.1 [A9]. The OpenAPI document is represented in the JSON format option."

Annex A (informative):
Change history

	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2018-02
	SA5#117
	SA5-181254

SA5-181506

SA5-181507
	
	
	
	Addition of TS skeleton and pCRs agreed at SA5#117
	0.1.0

	2018-04
	SA5#118
	S5-182099

S5-182445

S5-182446

S5-182447

S5-182449
	
	
	
	Addition of pCRs agreed at SA5#118
	0.2.0

	2018-05
	SA5#119
	S5-183283
S5-183284
S5-183286
S5-183287
S5-183470
	
	
	
	Addition of pCRs agreed at SA5#119
	0.3.0

