3GPP TSG SA WG5 (Telecom Management) Meeting #116
S5-176265
27 November - 1 December 2017, Reno, US
revision of S5A-17xabc
Source:
Nokia
Title:
Improve description of the design pattern for links
Document for:
Approval
Agenda Item:
6.5.4
1
Decision/action requested

Discuss and approve the pCR
2
References

None.
3
Rationale

Discuss and approve the pCR.
4
Detailed proposal

	1st modified section

7.5.14
Design pattern for links
Links are used on Level 3 of the Richardson Maturity Model. Links are are returned by the server as part of the resource representation and used by the client to traverse the resource space and discover features of the resources without the need to consult external documents. In its most simple form the value of a link is a URI or a templated URI pointing to another resource (target resource). This information can be complemented by information about how the target resource relates to the context resource (link relation type) and attributes describing the target resource (target attributes).
RFC 8288 [d1] describes links to be used in HTTP header fields. The general mechanisms can be used also for conveying links as part of the resource representation in the response message body. However, a JSON Schema for annotating returned resource representations with links with would have to be defined.
The IETF Internet "Draft JSON Hypertext Application Language" [d2] proposes a new media type for representing resources and their relations with hyperlinks.The JSON Hypertext Application Language (HAL) introduces a "_links" property whose property names (keys) are link relation types defined by RFC 8288 [d1]. The property value is a Link Object or an array of Link Objects. A Link Object represents a hyperlink from the containing resource to another resource identified by the URI. A link Object has a couple of properties (key-value pairs):
· The "href" property identifies the other resource and its value is either a URI or a URI Template.
· The "templated" property specifies if the URI is templated or not. Its value is boolean (true/false).

· The "type" property indicates the media type of the resource representation to be expected from the target resource. Its value is a string.
· The presence of the "deprecation" property indicates that the link is to be deprecated. Its value is a URI pointing to a resource containing more information about the deprecation.
· The "name" property can be used as secondary key besides the relation type.
· The "profile" property is a URI pointing to a resource with information about the profile of the target resource.
· The "title" property is a string and allows to add a human-readable name for the link.
· The "hreflang" property is a string and indicates the language of the target resource.
It is recommended that each link object should always contain a link identifying the resource itself. The link type is the IANA registered "self".

It is not possible to provide information to the client on which HTTP methods are accepted by the target resource.
HAL features also a "_embedded" property. Its name is a link relation type and its value a resource object or an array of resource objects. Resource representations are those of the target URI or related to the target URI. The server decides to include his property in the response. Some REST guidelines also suggest the usage of an embed query parameter to allow the client to force the inclusion of the "_embedded" property.
Besides HAL there is also the IETF Internet Draft "JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON" [c4] proposing keywords for defining link description objects. The general approach is the same as for HAL. Nevertheless, there are differences in syntax and semantics. In HAL, for example” the relationship type is carried by the property names of the name-value pairs included in the "_links" object whereas in the JSON Hyper-Schema a dedicated property ("rel") is defined for that purpose. The keyword for link description objects is "links" and not "_links". As for HAL many keywords are defined for specifying properties on link description objects.
This study does not make any recommendation on which hyperlink standards should be used.

Example 1:
This example demonstrates the usage of HAL. A hyperlink to the alarm resource itself is returned as well as the links to the previous and the next alarm. The link relation types "self", "next" and "prev" are used to identify the semantics of the link. They are registered at IANA.
{

"_links": {

 "self": {"href": "http://example.org/AlarmIRP/v1/Alarms/127"},

 "next": {"href": "http://example.org/AlarmIRP/v1/Alarms/128"},

 "prev": {"href": "http://example.org/AlarmIRP/v1/Alarms/126"}

}

}

Example 2:
This example illustrates the use of a templated URI with Path Segment Expansion. The client can expand the templated URI with a specific alarm id and obtains the URI for retrieving the corresponding alarm resource.
{

 "_links": {

 "find": {"href": "http://example.org/AlarmIRP/v1/Alarms{/id}, "templated": true "}

 }

Example 3:
In the following example possible actions on the returned alarm are listed in the "_links" object. This example assumes the presence of task resources. Note that "comment", "acknowledge" and "unacknowledge" are extension link relation types not registered with IANA.
{

"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "acknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/acknowledge"}
}

}

In case the alarm is already acknowledged the following options are returned.
{

"_links": {

 "comment": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/comment"},

 "unacknowledge": {"href": "http://example.org/AlarmIRP/v1/Alarms/127/unacknowledge"}
}

}

Example 4:
This example shows how a child resource may be linked. The "parts" relation type is not registered with IANA.
GET /ensembles/1 HTTP/1.1

Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "1",

 "type": "Type1",

 "_links":

 {

 "self": { "href": "/ensembles/1" },

 "parts": { "href": "/ensembles/1/parts" }

 }

}

Example 5:
This example demonstrates the usage of HAL with the "_embedded" property. The inclusion of this property in the return message payload is triggered by the the "embed" query parameter.

GET /ensembles/1?embed=parts HTTP/1.1

Host: example.org

Content-Type: application/json

HTTP/1.1 200 OK

Content-Type: application/json

{

 "id": "1",

 "type": "Type1",

 "_links":

 {

 "self": { "href": "/ensembles/1" },

 "parts": { "href": "/ensembles/1/parts" }

 }

 "_embedded"

 {

 "parts":

 [

 {

 "id": "a",

 "name": "aName",

 "vendor": "ACME",

 "size": 10,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/a" }

 }

 },

 {

 "id": "b",

 "name": "bName",

 "vendor": "ACME",

 "size": 5,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/b" }

 }

 },

 {

 "id": "c",

 "name": "cName",

 "vendor": "ACME",

 "size": 12,

 "_links":

 {

 "self": { "href": "/ensembles/1/parts/c" }

 }

 }

]

 }

}

Example 6:
This example illustrates the usage of the JSON Hyper-Schema.
"links": [

 {

 "rel": "self",

 "href": " http://example.org/AlarmIRP/v1/Alarms/127"

 },

 {

 "rel": "next",

 "href": " http://example.org/AlarmIRP/v1/Alarms/128"

 }

]
	End of 1st modified section

