3GPP TSG SA WG5 (Telecom Management) Meeting #115
S5-175259
16-20 October 2017, Busan, Korea
revision of S5A-17xabc
Source:
Nokia
Title:
pCR 32.866 Add reference for REST
Document for:
Approval
Agenda Item:
6.5.5
1
Decision/action requested

Discuss and approve the pCR
2
References

None.
3
Rationale

Discuss and approve the pCR.
4
Detailed proposal

	1st modified section



References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[x]
ETSI NFV SOL 17
NFVSOL(17)000050r1: "SOL REST API convention collection living document (2017-01-30)".
[y]
ETSI GS NFV SOL 003 V0.6.0 (2017-01): "RESTful protocols specification for the Or-Vnfm Reference Point".

[z]
Draft ETSI GS MEC 009 V0.7.1 (2017-02): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[t]
IETF RFC 6421: "Network Configuration Protocol (NETCONF)" (https://www.ietf.org/rfc/rfc6241.txt).
[u]
IETF RFC 8040: "RESTCONF Protocol" (https://www.ietf.org/rfc/rfc8040.txt).

[a1]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing" (https://www.ietf.org/rfc/rfc7230.txt).
[a2]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (https://www.ietf.org/rfc/rfc7231.txt).
[a3]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax" (https://www.ietf.org/rfc/rfc3986.txt).

[b1]
IETF RFC 5789: "PATCH Method for HTTP" (https://www.ietf.org/rfc/rfc5789.txt).
[b2]
IETF RFC 7396: "JSON Merge Patch" (https://www.ietf.org/rfc/rfc7396.txt).

[b3]
IETF RFC 7232: "Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests" (https://www.ietf.org/rfc/rfc7232.txt).

[b4]
IETF RFC 6902: "JavaScript Object Notation (JSON) Patch" (https://www.ietf.org/rfc/rfc7232.txt).

[b5]
IETF RFC 6901: "JavaScript Object Notation (JSON) Pointer" (https://www.ietf.org/rfc/rfc6901.txt).

[b6]
https://martinfowler.com/articles/richardsonMaturityModel.html
[c6]
Fielding, Roy Thomas (2000). "Architectural Styles and the Design of Network-based Software Architectures". Dissertation. University of California, Irvine. (https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)
[a4]
3GPP TS 32.300: "Name convention for managed objects".

[a5]
ETSI GS NFV SOL 003 (V0.7.0): RESTful protocols specification for the Or-Vnfm Reference Point ".
[a6]
3GPP TS 32.602: "Telecommunication management; Configuration Management (CM); Basic CM Integration Reference Point (IRP); Information Service (IS)".
[a7]
3GPP TS 32.111-2: " Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)".
[v]
OpenAPI Specification Version 2.0
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
	End of 1st modified section


	2nd modified section


7.2.1
REST design principles

REST stands for REpresentational State Transfer. It is an architectural style defined by the following principles:
Client-server architecture

REST follows a client-server architecture. Client and server are linked by the uniform interface. The server is concerned with data storage. The client manipulates this data with create, read, update and delete (CRUD) operations. This architecture allows the client and server to evolve independently.

Stateless servers

REST servers are stateless, meaning that no client context is stored on the server. It is the client holding the session state. Each request from a client contains all the information required to service the request.

Cacheability

REST is cacheable. The client and any intermediary can cache responses, helping to improve system scalability and performance.

Layered System

REST is a layered system. A client cannot know if it is interacting with the end server or an intermediate server on the way to the end server. Each component has only knowledge about the component it is interacting with. All components are independent and easily replaceable or extendable. This improves system scalability and enables load-balancing.

Code on demand

Code on demand is an optional REST feature. It allows servers to transfer executable code to the client, thereby extending the functionality of the client.

Uniform interface

The uniform interface is the most important aspect of REST. Client and server communicate via the uniform interface. It is characterized by the following

Resource identification: The key concept is to abstract information into resources. These resources have a unique resource identification. Requests are directed towards resources.

Resource representation: Each resource has one or multiple representations. Representations can be in e.g. XML, JSON or HTML. Resource representations are exchanged over the wire together with any representation metadata. The metadata provides information about the representation, such as its media type, the date of last modification, or even a checksum.

Self-descriptive messages: Messages must be self-descriptive. All the information required to process the message is included in the message.

Hypermedia as the engine of application state (HATEOAS): This refers to the capability of the server to send hyperlinks to the client allowing the client to traverse and dynamically discover resources without referring to external documentation.
These principles were first described in [c6].
	End of 2nd modified section


