3GPP TSG SA WG5 (Telecom Management) Meeting #114
S5-174168
21-25 August 2017, Sophia Antipolis,France
revision of S5A-17xabc
Source:
Nokia
Title:
pCR 32.866 Add REST design principles
Document for:
Approval
Agenda Item:
6.6.6
1
Decision/action requested

Discuss and approve the pCR
2
References

None
3
Rationale

Discuss and approve the pCR.
4
Detailed proposal

	1st modified section


7.2.1
REST design principles
REST stands for REpresentational State Transfer. It is an architectural style defined by the following principles:
Client-server architecture
REST follows a client-server architecture. Client and server are linked by the uniform interface. The server is concerned with data storage. The client manipulates this data with create, read, update and delete (CRUD) operations. This architecture allows the client and server to evolve independently.
Stateless servers
REST servers are stateless, meaning that no client context is stored on the server. It is the client holding the session state. Each request from a client contains all the information required to service the request.
Cacheability

REST is cacheable. The client and any intermediary can cache responses, helping to improve system scalability and performance.
Layered System

REST is a layered system. A client cannot know if it is interacting with the end server or an intermediate server on the way to the end server. Each component has only knowledge about the component it is interacting with. All components are independent and easily replaceable or extendable. This improves system scalability and enables load-balancing.
Code on demand

Code on demand is an optional REST feature. It allows servers to transfer executable code to the client, thereby extending the functionality of the client.
Uniform interface

The uniform interface is the most important aspect of REST. Client and server communicate via the uniform interface. It is characterized by the following

Resource identification: The key concept is to abstract information into resources. These resources have a unique resource identification.

Resource representation: Each resource has one or multiple representations. Representations can be in e.g. XML, JSON or HTML. Resource representations are exchanged over the wire together with any representation metadata. The metadata provides information about the representation, such as its media type, the date of last modification, or even a checksum.
Self-descriptive messages: Messages must be self-descriptive. All the information required to process the message is included in the message.
Hypermedia as the engine of application state (HATEOAS): This refers to the capability of the server to send hyperlinks to the client allowing the client to traverse and dynamically discover resources without referring to external documentation.
	End of 1st modified section


