3GPP TSG SA WG5 (Telecom Management) Meeting #114
S5-174170
21-25 August 2017, Sophia Antipolis,France
revision of S5A-17xabc
Source:
Nokia
Title:
pCR 32.866 Add HTTP method descriptions
Document for:
Approval
Agenda Item:
6.6.6
1
Decision/action requested

Discuss and approve the pCR
2
References

None
3
Rationale

Discuss and approve the pCR.
4
Detailed proposal

	1st modified section

7.3.2
HTTP methods

7.3.2.1
HTTP GET method
The HTTP GET method requests a representation of the resource specified by the URI. It is used to retrieve one or multiple resources from the server. The query component of the URI can be used for filtering purposes in case more than one resource is scoped by the path-abempty part of the URI. Only those resources passing the filtering criteria are returned.

7.3.2.2
HTTP HEAD method
The HTTP HEAD method returns only the headers that are returned with a HTTP GET method together with the message body, except for the payload header fields. This method can be used for e.g. deciding to retrieve large resource representations to save bandwidth.

7.3.2.3
HTTP POST method
The POST method sends data in the message body to the server. In contrast to HTTP PUT, replacing the resource representation, it requests the target resource to process the representation enclosed in the request according to the resource’s own specific semantics. With this method, it is possible to send HTML forms to the server, post messages to newsgroups or mailing list, and to create a new resource.
When a new resource is created, 201 (Created) is returned. The returned Location header carries the URI of the created resource. The URI of the new resource is created by the server. The response message body contains a representation of the created resource.

7.3.2.4
HTTP PUT method
The HTTP PUT method requests that the state of the target resource be created or replaced with the state defined by the representation enclosed in the request message payload. This method replaces always the complete resource representation. Partial resource modifications are not possible. If a resource at the URI specified in the request does not exist yet, the server creates a new resource at this URI.
Conditional requests (RFC 7232 [b3]) using e.g. the entity tag (ETag) can be used to prevent accidentally overwriting modifications made to a resource by another client ("lost update problem").

7.3.2.5
HTTP DELETE method
The DELETE method requests that the origin server deletes the resource identified by the Request-URI. This does not imply that the underlying information is deleted as well.

7.3.2.6
HTTP CONNECT method
This method is not relevant in this context.

7.3.2.7
HTTP OPTIONS method
This method is not relevant in this context.

7.3.2.8
HTTP TRACE method
This method is not relevant in this context.

7.3.2.9
HTTP PATCH method
The HTTP PUT method only allows a complete resource replacement. For this reason, a new method, HTTP PATCH, has been defined by IETF in RFC 5789 [b1] for partial resource modifications. The set of changes to be applied is described in the request message body.

RFC 7396 [b2] specifies a simple method in JSON (JSON Merge Patch) allowing to describe a set of modifications to be applied to the target resource’s content. JSON Merge Patch works at the level of JSON objects. An object is an unordered set of name/value pairs.
Three types of patches are described in RFC 7396 [b2]

1. Replacing the value of an already existing name/value pair by a new value.

2. Adding a new name/value pair.

3. Removing an existing name/value pair.
It is not possible to append e.g. a value to an array other than replacing the complete object.
A more sophisticated method for describing partial resource updates, JSON Patch, is specified in RFC 6902 [b4]. This feature works with operations (test, remove, add, replace, move, copy). The location within the target document where the operation is performed is indicated by a JSON-Pointer value (RFC 6901 [b5]). Compared to JSON Merge Patch, this method is more powerful. Besides partial modification of resources, it is also possible to create multiple resources with a single HTTP PATCH request.
Conditional requests (RFC 7232 [b3]) can be used also with the HTTP PATCH method.

7.3.3
HTTP resources

HTTP merthods act on resources identified by a Uniform Resource Identifier (URI)..

7.3.4
Uniform Resource Identifiers (URIs)

URIs are used in HTTP as a means for identifying resources. The generic URI is defined in RFC 3986 [a3] by
URI = scheme ":" hier-part ["?" query] ["#" fragment]

hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty

HTTP uses a subset of the generic URI scheme defined in RFC 7230 [b] as
http-URI = "http:" "//" authority path-abempty ["?" query]

["#" fragment]
where

authority = <authority, see [RFC3986], Section 3.2>

path-abempty = <path-abempty, see [RFC3986], Section 3.3>
query = <query, see [RFC3986], Section 3.4>
fragment = <fragment, see [RFC3986], Section 3.5>

and

authority = [userinfo "@"] host [":" port]
path-abempty = *("/" segment)

query = *(pchar / "/" / "?")
fragment = *(pchar / "/" / "?")
and

segment = *pchar
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "’" / "(" / ")"

/ "*" / "+" / "," / ";" / "="
A more readable form is as follows
http://host:port/path?queryString#fragment

Example:

foo://example.com:8042/over/there?name=ferret#nose

_/ ______________/_________/ _________/ __/

 | | | | |

scheme authority path query fragment
Editor’s note: It is ffs if a length restriction needs to be introduced for the URI.
	End of 1st modified section

