Alarm Integration Reference Point: CORBA solution set

3GPP TSG-SA5 (Network Management) Meeting #11

Paris, France, 10th – 14th April, 2000
[image: image1.png]

Tdoc S5-000182

3GPP TSG-SA5 FM = Fault Management

Paris, 10.-14. April, 2000
S5- FM#03(00)0000

Title:
Comments to Corba Solution Set to Alarm IRP

Source:
Siemens Austria (di.zhou@siemens.at)

Agenda item:
To be defined

Document for:
Discussion

Category:
Contribution to 32.111 V3.0.0

Document Summary:
This contribution provides comments to the Corba Solution Set of the Alarm IRP contributed by Ericsson to the FM ad hoc meeting in Montreal.

Specification(s) involved:
32.111 (Annex CORBA solution set of Alarm IRP)

Other information:
Most comments were edited directly into the original document using the WinWord comment function. The texts commented are coloured in yellow. Just put the cursor on these texts, the comments will appear.

--

A general comment:

Since it is the solution sets that provide the concrete implementations for the concerned IRPs and different solution sets may differ a lot from each other in the sense of working scenarios, it seems much more significant to provide use cases in the documents of the solution sets to illustrate the rationale of the related technology rather than to offer generic use cases in the IRP IS documents. I suggest to remove the related chapter (currently almost empty) from the Alarm IRP document and add a corresponding chapter into this document.

[image: image2.wmf]

Alarm Integration Reference Point (IRP)

Specification: CORBA Solution Set

A Proposal for 3GPP TSG SA WG5

Version 1:1

2000-03-21

(Revision A with IDL file)

Document Status History

First release: 1999-09-14

Second release: input to FM ad hoc meeting in Montreal, March 2000.

Table of Contents

Preface

41
Introduction

1.1
Document Structure
4
1.2
Key Terms
4
1.3
IRP solution set version
4
1.4
Glossary
4
2
Architectural Features
4
2.1
Event and Notification Services
4
2.2
Operation and Notification mapping
5
2.3
OMG StructuredEvent
6
2.3.1
Attributes in Filterable_body_fields
7
2.4
Filter
8
2.5
Format for some strings
8
2.5.1
String for event_time and ack_time
8
2.5.2
String for managedObjectInstance
9
2.5.3
String Assignments Module
9
3
AlarmIRP Interfaces
9
3.1
AlarmIRPNotifications Interface
9
3.1.1
Method push (M)
9
4
References
12

Appendix

Alarm IRP IDL

Tables

5Table 1: Mapping from Notification/Operation to Method

Table 2: Attributes of StructuredEvent
7

1 Introduction

This document specifies the CORBA solution set for the IRP whose semantics is specified in Alarm IRP: Information Service [9].

1.1 Document Structure

Section 1 provides background information. Section 2 provides key architectural features supporting the solution set. Section 3 is the partial IDL specification for the solution set. Complete IDL specification is captured in Appendix A.

1.2 Key Terms

See section “Key Terms” in Reference [9].

1.3 IRP solution set version

The version of this CORBA solution set is 1:1, where the first “1” indicates the version number of the Alarm IRP: Information Service [9]; and the second “1” indicates the version number of this document.

1.4 Glossary

Glossary of terms and acronyms

CORBA: Common Object Request Broker Architecture

IDL: Interface Definition Language

NE: Network Element

OMG: Object Management Group

UML: Unified Model Language

2 Architectural Features

The overall architectural feature of Alarm IRP is specified in Reference [9]. This section specifies features that are specific to the CORBA solution set.

2.1 Notification Services

In implementations of CORBA solution set, System conveys Alarm Information to Actor via OMG Notification Service [6]. This solution set does not recommend the use of OMG Event Service [7].

OMG Event Service provide event routing and distribution capabilities. OMG Notification Service provides, in addition to Event Service, event filtering and quality of service as well.

OMG Notification Services shall be used to support AlarmIRPNotifications notifications as specified in [9]. System and Actor may purchase a 3rd party OMG Event or Notification Service product for implementation. However, a System and Actor may, for reason of their own, choose to develop and implement their own event routing, distribution, filtering and quality of service capabilities. An Actor or System needs not know if the other party is using a 3rd party product or not.

2.2 Push and Pull Style

OMG Notification Services define two styles of interaction. One is called push style. In this style, System pushes events and notifications to Actor as soon as they are available. The other is called pull style. In this style, System keeps the events and notifications till Actor requests for them.

This CORBA solution set specifies that support of push style is mandatory and that support of pull style is optional.

2.3 Support multiple notifications in one push operation

For efficiency reasons, System may send multiple notifications using one single push operation. To pack multiple notifications into one push operation, System may wait and not invoke the push operation as soon as notifications are available. To avoid System to wait for an extended period of time that is objectionable to Actor, this IRP recommends that System implements a system wide timer configurable by administrator. On expiration of this timer, System must invoke push even though there is only one notification in it. This timer is re-started after each push invocation.

2.4 Operation and Notification mapping

Reference [9] defines semantics of operation
 visible across the Alarm IRP. It also qualifies if operation and notification are optional or mandatory. Furthermore, it defines the expected Actor and System behavior regarding support of optional and mandatory operation and notification.

The table below indicates the mapping between the operations defined in [9] and the ones defined in this CORBA solution set.

Table 1: Mapping from Notification/Operation to Method

Operations and notifications named in [9]
Methods named in this CORBA solution set

Operation setAckState
Method set_ack_state

Operation getAlarmList
Method get_alarm_list

Operation selectAlarmIRPVersion
Method select_alarm_IRP_version

Operation getAlarmCount
Method get_alarm_count

Notification notify(to convey new alarm)
Method push_structured_event

Notification notify(to convey cleared alarm)
Method push_structured_event

Notification notify(to convey changed alarm)
Method push_structured_event

Notification notify(to convey acknowledgement state)
Method push_structured_event

Notification notify(to convey alarm list rebuilt)
Method push_structured_event

The table below indicates the mapping between the attributes defined in Information Service (IS) [9] and the parameters defined in this CORBA solution set.

Table 2: Mapping from Information Service attributes to Solution Set parameters

Attribute names in Information Service [9]
Parameter names in Solution Set

ManagedObjectClass
ManagedObjectClass

ManagedObjectInstance
ManagedObjectInstance

EventType
EventType

ProbableCause
ProbableCause

PerceivedSeverity
PerceivedSeverity

SpecificProblem
SpecificProblem

AdditionalText
AdditionalText

additionalInfo.alarmId
AlarmId

additionalInfo.ackUserId
AckUserId

additionalInfo.ackTime
AckTime

additionalInfo.ackSystemId
AckSystemId

Attribute names in Information Service [10]
Parameter names in Solution Set

systemDN
SystemDN

notificationID
NotificationID

eventTime
EventTime

correlated_notifications
CorrelatedNotifications

2.5 OMG StructuredEvent
Reference [9] defines Alarm Information and its attributes in terms of semantics and in a protocol neutral fashion. It also qualifies if attribute
 is optional or mandatory. Furthermore, it defines the expected Actor and System behavior regarding support of optional and mandatory attributes.

This section defines the syntax of Alarm Information and its attributes for the CORBA solution set environment.

Alarm Information and its attributes and common Notification attributes
(defined in [9]) is realized as attributes of OMG Structured Event [6].

The composition of OMG Structured Event, as defined in [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body
Following table specifies mapping rules for StructuredEvent for use across the Alarm IRP.

Table 3: Attributes of Structured Event

Attribute in Structured Event
Value

domain_name
It contains a string. It indicates that the syntax and semantics of the subject StructuredEvent are defined by the Alarm IRP. It indicates the Alarm IRP CORBA solution set version number as well. It is a string “3GPP AM IRP 1:1”).

type_name
 Null

[Editor note: This space is left NULL for the moment. We may use it to hold, for alignment with work by T1M1, ???.]

event_name
It contains a string. It identifies the types of notification conveyed via the AlarmIRPNotifications. Specifically, it indicates if the StructureEvent conveys a new alarm, a cleared alarm, a repeated alarm (e.g., perceivedSeverity changed), Acknowledgement State change or System current alarm list being cleared indication. See section 3.1.2 for more information on the usage of this parameter type_name.

This type of information is specific to the domain of “3GPP AM IRP 1:1”.

[editor note: Previous version places the Notification Identifier here. In this version, the Notification Identifier will have its own parameter in Filterable_body_fields. See parameter notificationId defined in reference [10]. This is one attempt to align work with T1M1 draft CORBA Management Framework. Note as well that in T1M1 draft, this Event_name attribute is not used.]

variable Header
Its usage is optional and is outside the scope of this specification.

filterable_body_fields
It contains a sequence of name and value pairs. See section 2.5.1.

remaining_body
Its usage is optional and is outside the scope of this specification.

2.5.1 Attributes in Filterable_body_fields

This section defines the mapping of alarm attributes defined in reference [9] to attributes in filterable_body_fields attribute of StructuredEvent.

Name of the name-value (NV) pair
of the filterable_body_fields is the string defined in 2.7.3: ”String and Short Assignments Module”.

The name of the NV pair is always a string.

The value of the NV pair may be string or a short. It may also be a structure as in the case of correlatedNotifications.

Note that the attribute additionalInfo, defined in reference [9], is realized in this solution set by a set of NV pairs. This IRP specifies the following NV pairs in additionalInfo attribute.

· systemDN

· alarmId

· ackUserId

· ackTime
· ackSystemId

Other NV pairs are private and their specifications are outside the scope of this specification
. There can be 0, 1 or more NV pairs for the realization of additionalInfo attribute. The NV pairs for additionalInfo attribute may or may not be organized adjacent to one another.

The following is one example of this additionalInfo attribute realized by 4 NV pairs. The last two NV pairs of additionalInfo attribute but their specifications are outside the scope of this IRP.

{

…

systemDN, “net=1,PLMN=eastern,switch=123,port=a4”;

managedObjectInstance = …, // not an additionalInfo attribute

ackUserId, “joeSmith”;

“Quality”, “uncertain”;

“TrendIndication”,”goingUp”;
}

2.6 Filter

System can optionally
 support alarm filtering based on Actor’s supplied alarm filter constraints (e.g., as parameter in subscribe() of [10].) Alarm filtering can be applied in the following cases:

· It is applicable to alarms emitted by System via AlarmIRPNotifications. Actor supplies alarm filter constraint via the subscribe method. This filter is effective during the period of subscription
 and is only applicable to alarms emitted via AlarmIRPNotifications
.

· It is applicable to alarms returned by System via the out parameter of get_alarm_list method. Actor supplies alarm filter constraint via the get_alarm_list method. This filter is effective only for this method invocation.

· It is applicable to the calculation of alarm counts returned by System via the out parameters of get_alarm_count method. Actor supplies alarm filter constraint via the get_alarm_count method. This filter is effective only for this method invocation.

System manages filter objects based on the filter constraints supplied by Actor. This management is internal within System and is not visible via the Alarm IRP.

Actor specifies the grammar used in specifying the filter constraint. Actor supplies grammar parameter indicating the grammar. This Solution set recommends the use of grammar specified by reference [6]. The grammar parameter is “EXTENDED_TCL
”.

2.7 Format for some strings

Attributes in StructuredEvents are strings. This section specifies the syntax and semantics of some of these strings.

2.7.1 String for eventTime and ackTime
The eventTime syntax and semantics are specified in ref [10]. The ackTime syntax and semantics are identical to those specified for eventTime.
2.7.2 String for managedObjectInstance
The managedObjectInstance (MOI) identifies the network resource whose alarm state is being reported. This identifier shall contain identification of the NE that contains the alarmed network resource.

Reference [8] specifies encoding rules for naming Managed Objects in text-based format. The MOI encoding shall use that format.

2.7.3 String and Short Assignments Module

This IRP defines legal values that can appear in (a) domain_name and type_name of the Fixed Header field of Header.

It also defines legal values of all names of the NV pair used in filterable_data field of the Body of StructuredEvent. These are defined as string.

It also defines legal values of some values of the NV-pair used in filterable_data field of the Body of StructuredEvent. These are defined as const short.

One reason for the assignments is to reduce the number of bits transmitted.

Without definition, one transmits, as an example, the following:

{ …, “perceivedSeverity”, “CRITICAL”, …}

With definition, one tranmits the following to convey identical semantics.

{ …, “e”, 1, … }

Appendix A contains the complete IDL specification.

3 AlarmIRP Interfaces

This section defines CORBA methods implemented by System and Actor. The specification is in IDL. Appendix A contains the complete IDL specification.

3.1 AlarmIRPNotifications Interface

OMG CORBA Notification push operation is used to realize the notification of AlarmIRPNotifications
. This interface supports the notify
(to convey new alarm, to convey changed alarm, to convey cleared alarm, to convey acknowledgement state changes, to convey Alarm List rebuilt) operation defined in Alarm IRP: Information Service, .

3.1.1 Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

Notes:

· The push_structured_events operation takes as input a parameter of type EventBatch as defined in the OMG CosNotification module [6]. This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to Actor by System to which it is connected.

· The maximum number of events that will be transmitted within a single invocation of this operation is controlled by System wide configuration parameter.

· The amount of time the supplier (System) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by System wide configuration parameter as well.

· System may push EventBatch with only one Structured Event.

3.1.2 Definitions of name-value pairs

The filterable_body_fields attribute of StructuredEvent contains a set of NV pairs. The set of NV pairs depends on the value of the type_name in the StructuredEvent header
. Possible values
are NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED, NOTIFY_CLEAR_ALARM and NOTIFY_FM_ALARM_LIST_REBUILT.

If type_name == NOTIFY_FM_NEW_ALARM, then the filterable_body_fields attribute can contain
, noting that some attributes are optional:

{

systemDN, “YYY”,

// an additionalInfo attribute; YYY is a string.

alarmId, XXX,

// an additionalInfo attribute; XXX is a const short.

managedObjectClass, “YYY”,

managedObjectInstance, “YYY”,

eventTime, “YYY”,

eventType, XXX,

probableCause, XXX,

perceivedSeverity, XXX,

specificProblems, XXX,

additionalText, “YYY”,

“aaa”, XXX, // implementation of private additionalInfo attribute

“ccc”, YYY, // implementation of private additionalInfo attribute

…

}

If type_name == NOTIFY_FM_CHANGED_ALARM or ==NOTIFY_FM_ACK_STATE_CHANGED, then the filterable_body_fields attribute can contain, noting that some attributes are optional:

{

systemDN, “YYY”, // an additionalInfo attrinute

alarmId, XXX,
 // an additionalInfo attribute

managedObjectClass, “YYY”,

managedObjectInstance, “YYY”,

eventTime, “YYY”,

eventType, XXX,

ackUserId, “YYY”, // implementation of additionalInfo attribute

ackTime, “YYY”, // implementation of additionalInfo attribute

ackSystemId,YYY”, // implementation of additionalInfo attribute

probableCause, XXX,

perceivedSeverity, XXX,

specificProblems, XXX,

additionalText, “YYY”,

“aaa”, “YYY”,
// implementation of private additionalInfo attribute

“ccc”, XXX, // implementation of private additionalInfo attribute

}

If type_name == NOTIFY_FM_CLEAR_ALARM, then the filterable_body_fields attribute contains:

{

systemDN, “YYY”,

and the rest of attributes in the active alarm

that is now cleared.

}

If type_name == NOTIFY_FM_ALARM_LIST_REBUILT, then the filterable_body_fields attribute shall contain:

{

systemDN, “YYY”,

eventTime,”YYY” // time when list is rebuilt successfully.

}

3.2 AlarmIRPOperations Interface

For this interface, refer to Appendix A.

4 References

 AUTONUM

ITU-T Recommendation X.721: Information Technology - Open Systems Interconnection -Structure Of Management Information: Definition Of Management Information
 AUTONUM
ITU-T Recommendation X.736: Security Alarm Reporting Function

 AUTONUM
ITU-T Recommendation X.732: Relationship Management Function
 AUTONUM
ITU-T Recommendation X.731: State Management Function

 AUTONUM
ITU-T Recommendation X.730: Object Management Function

 AUTONUM
OMG Notification Service OMG TC Document telecom/98-11-01

 AUTONUM
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996. (Section 4 contains the Event Service Specification.)

8.
Name Convention for Managed Object: See Annex H of 3G TS 32.106 Alarm IRP: Information Service, Version 1: See Annex ??? of 3G TS 32.111

Notification IRP: Information Service, Version 1: See Annex B of 3G TS 32.106

9. Appendix A: Alarm IRP IDL

/* ## Module: ConstDefs: CORBA Solution Set version 1.1

*/

#ifndef __CONSTDEFS_DEFINED

#define __CONSTDEFS_DEFINED

module ConstDefs {

/* System returns signal to indicate operation

completion status. Behavior of System when it

returns Signal==ok is specific to each operation

and is specified in documentation of each operation. */

interface Signal {

const short OK = 0;

const short FAILURE = 1;

const short PARTIAL_FAILURE = 2;

};

typedef sequence <string> VersionNumberSeq;

struct CorrelatedNotificationInfo {

string notificationId;

string networkElementDistinguishedName;

};

typedef sequence <CorrelatedNotificationInfo> CorrelatedNotificationInfoSeq;

};

#endif

/* ## Module: AlarmConstDefs: CORBA Solution Set version 1.1

*/

#ifndef AlarmConstDefs_idl

#define AlarmConstDefs_idl

#include "CosNotification.idl"

module AlarmConstDefs {

interface ParameterNameValue {

const string notificationId = "a";

const string correlatedNotifications = "b";

const string eventTime = "c";

const string systemDN = "d";

const string eventType = "e";

const string managedObjectClass = "f";

const string managedObjectInstance = "g";

const string problableCause = "h";

const string perceivedSeverity = "i";

const string specificProblem = "j";

const string additionalText = "k";

const string alarmId = "l";

const string ackUserId = "m";

const string ackTime = "n";

const string ackSystemId = "o";

};

/* The perceivedSeverity indicates the relative level

of urgency for operator attention. Legal values

are critical, major, minor, warning, indeterminate

and cleared. This IRP does not recommend the

use of indeterminate. */

interface PerceivedSeverityValue {

const short INDETERMINATE = 0;

const short CRITICAL = 1;

const short MAJOR = 2;

const short MINOR = 3;

const short WARNING = 4;

const short CLEARED = 5;

};

/* eventType identifies alarm types such as

communication alarm, environmental alarm,

equipment alarm, integrity violation and

operational violation. See 3GPP Alarm IRP:

Information Service document for a complete listing.

This list is extensive. It is recommended that System

should use the list as is and not to extend it. */

interface EventTypeValue {

const short UNKNOWN_EVENT_TYPE = 0;

const short COMMUNICATIONS_ALARM = 2;

const short ENVIRONMENTAL_ALARM = 3;

const short EQUIPMENT_ALARM = 4;

const short ADMINISTRATIVE_ALARM = 6;

const short SWITCHING_OR_CROSS_CONNECTING_ALARM = 7;

const short PROCESSING_ERROR_ALARM = 10;

const short QUALITY_OF_SERVICE_ALARM = 11;

const short INTEGRITY_VIOLATION = 15;

const short OPERATIONAL_VIOLATION = 16;

const short PHYSICAL_VIOLATION = 17;

const short SECURITY_SERVICE_VIOLATION = 18;

const short TIME_DOMAIN_VIOLATION = 19;

};

/* probableCause qualifies alarm and provides further

information than EventType. See 3GPP Alarm IRP:

Information Service document for a complete listing.

This list is extensive. It is recommended that System

should use the list as is and not to extend it.

It is noted that System can privately (outside the scope of

this IRP) define values for SpecificProblem that provides

semantics not conveyed by ProbableCause.

A special probable cause value (Solution Set specific, e.g. -1)

indicates that this alternative is valid. This attribute value

shall be single-value and of simple type such as integer or string. */

interface ProbableCauseValue {

const short INDETERMINATE = 0;

const short ALARM_INDICATION_SIGNAL = 1;

const short CALL_SETUP_FAILURE = 2;

const short DEGRADED_SIGNAL_M3100 = 3;

const short FAR_END_RECEIVER_FAILURE = 4;

const short FRAMING_ERROR_M3100 = 5;

const short LOSS_OF_FRAME = 6;

const short LOSS_OF_POINTER = 7;

const short LOSS_OF_SIGNAL = 8;

const short PAYLOAD_TYPE_MISMATCH = 9;

const short TRANSMISSION_ERROR = 10;

const short REMOTE_ALARM_INTERFACE = 11;

const short EXCESSIVE_BIT_ERROR_RATE = 12;

const short PATH_TRACE_MISMATCH = 13;

const short UNAVAILABLE = 14;

const short SIGNAL_LABEL_MISMATCH = 15;

const short LOSS_OF_MULTI_FRAME = 16;

const short BACK_PLANE_FAILURE = 51;

const short DATA_SET_PROBLEM = 52;

const short EQUIPMENT_IDENTIFIER_DUPLICATION = 53;

const short EXTERNAL_DEVICE_PROBLEM = 54;

const short LINE_CARD_PROBLEM = 55;

const short MULTIPLEXER_PROBLEM_M3100 = 56;

const short NE_IDENTIFIER_DUPLICATION = 57;

const short POWER_PROBLEM_M3100 = 58;

const short PROCESSOR_PROBLEM_M3100 = 59;

const short PROTECTION_PATH_FAILURE = 60;

const short RECEIVER_FAILURE_M3100 = 61;

const short REPLACEABLE_UNIT_MISSING = 62;

const short REPLACEABLE_UNIT_TYPE_MISMATCH = 63;

const short SYNCHRONISATION_SOURCE_MISMATCH = 64;

const short TERMINAL_PROBLEM = 65;

const short TIMING_PROBLEM_M3100 = 66;

const short TRANSMITTER_FAILURE_M3100 = 67;

const short TRUNK_CARD_PROBLEM = 68;

const short REPLACEABLE_UNIT_PROBLEM = 69;

const short AIR_COMPRESSOR_FAILURE = 101;

const short AIR_CONDITIONING_FAILURE = 102;

const short AIR_DRYER_FAILURE = 103;

const short BATTERY_DISCHARGING = 104;

const short BATTERY_FAILURE = 105;

const short COMMERICAL_POWER_FAILURE = 106;

const short COOLING_FAN_FAILURE = 107;

const short ENGINE_FAILURE = 108;

const short FIRE_DETECTOR_FAILURE = 109;

const short FUSE_FAILURE = 110;

const short GENERATOR_FAILURE = 111;

const short LOW_BATTERY_THRESHOLD = 112;

const short PUMP_FAILURE_M3100 = 113;

const short RECTIFIER_FAILURE = 114;

const short RECTIFIER_HIGH_VOLTAGE = 115;

const short RECTIFIER_LOW_F_VOLTAGE = 116;

const short VENTILATION_SYSTEM_FAILURE = 117;

const short ENCLOSURE_DOOR_OPEN_M3100 = 118;

const short EXPLOSIVE_GAS = 119;

const short FIRE = 120;

const short FLOOD = 121;

const short HIGH_HUMIDITY = 122;

const short HIGH_TEMPERATURE = 123;

const short HIGH_WIND = 124;

const short ICE_BUILD_UP = 125;

const short LOW_FUEL = 127;

const short LOW_HUMIDITY = 128;

const short LOW_CABLE_PRESSURE = 129;

const short LOW_TEMPERATURE = 130;

const short LOW_WATER = 131;

const short SMOKE = 132;

const short TOXIC_GAS = 133;

const short STORAGE_CAPACITY_PROBLEM_M3100 = 151;

const short MEMORY_MISMATCH = 152;

const short CORRUPT_DATA_M3100 = 153;

const short OUT_OF_CPU_CYCLES = 154;

const short SOFTWARE_ENVIRONMENT_PROBLEM = 155;

const short SOFTWARE_DOWNLOAD_FAILURE = 156;

const short ADAPTER_ERROR = 301;

const short APPLICATION_SUBSYSTEM_FAILURE = 302;

const short BANDWIDTH_REDUCTION = 303;

const short COMMUNICATION_PROTOCOL_ERROR = 305;

const short COMMUNICATION_SUBSYSTEM_FAILURE = 306;

const short CONFIGURATION_OR_CUSTOMIZING_ERROR = 307;

const short CONGESTION = 308;

const short CPU_CYCLES_LIMIT_EXCEEDED = 310;

const short DATA_SET_OR_MODEM_ERROR = 311;

const short DTE_DCE_INETERFACE_ERROR = 313;

const short EQUIPMENT_MALFUNCTION = 315;

const short EXCESSIVE_VIBRATION = 316;

const short FILE_ERROR = 317;

const short HEATING_OR_VENTILATION_OR_COOLING_SYSTEM_PROBLEM = 321;

const short HUMIDITY_UNACCEPTABLE = 322;

const short INPUT_OUTPUT_DEVICE_ERROR = 323;

const short INPUT_DEVICE_ERROR = 324;

const short LAN_ERROR = 325;

const short LEAK_DETECTION = 326;

const short LOCAL_NODE_TRANSMISSION_ERROR = 327;

const short MATERIAL_SUPPLY_EXHAUSTED = 330;

const short OUT_OF_MEMORY = 332;

const short OUTPUT_DEVICE_ERROR = 333;

const short PERFORMANCE_DEGRADED = 334;

const short PRESSURE_UNACCEPTABLE = 336;

const short QUEUE_SIZE_EXCEEDED = 339;

const short RECEIVE_FAILURE = 340;

const short REMOTE_NODE_TRANSMISSION_ERROR = 342;

const short RESOURCE_AT_OR_NEARING_CAPACITY = 343;

const short RESPONSE_TIME_EXCESSIVE = 344;

const short RETRANSMISSION_RATE_EXCESSIVE = 345;

const short SOFTWARE_ERROR = 346;

const short SOFTWARE_PROGRAM_ABNORMALLY_TERMINATED = 347;

const short SOFTWARE_PROGRAM_ERROR = 348;

const short TEMPERATURE_UNACCEPTABLE = 350;

const short THRESHOLD_CROSSED = 351;

const short TOXIC_LEAK_DETECTED = 353;

const short TRANSMIT_FAILURE = 354;

const short UNDERLYING_RESOURCE_UNAVAILABLE = 356;

const short VERSION_MISMATCH = 357;

const short AUTHENTICATION_FAILURE = 401;

const short BREACH_OF_CONFIDENTIALITY = 402;

const short CABLE_TAMPER = 403;

const short DELAYED_INFORMATION = 404;

const short DENIAL_OF_SERVICE = 405;

const short DUPLICATE_INFORMATION = 406;

const short INFORMATION_MISSING = 407;

const short INFORMATION_MODIFICATION_DETECTED = 408;

const short INFORMATION_OUT_OF_SEQUENCE = 409;

const short INTRUSION_DETECTED = 410;

const short KEY_EXPIRED = 411;

const short NON_REPUDIATION_FAILURE = 412;

const short OUT_OF_HOURS_ACTIVITY = 413;

const short OUT_OF_SERVICE = 414;

const short PROCEDURAL_ERROR = 415;

const short UNAUTHORIZED_ACCESS_ATTEMPT = 416;

const short UNEXPECTED_INFORMATION = 417;

const short UNSPECIFIED_REASON = 418;

const short A_BIS_TO_BTS_INTERFACE_FAILURE = 501;

const short A_BIS_TO_TRX_INTERFACE_FAILURE = 502;

const short ANTENNA_PROBLEM = 503;

const short BATTERY_BREAKDOWN = 504;

const short BATTERY_CHARGING_FAULT = 505;

const short CLOCK_SYNCHRONISATION_PROBLEM = 506;

const short COMBINER_PROBLEM = 507;

const short DISK_PROBLEM = 508;

const short EXCESSIVE_RECEIVER_TEMPERATURE = 510;

const short EXCESSIVE_TRANSMITTER_OUTPUT_POWER = 511;

const short EXCESSIVE_TRANSMITTER_TEMPERATURE = 512;

const short FREQUENCY_HOPPING_DEGRADED = 513;

const short FREQUENCY_HOPPING_FAILURE = 514;

const short FREQUENCY_REDEFINITION_FAILED = 515;

const short LINE_INTERFACE_FAILURE = 516;

const short LINK_FAILURE = 517;

const short LOSS_OF_SYNCHRONISATION = 518;

const short LOST_REDUNDANCY = 519;

const short MAINS_BREAKDOWN_WITH_BATTERY_BACKUP = 520;

const short MAINS_BREAKDOWN_WITHOUT_BATTERY_BACKUP = 521;

const short POWER_SUPPLY_FAILURE = 522;

const short RECEIVER_ANTENNA_FAULT = 523;

const short RECEIVER_MULTICOUPLER_FAILURE = 525;

const short REDUCED_TRANSMITTER_OUTPUT_POWER = 526;

const short SIGNAL_QUALITY_EVALUATION_FAULT = 527;

const short TIMESLOT_HARDWARE_FAILURE = 528;

const short TRANSCEIVER_PROBLEM = 529;

const short TRANSCODER_PROBLEM = 530;

const short TRANSCODER_OR_RATE_ADAPTER_PROBLEM = 531;

const short TRANSMITTER_ANTENNA_FAILURE = 532;

const short TRANSMITTER_ANTENNA_NOT_ADJUSTED = 533;

const short TRANSMITTER_LOW_VOLTAGE_OR_CURRENT = 535;

const short TRANSMITTER_OFF_FREQUENCY = 536;

const short DATABASE_INCONSISTENCY = 537;

const short FILE_SYSTEM_CALL_UNSUCCESSFUL = 538;

const short INPUT_PARAMETER_OUT_OF_RANGE = 539;

const short INVALID_PARAMETER = 540;

const short INVALID_POINTER = 541;

const short MESSAGE_NOT_EXPECTED = 542;

const short MESSAGE_NOT_INITIALISED = 543;

const short MESSAGE_OUT_OF_SEQUENCE = 544;

const short SYSTEM_CALL_UNSUCCESSFUL = 545;

const short TIMEOUT_EXPIRED = 546;

const short VARIABLE_OUT_OF_RANGE = 547;

const short WATCH_DOG_TIMER_EXPIRED = 548;

const short COOLING_SYSTEM_FAILURE = 549;

const short EXTERNAL_EQUIPMENT_FAILURE = 550;

const short EXTERNAL_POWER_SUPPLY_FAILURE = 551;

const short EXTERNAL_TRANSMISSION_DEVICE_FAILURE = 552;

const short REDUCED_ALARM_REPORTING = 561;

const short REDUCED_EVENT_REPORTING = 562;

const short RECUCED_LOGGING_CAPABILITY = 563;

const short SYSTEM_RESOURCES_OVERLOAD = 564;

const short BROADCAST_CHANNEL_FAILURE = 565;

const short CALL_ESTABLISHMENT_ERROR = 566;

const short INVALID_MESSAGE_RECEIVED = 567;

const short INVALID_MSU_RECEIVED = 568;

const short LAPD_LINK_PROTOCOL_FAILURE = 569;

const short LOCAL_ALARM_INDICATION = 570;

const short REMOTE_ALARM_INDICATION = 571;

const short ROUTING_FAILURE = 572;

const short SS7_PROTOCOL_FAILURE = 573;

const short TRANSMISSION_FAILURE = 574;

};

interface DomainTypeValue {

const string THIS_DOMAIN_NAME_AND_VERSION = "3GPP FM IRP 1:1";

};

typedef sequence <string> AlarmInformationIdSeq;

typedef CosNotification::EventBatch AlarmInformationSeq;

/* TypeNameValue:

The number of type names and their values are

defined in this IRP. The number of type name

corresponds to the notifications defined in Alarm

IRPSystemCalling. */

interface TypeNameValue {

const short NOTIFY_FM_NEW_ALARM = 1000;

const short NOTIFY_FM_CHANGED_ALARM = 1001;

const short NOTIFY_FM_ACK_STATE_CHANGED = 1002;

const short NOTIFY_FM_CLEARED_ALARM = 1003;

const short NOTIFY_FM_ALARM_LIST_REBUILT = 1004;

};

interface AlarmAckState {

const short ACTIVE_AND_ACKNOWLEDGED = 1;

const short ACTIVE_AND_UNACKNOWLEDGED = 2;

const short CLEARED_AND_UNACKNOWLEDGED = 3;

const short ALL = 4;

};

};

#endif

/* ## Module: AlarmIRPSystem: CORBA Solution Set version 1.1

*/

#ifndef AlarmIRPSystem_idl

#define AlarmIRPSystem_idl

#include "ConstDefs.idl"

#include "AlarmConstDefs.idl"

#include "CosNotification.idl"

module AlarmIRPSystem {

/* System fails to complete the operation. System provides

reasons whose semantics is outside the scope of this IRP. */

exception SetAckStateException {string reason;};

 exception GetAlarmListException {string reason;};

exception SetAlarmIRPVersionException {string reason;};

exception GetAlarmCountExeception {string reason;};

/* Invalid Acknowledgement state sent to system. */

exception InvalidAckStateException {};

/* System does not support the operation. Note this operation must be specified as OPTIONAL in Alarm IRP Information Service. */

exception OperationNotSupportedException {};

/* System detects an illegal syntax in the version string. */

exception InvalidVersionNumberSyntaxException {};

/* System detects an illegal syntax, of the specified grammar, in Actor's supplied filter constraint string. */

exception InvalidFilterConstraintsException {};

/* System supports filter capability but System does not support the filter grammar indicated by Actor. */

exception FilterGrammarNotSupportedException {};

/* This particular System doesn't support filtering */

exception FilteringNotSupportedException {};

/* System detects illegal syntax in Actor's supplied user ID. One example of illegal syntax is NULL string. */

exception IllegalUserIdSyntax {};

/* User ID supplied is not authorised to perform operation. */

exception InvalidUserIdException {};

/* System is busy. Actor should retry operation at a later time. */

exception SystemBusyException {};

/* This interface specifies all methods supported by System as

specified in 3GPP AlarmIRP: CORBA Solution Set version 1:1. */

interface AlarmIRPOperations {

/* ## Operation: set_ack_state

 ## Documentation:

 Actor invokes this operation to acknowledge or

 unacknowledge one or more alarms. In the case of

 "acknowledge" operation, System will record user's

 identification, identification of the system in which Actor

 runs and the operation time in the attributes ackUserId,

 ackSystemId and ackTime of Alarm Information in the

 Alarm List. In case of a successful unacknowledge

 operation, System will delete information in ackUserId,

 ackSystemId and ackTime of the subject Alarm

 Information.

 This operation is optional.

 Parameters:

 (in) alarmInformationIdList: It carries one or more

 identifiers identifying Alarm Information(s) in Alarm List.

 Each identifier identifies at most one Alarm Information

 in Alarm List.

 (in) ackState: It indicates if Alarm Information identified

 by alarmInformationIdList be acknowledged or

 unacknowledged.

 (in) ackUserId: It identities the user acknowledging or

 un-acknowledging the alarm. It may contain NULL

 information implying that Actor does not wish this

 information be kept in Alarm Information in Alarm List.

 (in) ackSystemId: It identifies the processing system on

 which the subject Actor runs. It may contain NULL

 information implying that Actor does not wish this

 information be kept in Alarm Information in Alarm List.

 (out) badAlarmInformationIdList: It identifies the Alarm

 Information that are not present in Alarm List or that they

 are present, but their Acknowledgement State has not

 been changed according to Actor's request. This

 parameter shall contain at least one identifier in case

 the output status indicates partial failure. Otherwise, it

 shall contain NULL information.

 Returned status: (a) Operation succeeded. Alarm

 Information (in Alarm List) identified by

 alarmInformationIdList are in acknowledged state if

 ackState indicates "to acknowledge" or

 (b) Operation succeeded. Alarm Information (in Alarm

 List) identified by alarmInformationIdList are in

 unacknowledged state if ackState indicates "to

 unacknowledge".

 (c) Operation failed. No change is made, regarding

 Acknowledgement State, in any Alarm Information in

 Alarm List. Example of one such failure is when

 parameter alarmInformationIdList contains no identifier

 or no valid identifier.

 (d) Operation partially failed. It indicates that at least

 one but not all Alarm Information(s) (in Alarm List)

 identified by parameter alarmInformationIdList has

 changed its Acknowledgement State according to

 Actor's request. In this case, the output parameter,

 called badAlarmInformationIDList, shall contain a subset

 of the identifiers carried in parameter

 alarmInformationIDList. They identify Alarm

 Information(s), that may be present in Alarm List. If the

 Alarm Information(s) is present in Alarm List, their

 Acknowledgement State shall remain unchanged.

*/

ConstDefs::Signal set_ack_state (

in AlarmConstDefs::AlarmInformationIdSeq alarmInformationIdList,

in string ackState,

in string ackUserId,

in string ackSystemId,

out AlarmConstDefs::AlarmInformationIdSeq badAlarmInformationIdList

)

raises (SetAckStateException,InvalidAckStateException,InvalidUserIdException,IllegalUserIdSyntax,SystemBusyException,OperationNotSupportedException);

/* ## Operation: get_alarm_list

 ## Documentation:

 Actor requests System to provide a list of alarms in

 Alarm List. This operation is mandatory.

 Parameters:

 (in) alarmAckState: It has 4 values indicating a) active &

 acknowledged b) active & unacknowledged c) cleared

 & unacknowledged and d) all of the above. If present

 and non-null, System shall use it to apply on Alarm

 Information in Alarm List when constructing its output

 parameter AlarmInformationList. If input parameter filter

 is also present, the filter constraint carried in filter shall

 also be applied as well.

 (in) filter: It specifies the filter constraint that System shall

 use to apply on alarms in Alarm List. System shall return

 Alarm Information(s) that satisfy the filter constraint.

 The filter constraint shall be based on Alarm Information

 attribute names and values. System shall apply this filter

 instance for this invocation only. An absent parameter

 or null parameter implies that no filter constraint shall be

 applied.

 (out) alarmInformationList: It carries Alarm Information(s)

 in Alarm List.

 Returned status: (a) Operation succeeded in that

 alarmInformationList contains the required Alarm

 Information(s).

 (b) Operation failed because of specified or unspecified

 reason.

*/

ConstDefs::Signal get_alarm_list (

out AlarmConstDefs::AlarmInformationSeq alarmInformationList,

in AlarmConstDefs::AlarmAckState alarmAckState,

in string filter

)

raises (GetAlarmListException,InvalidFilterConstraintsException,FilterGrammarNotSupportedException,FilteringNotSupportedException,SystemBusyException);

/* ## Operation: get_alarm_count

 ## Documentation:

 Actor wishes to know the amount of Alarm

 Information(s) kept in System. Actor requests System

 to provide the counts via this operation. Possible usage

 is for Actor to find out the number of Alarm Information(s)

 in Alarm List before invoking get_alarm_list operation.

 This operation is optional.

 Parameters:

 (in) filter: It specifies the filter constraint that shall

 be applied to alarm records kept in the System's

 Alarm List. Only those alarms that satisfy the

 constraints shall be counted. An absent parameter

 implies that no filter constraint shall be applied.

 (out) The next five parameters specify the numbers of

 alarms whose Perceived Severity are critical,

 major, minor, warning and indeterminate respectively.

 (out) The next 3 parameters specify the numbers of

 alarms that are "active and acknowledged",

 "active and unacknowledged" and

 "cleared and unacknowledged" respectively.

 Returned status:(a) Operation succeeded in that the

 counts returned are valid.

 (b) Operation failed because of specified or unspecified

 reason.

*/

ConstDefs::Signal get_alarm_count (

in string filter,

out long criticalCount,

out long majorCount,

out long minorCount,

out long warningCount,

out long indeterminateCount,

out long activeAndAcknowledgedCount,

out long activeAndUnacknowledgeCount,

out long clearedAndUnacknowledgedCount

)

raises (GetAlarmCountExeception,SystemBusyException,OperationNotSupportedException);

/* ## Operation: select_alarm_IRP_version

 ## Documentation:

 Actor wishes to communicate with System using a

 particular IRP version. System shall respond with

 operation failure in case System does not support the

 requested version. In this case, System shall return with

 a list of (one or more) version numbers currently

 supported by System. In this case, if Actor supports the

 version listed by System, Actor must invoke again this

 operation using one of the versions indicated by

 System.

 System shall respond with operation successful in case

 System supports the requested version. In this case,

 System shall not return to Actor with a list of version

 number currently supported by System. This operation

 is mandatory.

 Parameters:

 (in) versionNumber: It indicates the solution set version

 number supported by Actor.

 (out) versionNumberList: It indicates one or more

 solution set version numbers supported by the System.

 This value should be NULL if status is successful,

 indicating that System is accepting the version number

 provided by Actor.

 Returned status: (a) Operation

 succeeded in that System is supporting the solution set

 version indicated in the input parameter. In this case,

 the output parameter versionNumberList shall be NULL.

 (b) Operation failed in that the System is not supporting

 the solution set version indicated in the input

 parameter. In this case, the output parameter

 versionNumberList shall contain one or more solution

 set version numbers currently supported by the System.

*/

ConstDefs::Signal select_alarm_IRP_version (

in string versionNumber,

out ConstDefs::VersionNumberSeq versionNumbers

)

raises (InvalidVersionNumberSyntaxException,SetAlarmIRPVersionException,SystemBusyException);

/* ##begin AlarmIRPOperations.additionalDeclarations preserve=yes

##end AlarmIRPOperations.additionalDeclarations */

};

};

#endif

� It stands for Extended Trader Constraint Language. For details, see section 2.4, Default Filter Constraint Language in reference � REF ReferenceOMGNotificationService \h ��OMG Notification Service� specification.

�PAGE \# "'Seite: '#'�'" �� why not use “1.1” as in usual cases. Anyway this shall be consistent to the IDL definition.

�PAGE \# "'Seite: '#'�'" �� Was there a CORBA solution set for AlarmIRP so early?

�PAGE \# "'Seite: '#'�'" ��The description here is not exact consistent to the clause 2.1.2 of the document for the CORBA solution set for Notification IRP (two system parameters are required there). I suggest to replace this clause with a reference to the document mentioned above. This keep it easy to maintain the consistency of all concerned SA5 documents.

�PAGE \# "'Seite: '#'�'" �� operations. The plural should be used also in the next sentences (operations/notifications).

�PAGE \# "'Seite: '#'�'" �� In the IS documents some input and output parameters are defined for each operation. In the CORBA solution set each operation has input and output parameter too. Not only the mapping of operations is important, the mapping of parameters are also important and helpful. The mapping of parameters should be provided and described explicitly in this document.

By the way it would be helpful to indicate if an operation or a parameter is mandatory or optional in this document, just like what is done in the CORBA solution set for NotificationIRP.

�PAGE \# "'Seite: '#'�'" �� When do you use the term “Attribute” and when do you use “Parameter”?

�PAGE \# "'Seite: '#'�'" �� This is about the Notification IRP and the Notification CORBA solution set. To put it here without any explanation is very confusing!

�PAGE \# "'Seite: '#'�'" �� an attribute

�PAGE \# "'Seite: '#'�'" �� These are defined in [10] and mapped in the Corba solution for the notification IRP. It is not necessary to repeat here.

�PAGE \# "'Seite: '#'�'" �� What already specified in the Notification Corba solution set should not be wholly repeated here. It should be mentioned that the usage of the StructuredEvent is generally defined in the Notification Corba solution set and emphasize new things specific for AlarmIRP.

�PAGE \# "'Seite: '#'�'" �� move this sentence to the section 3.1.2

�PAGE \# "'Seite: '#'�'" ��The AlarmIRP IS defines 4 parameters for all concerned notifications except that for alarm list rebuilt, for which there are 5 parameters. The IS defines also AlarmInformation including several important attributes. Why do you not talk anything about how to pack these parameters and attributes?

�PAGE \# "'Seite: '#'�'" �� A problem of English itself! Do you mean the name of a NV pair or the term “name” in this NV pair?

�PAGE \# "'Seite: '#'�'" �� This is not consistent to 2.7.3. You see how difficult it is to keep the consistency if same things are specified several times in different places.

�PAGE \# "'Seite: '#'�'" �� Five attributes are specified in Notification Corba solution. Why do you talk here only about systemDN?

�PAGE \# "'Seite: '#'�'" �� Please explain what you really mean!

�PAGE \# "'Seite: '#'�'" �� do you mean “The specification of the last two NV pairs of additionalInfo attribute are outside the scope of this IRP.”. Please explain!

�PAGE \# "'Seite: '#'�'" �� if this is not an additionalInformation attribute why do you put it in this example?

�PAGE \# "'Seite: '#'�'" ��The real meaning of an “optional” parameter is really ambiguous in the IRP documents. There two different understandings, the first: Systems may make choice to support or not to support alarm filtering; the second: Systems shall support alarm filtering but Actors may chose not to use it? I think we’d better define the real meaning of “optional” in the IRP IS explicitly to avoid any misunderstanding!

�PAGE \# "'Seite: '#'�'" �� Don’t forget changeFilter() please!

�PAGE \# "'Seite: '#'�'" �� To make the document easy to read please write “AlarmIRPNotifications interface” instead of “AlarmIRPNotifications” when possible!

�PAGE \# "'Seite: '#'�'" ��This section is quite confusing. Are you going to define the values or the only data types of the attributes? Except the concerned data types nothing seems to be defined here!

�PAGE \# "'Seite: '#'�'" �� AlarmIRPNotifications interface introduced in [9].

�PAGE \# "'Seite: '#'�'" �� It should be also talked about here how the interface containing notify() defined in IS document is mapped.

�PAGE \# "'Seite: '#'�'" �� This is very clear and not necessary to explain.

�PAGE \# "'Seite: '#'�'" �� Inconsistency! Formally the value of type_name is defined to be NULL before!!! Should CORBA solution for Notification IRP be adapted too?

�PAGE \# "'Seite: '#'�'" �� of what? probably of type_name!

�PAGE \# "'Seite: '#'�'" �� contains (without can)

�PAGE \# "'Seite: '#'�'" �� … // implementation of private additionalInfo attribute

�PAGE \# "'Seite: '#'�'" �� this is confusing. please put the formal specifications here too!

�PAGE \# "'Seite: '#'�'" �� what about the other parameters defined in Table 10 of IS?

�PAGE \# "'Seite: '#'�'" �� please mention [9] and talk something before referring the IDL!

05/04/2000

Page 2

