Page 1

3GPP TSG-SA5 (Network Management) Meeting #7

Tampere, Finland, 26-30 October, 1999
[image: image1.png]

Tdoc S5-99237

Title:
Draft. CORBA-Generic Network and NE Level Information Model

Source:
TC TMN Liaison Officer

Agenda item:
5.3 Liaison rapporteurs reports

Document for:
Information

Category:
 Analysis the re-usability of this work in SA5

Document Summary:
This ITU-T Q.19/4 draft document specifies a generic information model to be used in telecommunications network management based on CORBA. It defines in Interface Definition Language (IDL) a set of generic interfaces and constants.

Specification(s) involved:
None

Other information:

ITU-T SG4 Q19 Experts Meeting

Copenhagen, Denmark

August 9-13, 1999
TAA- 04 rev 1

Working Draft

Title:
CORBA Generic Information Model

Source:
Editor

Contact:
H. Kam LAM

Lucent Technologies

1 732 332 2454 (voice)

1 732 332 2464 (fax)

hklam@lucent.com

ABSTRACT

This document specifies a generic information model to be used in telecommunications network management based on CORBA. It defines in Interface Definition Language (IDL) a set of generic interfaces and constants. These generic IDL interfaces could be extended for managing specific network technologies, such as ATM and SONET/SDH.

Table Of Contents

11.
Introduction

1.1
Document Roadmap
1
1.2
Updates
1
1.3
Issues
1
2.
References
1
3.
Definitions
2
4.
Generic Network and NE Level Information Model
2
5.
Appendix A Information Model Definition
5
6.
Appendix B Information Model Constants
119

Table of Figures
CORBA Generic Network and NE Level Information Model

Introduction

This document defines a generic information model to be used in telecommunications network management based on CORBA. It defines in Interface Definition Language (IDL) a set of generic interfaces and constants. The intent of this document is to define a generic CORBA/IDL model similar to that defined in ITU Recommendations X.721 and M.3100 using CMISE. These generic IDL interfaces could be extended by various industries for managing specific network technologies, such as ATM and SONET/SDH.

Document Roadmap

This document has the following structure:

Section 1.
Introduction, document roadmap, updates, and list of issues.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Generic Network and NE Level Information Model.

Appendix A.
Generic Information Model Definition.

Appendix B.
Generic Information Model Constants.

Updates

This section describes the updates of the various versions of the document.

· The first version of this working draft document TAA-04 Rev.1 was created at the Q19/4 Interim Meeting (August 9-13, 1999) based on the contribution TAA-04, which was submitted by SBC Communications with the supported of T1M1.

Issues

This section documents issues that have arisen during standardization of this document and their resolutions. It will be removed in the final version of the document.

1) (To be provided, if any)

References

This section contains references for documents on which this specification draws.

[1] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, Revision 2.2, February 1998.

[2] The Object Management Group (OMG), “CORBA Services: Common Object Services Specification”, Updated version, December 1998.

[3] The Object Management Group (OMG), “Notification Service”, OMG TC Document telecom/98-11-01, November 3, 1998.

[4] The Object Management Group (OMG), “Telecom Log Service”, OMG TC Document telecom/98-12-??, December 16, 1998.

[5] Inter-domain Management: Specification Translation, Open Group

[6] JIDM Interaction Translation, Edition 4.31, October 1998, OMG document telecom/98-10-10

[7] ITU-T, “CORBA Framework for Telecommunication Network Management”, TAA-03 Rev.1, August 9-13, 1999.

Definitions

Generic Network and NE Level Information Model

The generic network and NE level information model is defined in Interface Definition Language (IDL). Appendix A contains all the data types and interface definitions. Appendix B contains only constant definitions. The IDL was created manually, following the GDMO specifications found in M.3100 and its Amendment 1. So far, twenty-eight objects have been translated to IDL. They are:

· AbstractLink

· AbstractLinkEnd

· AccessGroup

· AlarmSeverityAssignmentProfile

· CircuitPack

· ControlPoint

· CrossConnection

· Equipment

· EquipmentHolder

· ExternalPoint

· LayerNetworkDomain

· LinkConnection

· LogicalLink

· LogicalLinkEnd

· ManagedElement

· Network

· NetworkCTP

· NetworkTP

· NetworkTTP

· Pipe

· ScanPoint

· Software

· Subnetwork

· SubnetworkConnection

· TerminationPoint

· TopLink

· TopLinkEnd

· Trail

Additional object translations will be defined in future. The latest GDMO versions available for the objects were used, e.g., the Network interface is based on the NetworkR1 GDMO specification.

The object interfaces defined in this document rely upon and build upon the CORBA Framework for Telecommunications Network Management defined in TAA-03 [7].

Appendix A – Generic Information Model Definition

#ifndef _ITU_M3100_IDL_

#define _ITU_M3100_IDL_

#include <Naming.idl>

#include <itu_x721.idl>

#include <itu_m3100const.idl>

#include <itu_m3100.idl>

/**

This module contains IDL interface definition based on objects defined in

M.3100 (as well as one, System, from X.721). The objects defined in this

file are based on M.3100 and M.3100 Ammendment 1.

*/

module ITU_M3100

{

/**

IMPORTS

*/

/**

Types imported from Naming

*/

typedef CosNaming::Name NameType

typedef CosNaming::NameComponent NameComponentType

/**

Types imported from ITU_X721

*/

typedef ITU_X721::AdministrativeStateType AdministrativeStateType

typedef ITU_X721::AlarmInfoType AlarmInfoType

typedef ITU_X721::AttributeListType AttributeListType

typedef ITU_X721::GeneralizedTimeType GeneralizedTimeType

typedef ITU_X721::MOIDType MOIDType

typedef ITU_X721::MOIDListType MOIDListType

typedef ITU_X721::ObjectClassType ObjectClassType

typedef ITU_X721::OperationalStateType OperationalStateType

typedef ITU_X721::ProbableCauseType ProbableCauseType

typedef ITU_X721::StringListType StringListType

typedef ITU_X721::UIDType UIDType

typedef ITU_X721::UsageStateType UsageStateType

/**

Exceptions imported from ITU_X721

*/

typedef ITU_X721::DuplicateItem DuplicateItem

typedef ITU_X721::DuplicateName DuplicateName

typedef ITU_X721::InvalidID InvalidID

typedef ITU_X721::ItemNotFound ItemNotFound

typedef ITU_X721::ObjectFailure ObjectFailure

typedef ITU_X721::PackageNotPresente PackageNotPresent

typedef ITU_X721::TooManyListeners TooManyListeners

typedef ITU_X721::UnicastOnly UnicastOnly

/**

Interfaces imported from ITU_X721

*/

typedef ITU_X721::ManagedObject ManagedObject

typedef ITU_X721::ManagedObjectFactory ManagedObjectFactory

/**

FORWARD DECLARATION

*/

interface AbstractLink;

interface AbstractLinkEnd;

interface AccessGroup;

interface AlarmSeverityAssignmentProfile;

interface CircuitPack;

interface ControlPoint;

interface CrossConnection;

interface Equipment;

interface EquipmentHolder;

interface ExternalPoint;

interface LayerNetworkDomain;

interface LinkConnection;

interface LogicalLink;

interface LogicalLinkEnd;

interface ManagedElement;

interface Network;

interface NetworkCTP;

interface NetworkTP;

interface NetworkTTP;

interface Pipe;

interface ScanPoint;

interface Software;

interface Subnetwork;

interface SubnetworkConnection;

interface TerminationPoint;

interface TopLink;

interface TopLinkEnd;

interface Trail;

interface Notifications;

/**

STRUCTURES AND TYPEDEFS

*/

/**

This type is used when an optional (conditional) AdministrativeState

value needs to be returned by the managed system.

@see AdministrativeState

*/

union AdministrativeStateTypeOpt switch(boolean)

{

case TRUE:

AdministrativeStateType val;

};

/**

Alarm Severity Assignment Profile ID is a type-specific ID for

Alarm Severity Assignment Profile objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct AlarmSeverityAssignmentProfileIDType

{

NameType

name;

AlarmSeverityAssignmentProfile
ref;

};

/**

Alarm Severity Code.

*/

enum AlarmSeverityCodeType

{

nonalarmed,

minor,

major,

critical,

warning

};

union AlarmSeverityCodeTypeOpt switch (boolean)

{

case TRUE:

AlarmSeverityCodeType val;

}

/**

Alarm Severity Assignment. Each alarm severity assignment structure

identifies a particular problem (with a Unique ID) and then provides the

alarm severity code assigned if that problem is service affecting, not service

affecting, or service independent. This structure is usually part of

an AlarmSeverityAssignmentList.

@see AlarmSeverityAssignmentList

@member problem

the unique id of the problem

@member severityAssignedServiceAffecting
severity if problem is service

affecting.

@member severityAssignedNonServiceAffecting
severity if problem is not

service affecting.

@member severityAssignedServiceIndependent
severity if problem is service

independent.

*/

struct AlarmSeverityAssignmentType

{

ProbableCauseType
problem;

AlarmSeverityCodeTypeOpt severityAssignedServiceAffecting;

AlarmSeverityCodeTypeOpt severityAssignedNonServiceAffecting;

AlarmSeverityCodeTypeOpt severityAssignedServiceIndependent;

};

/**

Alarm Severity Assignment Lists provide a listing of all abnormal

conditions that may exist in instances of an object class, and show the

assigned alarm severity information (minor, major etc.) for each condition.

*/

typedef sequence<AlarmSeverityAssignmentType>

AlarmSeverityAssignmentListType;

/**

Alarm Status indicates the occurrence of an abnormal condition relating to

an object. Attributes of this type may also function as a summary indicator

of alarm conditions associated with a specific resource. It is used to

indicate the existence of an alarm condition, a pending alarm condition such

as threshold situations, or (when used as a summary indicator) the highest

severity of active alarm conditions. When used as a summary indicator, the

order of severity (from highest to lowest) is: activeReportable-Critical

activeReportable-Major activeReportable-Minor activeReportable-Indeterminate

activeReportable-Warning activePending cleared.

*/

enum AlarmStatusType

{

cleared,

activeReportableIndeterminate,

activeReportableWarning,

activeReportableMinor,

activeReportableMajor,

activeReportableCritical,

activePending

};

/**

This type is used when an optional (conditional) AlarmStatus value

needs to be returned by the managed system.

@see AlarmStatus

*/

union AlarmStatusTypeOpt switch(boolean)

{

case TRUE:

AlarmStatusType val;

};

/**

Avalibility Type is used in a sequence to indicate the availability

of a resource. Zero or more of these conditions may be indicated.

@see AvailabilityStatusType

*/

typedef short AvailabilityType;

const AvailabilityType availabilityTypeInTest = 0;

const AvailabilityType availabilityTypeFailed = 1;

const AvailabilityType availabilityTypePowerOff = 2;

const AvailabilityType availabilityTypeOffLine = 3;

const AvailabilityType availabilityTypeOffDuty = 4;

const AvailabilityType availabilityTypeDependency = 5;

const AvailabilityType availabilityTypeDegraded = 6;

const AvailabilityType availabilityTypeNotInstalled = 7;

const AvailabilityType availabilityTypeLogFull = 8;

/**

Availability status is used to indicate the availability of a resource.

It is represented as a sequence of enums because several of the enumerated

conditions may exist at once.

*/

typedef sequence<AvailabilityType> AvailabilityStatusType;

/**

This type is used when an optional (conditional) Boolean value

needs to be returned by the managed system.

*/

union BooleanTypeOpt switch(boolean)

{

case TRUE:

boolean val;

};

/**

Circuit Pack ID is a type-specific ID for Circuit Pack objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct CircuitPackIDType

{

NameType
name;

CircuitPack
ref;

};

/**

The current problem structure identifies an existing problem with an

object. It is typically a component of a Current Problem List.

@see CurrentProblemList

*/

struct CurrentProblemType

{

ProbableCauseType
problem;

AlarmStatus

alarmStatus;

};

/**

Current Problem Lists identify the current existing problems, with

severity, associated with a managed object.

*/

typedef sequence<CurrentProblemType> CurrentProblemListType;

/**

Equipment ID is a type-specific ID for Equipment objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct EquipmentIDType

{

NameType
name;

Equipment
ref;

};

/**

Equipment Holder ID is a type-specific ID for Equipment Holder objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct EquipmentHolderIDType

{

NameType
name;

EquipmentHolder
ref;

};

/**

External time attributes and parameters provide time-of-day system time.

*/

typedef GeneralizedTimeType ExternalTimeType;

/**

General Error Causes are represented by Unique Identifiers.

*/

typedef UIDType GeneralErrorCauseType;

/**

General Error Structures are used to represent general errors, with the

error or errors described by a cause code and optionally provided text.

An attributeList can be provided if the error condition can be further

described by the state of the object attributes. Related object(s) can

also be provided. The related objects may contribute to the condition

that does not allow the operation to take place. An example would be

if objects are configured for a particular service offering that is in

conflict with the service offering that is being provisioned. These

structures are usually part of a General Error List.

@see GeneralErrorList

@member cause

@member details

may be null

@member relatedObjects
may be null

@member attributeList
may be null

*/

struct GeneralErrorType

{

GeneralErrorCauseType
cause;

string

details;
// may be null

MOIDListType

relatedObjects;
// may be null

AttributeListType
attributeList;
// may be null

};

/**

General Error List. If an error or set of errors occur that cannot be

described by existing CORBA errors or other error parameters, the error(s)

will be communicated using this parameter, with the error or errors described

by a cause code and optionally provided text. An attributeList can be

provided if the error condition can be further described by the state of the

object attributes. Related object(s) can also be provided. The related

objects may contribute to the condition that does not allow the operation to

take place. An example would be if objects are configured for a particular

service offering that is in conflict with the service offering that is being

provisioned.

*/

typedef sequence<GeneralErrorType> GeneralErrorListType;

/**

Holder Status relates the status of an equipment holder. "Empty" means the

equipment holder contains no circuit pack. If the status is "acceptable, the

circuit pack in the holder is on the acceptable list. "Unacceptable" means

the circuit pack type is known but not on the acceptable list. "Unknown

means the circuit pack is unknown or the status of the equipment holder cannot

be determined.

*/

enum HolderStatusType

{

empty,

acceptable,

unacceptable,

unknown

};

/**

This type is used when an optional (conditional) HolderStatus

value needs to be returned by the managed system.

@see HolderStatus

*/

union HolderStatusTypeOpt switch(boolean)

{

case TRUE:

HolderStatusType val;

};

/**

This type is an extensible enumerated type and additional value may be added

in future.

*/

typedef short InformationTransferCapabilityType

const InformationTransferCapabilityType

informationTransferCapabilitySpeech = 0;

const InformationTransferCapabilityType

informationTransferCapabilityAudio3Pt1 = 1;

const InformationTransferCapabilityType

informationTransferCapabilityAudio7 = 2;

const InformationTransferCapabilityType

informationTransferCapabilityAudioComb = 3;

const InformationTransferCapabilityType

informationTransferCapabilityDigitalRestricted56 = 4;

const InformationTransferCapabilityType

informationTransferCapabilityUnrestricted64 = 5;

/**

Managed Element ID is a type-specific ID for Managed Element objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct ManagedElementIDType

{

NameType
name;

ManagedElement
ref;

};

/**

Network ID is a type-specific ID for Network objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct NetworkIDType

{

NameType
name;

Network

ref;

};

/**

This type is used when an optional (conditional) OperationalState

value needs to be returned by the managed system.

@see OperationalState

*/

union OperationalStateTypeOpt switch(boolean)

{

case TRUE:

OperationalStateType val;

};

/**

Replaceable indicates whether the resource represented by the object is

physically replaceable.

*/

enum ReplaceableType

{

yes,

no,

notapplicable

};

/**

This type is an extensible enumerated type and additional value may be added

in future.

*/

typedef short SignallingCapabilityType

const SignallingCapabilityType signallingCapabilityISUP = 0;

const SignallingCapabilityType signallingCapabilityISUP92 = 1;

const SignallingCapabilityType signallingCapabilityCCITTNo5 = 2;

const SignallingCapabilityType signallingCapabilityR2 = 3;

const SignallingCapabilityType signallingCapabilityCCITTNo6 = 4;

const SignallingCapabilityType signallingCapabilityTUP = 5;

/**

Software ID is a type-specific ID for Software objects.

@member name
A fully-qualified CORBA name for the object. Will be null

for a null-valued ID.

@member ref
A type-specific reference to the object. Will be null

for a null-valued ID.

*/

struct SoftwareIDType

{

NameType
name;

Software
ref;

};

/**

Software ID List is a list of Software IDs

*/

typedef sequence<SoftwareIDType> SoftwareIDListType;

/**

A SuspectObject identifies an object that may be the cause of a failure.

It is usually a component of a SuspectObjectList.

@see SuspectObjectList

@member objectClass

they class of object

@member suspectObjectInstance
a reference to the suspect object

@member failureProbability
a short integer representing the probability

that this object is in fact the cause of the

problem, in the range of 1 to 10 where 10 is

certainty.

*/

struct SuspectObjectType

{

ObjectClassType
objectClass;

MOIDType
suspectObjectInstance;

unsigned short
failureProbability;

// in the range 1..10

};

/**

Suspect Object Lists are used to identify objects that may be the cause of

a failure.

*/

typedef sequence<SuspectObjectType> SuspectObjectListType;

/**

Timing Source Type identifies the type of a timing source.

*/

enum TimingSourceType

{

internalTimingSource,

remoteTimingSource,

slavedTimingTerminationSignal

};

/**

SystemTimingSource is used to specify the resource's primary and secondary

timing source for synchronization.

@member primaryTimingSourceType

The type of source used as the primary timing source.

@member primaryTimingSourceID

A reference to the managed object representing the primary timing

source resource. This will be null if the source type is

"internalTimingSource."

@member secondaryTimingSourceType

The type of source used as the secondary timing source.

@member secondaryTimingSourceID

A reference to the managed object representing the secondary timing

source
resource. This will be null if the source type is

"internalTimingSource."

*/

struct SystemTimingSourceType

{

TimingSourceType
primaryTimingSource;

MOIDType

primaryTimingSourceID;

boolean

secondarySupported;

TimingSourceType
secondaryTimingSource;

MOIDType

secondaryTimingSourceID;

};

/**

This type is used when an optional (conditional) SystemTimingSource

value needs to be returned by the managed system.

@see SystemTimingSource

@member supported
if false the rest of the data in this structure is

is invalid.

*/

union SystemTimingSourceTypeOpt switch(boolean)

{

case TRUE:

SystemTimingSourceType val;

};

xxx

struct AbstractLinkIDType

{

NameType
name;

AbstractLink
ref;

};

typedef sequence<AbstractLinkIDType> AbstractLinkIDListType;

struct AbstractLinkEndIDType

{

NameType
name;

AbstractLinkEnd
ref;

};

typedef sequence<AbstractLinkEndIDType> AbstractLinkEndIDListType;

struct AccessGroupIDType

{

NameType
name;

AccessGroup
ref;

};

typedef sequence<AccessGroupIDType> AccessGroupIDListType;

struct BandwidthComponentType

{

unsigned long
ingress;

unsigned long
egress;

};

typedef sequence<BandwidthComponentType> BandwidthType;

struct CapacitiesType

{

CapacityType

availableLinkCapacity;

CapacityType

maxProvisionableCapacity;

CapacityType

potentialLinkCapacity;

CapacityType

provisionedLinkCapacity;

};

/**

This attribute indicates the available capacity of a link expressed

as either the number of link connections that are avaiable or the

bandwidth that is available to that link.

*/

enum CapacityChoiceType

{

numberOfLinkConnectionsChoice,

bandwidthChoice

};

union CapacityType switch (CapacityChoiceType)

{

case numberOfLinkConnectionsChoice:

long

numberOfLinkConnections;

case bandwidthChoice:

BandwidthType
bandwidth;

};

typedef sequence<long> ChannelListType;

typedef UIDType CharacteristicInfoType;

struct CircuitPackIDType

{

NameType
name;

CircuitPack
ref;

};

typedef sequence<CircuitPackIDType> CircuitPackIDListType;

/**

This syntax type indicates the configured connectivity of a Network Termination

Point managed object (or subclass). The possible values for this attribute are

sourceConnect, sinkConnect, bidirectionalConnect and noConnect.

For a Network Termination Point managed object with pointDirectionality equal

to sink, the allowed values for this attribute are noConnect and sinkConnect.

For a Network Termination Point managed object with pointDirectionality equal

to source, the allowed values for this attribute are noConnect and

sourceConnect.

For a Network Termination Point managed object with pointDirectionality equal

to bidirectional, the allowed values for this attribute are noConnect and

bidirectionalConnect.

For some technologies, sinkConnect and sourceConnect may also be allowed for

a bidirectional Network Termination Point managed object.

*/

enum ConfiguredConnectivityType

{

sourceConnect,

sinkConnect,

bidirectionalConnect,

noConnect

};

/**

???

enum ConnectivityEndPointChoiceType

{

sncTpChoice,

linkEndChoice,

accessGroupChoice

};

union ConnectivityEndPointType switch (ConnectivityEndPointChoiceType)

{

case sncTpChoice:

NetworkTPIDType

sncTp;

case linkEndChoice:

AbstractLinkEndIDType
linkEnd;

case accessGroupChoice:

AccessGroupIDType
accessGroup;

};

*/

/**

This syntax indicates the possible value of in parameter for externalControl

action.

*/

enum ControlActionType

{

closeContinuously,

openContinuously,

closeMomentarily,

openMomentarily

};

struct ControlPointIDType

{

NameType
name;

ControlPoint
ref;

};

typedef sequence<ControlPointIDType> ControlPointIDListType;

/**

This syntax type indicates the possible value of out parameter for

externalControl action.

*/

enum ControlResultType

{

complete,

alreadyInCondition,

fail-InvalidControlActionType,

fail-ReasonUnknown

};

/**

This syntax type indicates the state of the control point.

*/

enum ControlStateType

{

closed,

open

};

struct CrossConnectionIDType

{

NameType
name;

CrossConnection
ref;

};

typedef sequence<CrossConnectionIDType> CrossConnectionIDListType;

/**

This syntax type are used to identify the cross connection object(s) with

which a termination point is associated.

*/

struct CrossConnectionPointerType

{

CrossConnectionIDType
upstream;
// may be null

CrossConnectionIDType
downstream;
// may be null

};

/**

This syntax type specifies there the associated managed object is uni- or

bi- directional.

*/

enum DirectionalityType

{

unidirectional,

bidirectional

};

struct ExternalPointIDType

{

NameType
name;

ExternalPoint
ref;

};

typedef sequence<ExternalPointIDType> ExternalPointIDListType;

const boolean Implicit = TRUE;

struct LayerNetworkDomainIDType

{

NameType

name;

LayerNetworkDomain
ref;

};

typedef sequence<LayerNetworkDomainIDType> LayerNetworkDomainIDListType;

struct LinkConnectionIDType

{

NameType
name;

LinkConnection
ref;

};

typedef sequence<LinkConnectionIDType> LinkConnectionIDListType;

/**

This syntax type specifies whether the associated link managed object

is uni- or bi-directional, or undefined.

*/

enum LinkDirectionalityType

{

unidirectional,

bidirectional,

undefined

};

/**

???

enum LinkEndChoiceType

{

subnetworkChoice,

accessGroupChoice,

linkEndChoice

};

union LinkEndType switch (LinkEndChoiceType)

{

case subnetworkChoice:

SubnetworkIDType
subnetwork;

case accessGroupChoice:

AccessGroupIDType
accessGroup;

case linkEndChoice:

AbstractLinkEndIDType
linkEnd;

};

*/

typedef sequence<CharacteristicInfoType> MappingList;

struct NetworkCTPIDType

{

NameType
name;

NetworkCTP
ref;

};

typedef sequence<NetworkCTPIDType> NetworkCTPIDListType;

struct NetworkTPIDType

{

NameType
name;

NetworkTP
ref;

};

typedef sequence<NetworkTPIDType> NetworkTPIDListType;

struct NetworkTTPIDType

{

NameType
name;

NetworkTTP
ref;

};

typedef sequence<NetworkTTPIDType> NetworkTTPIDListType;

struct PipeIDType

{

NameType
name;

Pipe

ref;

};

typedef sequence<PipeIDType> PipeIDListType;

/**

This syntax type indicates the number of Network CTPs associated with a Link

End that have spare capacity or the amount of spare bandwidth associated with

a LinkEnd.

*/

enum PointCapacityChoiceType

{

numberOfTPsChoice,

bandwidthChoice

};

union PointCapacityType switch (PointCapacityChoiceType)

{

case numberOfTPsChoice:

long

numberOfTPs;

case bandwidthChoice:

BandwidthType
bandwidth;

}

/**

This syntax type specifies whether the associated link end managed object

is sink, source, or bi-directional.

*/

enum PointDirectionalityType

{

sink,

source,

bidirectional

};

/**

A Port Association relates a port (identified by a string name) on a circuit

pack with the managed object representing that link termination. These

associations are usually part of a Port Association List.

@see PortAssociationList

@member port
the string name of the port on the circuit pack

@member linkEnd
the ID of the object representing the link end

*/

struct PortAssociationType

{

string

portId;

AbstractLinkEndIDType
linkEnd; // null means unassigned.

};

/**

A Port Association List is a sequence of port association structures.

*/

typedef sequence<PortAssociationType> PortAssociationListType;

/**

This structure identifies the signal rate associated with a circuit pack

port (e.g. port = 0, rate = stm1) and its payload mapping (e.g. au3 or au4).

*/

struct PortSignalRateAndMappingType

{

string

portId;

SignalRateType
signalRate;

MappingListType
mappingList;
// may be null

};

typedef sequence<PortSignalRateAndMappingType>

PortSignalRateAndMappingListType;

struct PtoPoint

{

ConnectivityEndPoint
aEnd;

ConnectivityEndPoint
zEnd;

};

enum RequestedPointCapacityChoiceType

{

specificTPListChoice,

pointCapacityChoice

};

union RequestedPointCapacity switch (RequestedPointCapacityChoiceType)

{

case specificTPListChoice:

NetworkTPIDListType
specificTPList;

case pointCapacityChoice

PointCapacityType
capacity;

};

enum RequestedCapacityChoiceType

{

specificChannelListChoice,

capacityChoice

};

union RequestedCapacity switch (RequestedCapacityChoiceType)

{

case specificChannelListChoice:

ChannelListType
specificChannelList;

case capacityChoice:

CapacityType
capacity;

};

typedef short ResetErrorType;

const ResetErrorType resetErrorTypeResetFail = 0;

const ResetErrorType resetErrorTypeEntityInService = 1;

struct ScanPointIDType

{

NameType
name;

ScanPoint
ref;

};

typedef sequence<ScanPointIDType> ScanPointIDListType;

typedef short ServiceAffectingErrorType;

const ServiceAffectingErrorType

serviceAffectingErrorAffectingExistingService = 0;

/**

This syntax type defines the characteristic information of the layer

(in the G.805 sense) to which the entity under consideration belongs.

It is used to determine whether sub-network connection/connectivity

is possible. The signal type may be a simple rate and format or may be

a bundle of entities with the same characteristic information which

form an aggregate signal. If the signal type is simple, it consists of

a single SignalIdStruct with bundlingFactor = 1. A "bundled" signal is

made up of a number of signal ids all of the same characteristic information.

It is represented by a single SignalIdStruct with bundlingFactor > 1.

Complex signal types have multiple SignalIdStructs, each of which may have

bundlingFactor >= 1. The order of the SignalIdStructs in the complex signal

type represents the actual composition of the signal.

@member

characteristicInfo

@member

bundlingFactor

*/

struct SignalIdComponentType

{

CharacteristicInfoType
characteristicInfo;

long

bundlingFactor:

};

/**

Signal Type indicates the type of information carried by a signal. It is

composed of one or more Signal Type Structures.

*/

typedef sequence<SignalIdComponentType> SignalIdType;

enum SignalRateChoiceType

{

characteristicInfoChoice,

objectClassChoice

};

union SignalRateType switch (SignalRateChoiceType)

{

case characteristicInfoChoice:

CharacteristicInfoType
characteristicInfo;

case objectClassChoice:

ObjectClassType

objectClass;

};

typedef sequence<SignalRateType> SignalRateListType;

struct SubnetworkConnectionIDType

{

NameType

name;

SubnetworkConnection
ref;

};

typedef sequence<SubnetworkConnectionIDType>

SubnetworkConnectionIDListType;

struct TPIDType

{

NameType

name;

TerminationPoint
ref;

}

typedef sequence<TPIDType> TPIDListType;

/**

The Top End Directionality attribute type specifics whether

the associated link end managed object is sink, source, bi-directional,

or undefined.

*/

enum TopEndDirectionalityType

{

undefined,

sink,

source,

bidirectional

};

struct TopLinkEndIDType

{

NameType
name;

TopLinkEnd
ref;

};

typedef sequence<TopLinkEndIDType> TopLinkEndIDListType;

struct TopLinkIDType

{

NameType
name;

TopLink

ref;

};

typedef sequence<TopLinkIDType> TopLinkIDListType;

struct TrailIDType

{

NameType
name;

Trail

ref;

};

typedef sequence<TrailIDType> TrailIDListType;

/**

UsageCost is an integer in the range 0..255

*/

typedef short UsageCostType;

union UsageCostTypeOpt switch (boolean)

{

case TRUE:

UsageCostType val;

};

/**

This syntax indicates the valid type of control signal for a control point.

*/

enum ValidControlType

{

momentaryOnly,

continuousOnly,

both

};

/**

EXCEPTIONS

*/

/**

INTERFACES

*/

/**

Managed objects supporting the alarm severity assignment profile

interface specify the alarm severity assignment for other managed

objects. Instances of this interface are referenced by the

alarmSeverityAssignmentProfilePointer attribute in the managed objects.

*/

interface AlarmSeverityAssignmentProfile: ManagedObject

{

value AlarmSeverityAssignmentProfileAttributesType:

ManagedObjectAttributesType

{

AlarmSeverityAssignmentListType

alarmSeverityAssignmentList;

};

/**

This method is used to retrieve the object's Alarm Severity Assignment List.

*/

AlarmSeverityAssignmentListType getAlarmSeverityAssignmentList

(in NameType name)

raises (ObjectFailure);

/**

This method is used to add an alarm to the object's Alarm Severity

Assignment List. An Attribute Value Change notification will be sent if the

object supports it. If an exception is thrown, the object is not changed.

*/

void addAlarmSeverityAssignments

(in NameType name,

in AlarmSeverityAssignmentListType

alarmSeverityAssignmentList)

raises (ObjectFailure,

DuplicateItem);

/**

This method is used to remove entries from the object's Alarm Severity

Assignment List. An Attribute Value Change notification will be sent if the

object supports it. If an exception is thrown, the object is not changed.

*/

void removeAlarmSeverityAssignments

(in NameType name,

in AlarmSeverityAssignmentListType

alarmSeverityAssignmentList)

raises (ObjectFailure,

ItemNotFound);

/**

This method is used to replace all the entries in the object's Alarm

Severity Assignment List with the submitted list. An Attribute Value Change

notification will be sent if the object supports it. If an exception is

thrown, the object is not changed.

*/

void replaceAlarmSeverityAssignmentList

(in NameType name,

in AlarmSeverityAssignmentListType

alarmSeverityAssignmentList)

raises (ObjectFailure);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

objectManagementNotificatoinsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

objectManagementNotificatoinsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

objectManagementNotificatoinsPackage);

}; // interface AlarmSeverityAssignmentProfile

/**

Objects supporting this interface are capable of creating Alarm Severity

Assignment Profile objects. Auto-naming and creation by reference are

supported. <p>

 NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created.

Assert "Delete only if no contained objects" on created object.

*/

interface AlarmSeverityAssignmentProfile_ManagedElement_Factory:

ManagedObjectFactory

{

/**

This operation creates an Alarm Severity Assignment Profile object

subordinate to a Managed Element Object.

@param superior
the managed object under which the new one will be

created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

@param list
the initial list with which the object will be created.

*/

AlarmSeverityAssignmentProfileIDType create

(in ManagedElementIDType superior,//superior object

in NameComponent name,

//auto-naming if null

in AlarmSeverityAssignmentListType list)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates an Alarm Severity Assignment Profile object

subordinate to a Managed Element Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see create

*/

AlarmSeverityAssignmentProfileIDType createWithRef

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in AlarmSeverityAssignmentProfileIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface AlarmSeverityAssignmentProfile_ManagedElement_Factory

/**

The Equipment interface is modelled after the 1995 M.3100 Equipment R1

object, which is a subclass of the earlier M.3100 Equipment object. <p>

The equipment object class is a class of managed objects that

represents physical components of a managed element, including

replacable components. An instance of this object class is present in a

single geographic location. An equipment may be nested within another

equipment, thereby creating a containment relationship. The equipment

type shall be identified by sub-classing this object class. Either the

name of the sub-class or an attribute may be used for identifying the

equipment type. <p>

When the object supports attribute value change notifications, the

attributeValueChange notification shall be emitted when the value of

one of the following atrributes changes: alarm status, affected object

list, user label, version, location name and current problem list.

Because support for the above attributes is conditional, the behaviour

for emitting the attribute value change notification applies only when

the corresponding attributes are supported in the managed object. When

the object supports state change notifications, the

stateChangeNotification shall be emitted if the value of administrative

state or operational state changes (if these attributes are supported). <p>

*/

interface Equipment: ManagedObject

{

/**

This value type is used to retreive all of the Equipment attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

@member operatonalState

Conditional. See type for details.

@member administrativeState
Conditional. See type for details.

@member affectedObjects

Conditional. Null if not supported.

@member AlarmSeverityAssignmentProfileID Conditional. See type for details.

@member alarmStatus

Conditional. See type for details.

@member currentProblemList
Conditional. Null if not supported.

@member userLabel

Conditional. Null if not supported.

@member vendorName

Conditional. Null if not supported.

@member version

Conditional. Null if not supported.

@member locationName

Conditional. Null if not supported.

*/

value EquipmentAttributesType: ManagedObjectAttributesType

{

ReplaceableType

replaceable;

string

serialNumber;

string

type;

MOIDListType

supportedByObjectList;

OperationalStateType

operationalState;

// conditional

AdministrativeStateType

administrativeState;

// conditional

MOIDListType

affectedObjects;

// conditional

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

// conditional

AlarmStatusType

alarmStatus;

// conditional

CurrentProblemListType

currentProblemList;

// conditional

string

userLabel;

// conditional

string

vendorName;

// conditional

string

version;

// conditional

string

locationName;

// conditional

};

/**

The Replaceable attribute type indicates whether the associated

resource is replaceable or non-replaceable.

*/

ReplaceableType getReplaceable

(in NameType name)

raises (ObjectFailure);

/**

This method returns the serial number of the physical resource.

*/

string getSerialNumber

(in NameType name)

raises (ObjectFailure);

/**

This method returns a string containing a textual description of the type

of the resource as as defined in the Equipment R2 object in the M.3100

corrigendum.

*/

string getType

(in NameType name)

raises (ObjectFailure);

/**

This method returns the list of object instances that are capable of

directly affecting a given managed object. The object instances include

both physical and logical objects. This attribute does not force

internal details to be specified, but only the necessary level of

detail required for management. If the object instances supporting the

managed object are unknown to that object, then this method returns an

empty list.

*/

MOIDListType getSupportedByObjectList

(in NameType name)

raises (ObjectFailure);

/**

This method is used to replace the list of object instances that are

supporting this object.

@see

getSupportedByObjectList()

*/

void setSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure);

/**

This method is used to add to the list of object instances that are

supporting this object.

@see

getSupportedByObjectList()

*/

void addSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

DuplicateItem);

/**

This method is used to remove object from the list of object instances

that are supporting this object.

@see

getSupportedByObjectList()

*/

void removeSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

ItemNotFound);

/**

*/

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

*/

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void setAdministrativeState

(in NameType name,

in AdministrativeStateType admininstrativeState)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

The Affected Object List attribute specifies the object

instances which can be directly affected by a change in state or

deletion of this managed object. The attribute does not force

internal details to be specified, but only the necessary level of

detail required for management.

*/

MOIDListType getAffectedObjects

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(affectedObjectListPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfileIDType

getAlarmSeverityAssignmentProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

@see

getAlarmSeverityAssignmentProfile()

*/

void setAlarmSeverityAssignmentProfile

(in NameType name,

in AlarmSeverityAssignmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType getAlarmStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(equipmentsEquipmentAlarmPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemListType getCurrentProblemList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

@see setUserLabel()

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

string getVendorName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(venderNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void setVendorName

(in Name name,

in string vendorName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(venderNamePackage));

/**

This method returns the version of the associated resource.

*/

string getVersion

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void setVersion

(in NameType name, in string version)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(versionPackage));

/**

This method returns the physical location of the associated resource.

*/

string getLocationName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

/**

This method sets the physical location of the associated resource.

*/

void setLocationName

(in NameType name,

in string locationName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1,

equipmentsEquipmentAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, environmentalAlarmR1,

environmentalAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, processingErrorAlarmR1,

processingErrorAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarmR1,

tmnCommunicationsAlarmInformationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

}; // interface Equipment

/**

This interface is used to create Equipment objects. Auto-naming and creation

by reference are supported.

 NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created. <p>

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

Assert "Delete only if no contained objects" on created object.

*/

interface Equipment_Equipment_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Equipment relative to

another Equipment instance. The creation of the Equipment object is the

result of system management protocol.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

ObjectFailure exception may contain parameter generalError.

*/

EquipmentIDType create

(in EquipmentIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,
// may be null

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates an Equipment object subordinate to another Equipment

Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipment

ObjectFailure exception may contain parameter generalError.

*/

EquipmentIDType createWithRef

(in EquipmentIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in EquipmentIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Equipment_Equipment_Factory

/**

This interface is used to create Equipment objects. Auto-naming and creation

by reference are supported.

Assert "Delete only if no contained objects" on created object.

*/

interface Equipment_ManagedElement_Factory: ManagedObjectFactory

{

/**

This operation creates an Equipment object subordinate to a Managed Element

Object.

@see createUnderEquipment

ObjectFailure exception may contain parameter generalError.

*/

EquipmentIDType create

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,
// may be null

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates an Equipment object subordinate to a Managed Element

Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderManagedElement

ObjectFailure exception may contain parameter generalError.

*/

EquipmentIDType createWithRef

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in EquipmentIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Equipment_ManageElement_Factory

/**

Equipment Holder objects represent the physical resources of a network

element that are capable of holding other physical resources. Examples of

resources represented by instances of this object class are equipment bay,

shelf and slot. <p>

*/

interface EquipmentHolder: Equipment

{

/**

This structure is used to retreive all of the EquipmentHolder attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

@member acceptableCircuitPackTypeList Conditional. Null if not supported.

@member holderStatus

Conditional. See type for details.

@member subordinateCircuitPackSoftwareLoad Conditional. Null if not supported.

@member operatonalState

Conditional. See type for details.

@member administrativeState
Conditional. See type for details.

@member affectedObjects

Conditional. Null if not supported.

@member AlarmSeverityAssignmentProfileID Conditional. See type for details.

@member alarmStatus

Conditional. See type for details.

@member currentProblemList
Conditional. Null if not supported.

@member userLabel

Conditional. Null if not supported.

@member vendorName

Conditional. Null if not supported.

@member version

Conditional. Null if not supported.

@member locationName

Conditional. Null if not supported.

*/

value EquipmentHolderAttributesType: EquipmentAttributesType

{

StringListType

equipmentHolderAddress;

StringListType

acceptableCircuitPackTypeList;

// conditional

HolderStatusType
holderStatus;

// conditional

SoftwareIDListType
subCircuitPackSoftwareLoad;

// conditional

};

/**

This method returns the physical location of the resource represented by

the equipmentHolder instance. Depending on the containment hierarchy of the

equipmentHolder in the managed system, the value of this attribute may

vary. For example, if a system has three levels of equipment holders

representing Bay, Shelf and Slot respectively (i.e. the managed Element

contains multiple Bay equipment holders, each Bay equipment holder

contains multiple Shelf equipment holders and each Shelf equipment

holder contains multiple Slot equipment holders), then:

 for the equipmentHolder representing a Bay, the Frame Identification

code may be used as the value of this attribute;

 for the equipmentHolder representing a Shelf, the Bay Shelf code may

be used as the value of this attribute;

 for the equipmentHolder representing a Slot, the position code may

be used as the value of this attribute.

If the system uses only one level of equipment holder, that represents

the Shelves (i.e., the managedElement contains multiple Shelf equipment

holders, and each Shelf equipment holder contains a circuit pack), then

the value of this attribute is a sequence of the Frame Identification

code and the Bay Shelf Code.

*/

StringListType getEquipmentHolderAddress

(in NameType name)

raises (ObjectFailure);

/**

This method returns the list of acceptable circuit pack types that

may be installed in this holder. Values may be added, replaced or removed

to this set-valued attribute.

*/

StringListType getAcceptableCircuitPackTypeList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method replaces the list of acceptable circuit pack types that

may be installed in this holder. If the equipmentHolder currently contains

a circuitPack, then the value of the corresponding type (of the circuitPack)

shall not be replaced or removed from this attribute. The type of the

circuitPack contained shall be one of the types specified for this attribute.

*/

void setAcceptableCircuitPackTypeList

(in NameType name,

in StringListType list)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method adds values to the list of acceptable circuit pack types

thatmay be installed in this holder.

*/

void addAcceptableCircuitPackTypeList

(in NameType name,

in StringListType list)

raises (ObjectFailure, DuplicateItem,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method removes values from the list of acceptable circuit pack types

that may be installed in this holder.

@see

setAcceptableCircuitPackTypeList ()

*/

void removeAcceptableCircuitPackTypeList

(in NameType name,

in StringListType list)

raises (ObjectFailure, ItemNotFound

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method returns the status of the equipment holder.

The status of the holder may be one of the following:

 empty to indicate that there is no replaceable unit in the holder.

 the holder contains a unit that is one of the types in the

acceptableCircuitPackType list.

 the holder contains a unit recognizable by the network element; but

not one of the types in the acceptableCircuitPackTypeList.

 unrecognized replaceable unit.

If the holder contains a unit that is acceptable and its type matches

the value of the circuitPackType attribute(of the circuitPack object),

then the availabilityStatus of the circuitPack will be an empty set. In

all other cases the availabilityStatus will include a notInstalled

value.

@see

CircuitPack::getAvailabilityStatus ()

*/

HolderStatusType getHolderStatus

(in NameType name,

out string circuitPackType)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method returns the software, if any, that is currently designated

to be loaded to the contained circuit pack whenever automatic reload of

software is needed. If the list is null the contained circuit pack is

not software loadable, or no software load has been designated.

Otherwise, the sequence identifies an ordered set of software instances

used to specify the order in which the software is to beloaded. It is

recommended to note in the ICS if the ordering is significant. M.3100

also allows a sequence of strings, the values determined through a

"local" implementation agreement. that option is not supported here.

*/

SoftwareIDListType getSubordinateCircuitPackSoftwareLoad

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method sets the software that is to be loaded to the contained

circuit pack whenever automatic reload of software is needed.

@see

getSubordinateCircuitPackSoftwareLoad ()

*/

void setSubordinateCircuitPackSoftwareLoad

(in NameType name,

in SoftwareIDListType list)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

}; // interface EquipmentHolder

/**

This interface is used to create Equipment Holder objects. Auto-naming and

creation by reference are supported.

 NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created. <p>

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

Assert "Delete only if no contained objects" on created object.

*/

interface EquipmentHolder_EquipmentHolder_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Equipment Holder relative

to another Equipment Holder instance. The creation of the Equipment Holder

object is the result of system management protocol.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

*/

EquipmentHolderIDType create

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName,

in StringListType equipmentHolderAddress,

in StringListType acceptableCircuitPackTypeList,

in SoftwareIDListType subCircuitPackSoftwareLoad)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates an Equipment Holder object subordinate to another

Equipment Holder Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipmentHolder

*/

EquipmentHolderID createWithRef

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in EquipmentHolderIDType ref)
// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface EquipmentHolder_EquipmentHolder_Factory

/**

This interface is used to create Equipment Holder objects. Auto-naming and

creation by reference are supported.

Assert "Delete only if no contained objects" on created object.

*/

interface EquipmentHolder_Equipment_Factory: ManagedObjectFactory

{

/**

/**

This operation creates an Equipment Holder object subordinate to a Managed

Element Object.

@see createUnderEquipmentHolder

*/

EquipmentHolderIDType create

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName,

in StringListType equipmentHolderAddress,

in StringListType acceptableCircuitPackTypeList,

in SoftwareIDListType subCircuitPackSoftwareLoad)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates an Equipment Holder object subordinate to a Managed

Element Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipmentHolder

*/

EquipmentHolderIDType createWithRef

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in EquipmentHolderIDType ref)
// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface EquipmentHolder_Equipment_Factory

/**

The Managed Element objects are managed objects that

representtelecommunications equipment or TMN entities (either

groups or parts) within the telecommunications network that perform

managed element functions, i.e., provides support and/or service to the

subscriber. Managed elements may or may not additionally perform

mediation/OS functions. A managed element communicates with the

manager over standard CORBA interfaces for the purpose of being

monitored and/or controlled. A managed element contains equipment that

may or may not be geographically distributed. <p>

When the Managed Element object supports attribute value change

notifications, the attributeValueChange notification shall be emitted

when the value of one of the following attributes changes: alarm

status, user label, version, location name, current problem list and

enable audible visual local alarm. For the above attributes that may

not be supported, the behaviour for emitting the attribute value change

notification applies only when the attribute is supported by the

managed object. When the object supports state change notifications,

the stateChangeNotification shall be emitted if the value of

administrative state or operational state or usage state changes. <p>

Deletion by management protocol is not allowed. (The object should throw

a DeleteNotAllowed exception in response to a delete operation.) <p>

This interface is based on the M.3100 Managed Element R1

object, which is a subclass of the earlier Managed Element object.

*/

interface ManagedElement: ManagedObject

{

/**

This structure is used to retreive all of the ManagedElement attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

@member enableAudibleVisualLocalAlarm Conditional. See type for details.

@member AlarmSeverityAssignmentProfileID Conditional. See type for details.

@member currentProblemList
Conditional. Null if not supported.

@member userLabel

Conditional. Null if not supported.

@member vendorName

Conditional. Null if not supported.

@member version

Conditional. Null if not supported.

@member locationName

Conditional. Null if not supported.

@member externalTime

Conditional. Null if not supported.

@member systemTimingSource
Conditional. See type for details.

*/

value ManagedElementAttributesType: ManageObjectAttributesType

{

string

systemTitle;

AlarmStatusType

alarmStatus;

AdministrativeStateType
administrativeState;

OperationalStateType
operationalState;

UsageStateType

usageState;

BooleanType

enableAudibleVisualLocalAlarm;

// conditional

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

// conditional

CurrentProblemListType
currentProblemList;

// conditional

string

userLabel;

// conditional

string

vendorName;

// conditional

string

version;

// conditional

string

locationName;

// conditional

ExternalTimeType
externalTime;

// conditional

SystemTimingSourceType

systemTimingSource;

// conditional

};

/**

M.3100 specifies a system title attribute which is included here

but we need to discuss what it really means in a CORBA environment.

*/

string getSystemTitle

(in NameType name)

raises (ObjectFailure);

/**

This method is used to set the Managed Element's system title.

@see getSystemTitle()

*/

void setSystemTitle

(in NameType name,

in string title)

raises (ObjectFailure);

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType getAlarmStatus

(in NameType name)

raises (ObjectFailure);

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure);

void setAdministrativeState

(in NameType name,

in AdministrativeStateType admininstrativeState)

raises (ObjectFailure);

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure);

UsageStateType getUsageState

(in NameType name)

raises (ObjectFailure);

/**

This method returns "true" if local audible/visual alarms are

enabled. Setting the value to "false" suppresses local audible/visual

alarms. (Alarms in progress should be silenced.) Resetting the

audible alarm silences the alarm until the next alarm condition occurs.

This is a change from the M.3100 spec, which has "allow" and "inhibit"

actions. An Attribute is preferred because the current setting can be

read and attribute value change notifications issued when changed.

*/

boolean getEnableAudibleVisualLocalAlarm

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to enable or disable local audible/visual alarms.

@see

getEnableAudibleVisualLocalAlarm()

*/

void setEnableAudibleVisualLocalAlarm

(in NameType name,

in boolean enable)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to silence local audible/visual alarms.

@see

getEnableAudibleVisualLocalAlarm()

*/

void resetAudibleAlarm

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfileIDType

getAlarmSeverityAssignmentProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

@see

getAlarmSeverityAssignmentProfile()

*/

void setAlarmSeverityAssignmentProfile

(in NameType name,

in AlarmSeverityAssignmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemListType getCurrentProblemList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

@see setUserLabel()

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

string getVendorName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void setVendorName

(in NameType name,

in string vendorName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method returns the version of the associated resource.

*/

string getVersion

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void setVersion

(in NameType name,

in string version)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(versionPackage));

/**

This method returns the physical location of the associated resource.

*/

string getLocationName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePakcage));

/**

This method sets the physical location of the associated resource.

*/

void setLocationName

(in NameType name,

in string locationName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePakcage));

/**

This method returns the Managed Element's time-of-day system time.

This attribute functions as a reference for all time stamp activities

in the managed element.

*/

ExternalTimeType getExternalTime

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(externalTimePackage));

/**

This method sets the Managed Element's time-of-day system time.

This attribute functions as a reference for all time stamp activities

in the managed element.

*/

void setExternalTime

(in NameType name,

in ExternalTimeType externalTime)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(externalTimePackage));

/**

This method returns the Managed Element's System Timing Source,

which is used to specify the primary and secondary managed element

timing source for synchronization.

*/

SystemTimingSourceType getSystemTimingSource

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(systemTimingSourcePackage));

/**

This method is used to set the Managed Element's System Timing Source,

which is used to specify the primary and secondary managed element

timing source for synchronization.

*/

void setSystemTimingSource

(in NameType name,

in SystemTimingSourceType systemTimingSource)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(systemTimingSourcePackage));

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, environmentalAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, processingErrorAlarmR1);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

}; // interface ManagedElement

/**

The Network managed objects are collections of interconnected

telecommunications and management objects (logical or physical) capable

of exchanging information. These objects have one or more common

characteristics, for example they may be owned by a single customer or

provider, or associated with a specific service network. A network may

be nested within another (larger) network, thereby forming a containment

relationship. An example of a network that is contained in another

network is a transmission sub-network. It is owned by a single

administration and can only perform transmission functions. <p>

Deletion by management protocol is not allowed. (The object should throw

a DeleteNotAllowed exception in response to a delete operation.) <p>

This interface is based on the M.3100 NetworkR1 specification.

*/

interface Network: ManagedObject

{

/**

This structure is used to retreive all of the Network attributes

in one operation.

@member userLabel

Conditional. Will be null if not supported.

*/

value NetworkAttributesType: ManagedObjectAttributesType

{

string

systemTitle;

string

userLabel;

// conditional

};

/**

M.3100 specifies a system title attribute which is included here

but we need to discuss what it really means in a CORBA environment.

*/

string getSystemTitle

(in NameType name)

raises (ObjectFailure);

/**

This method is used to set the Managed Element's system title.

@see getSystemTitle()

*/

void setSystemTitle

(in NameType name,

in string title)

raises (ObjectFailure);

/**

This method returns a label that may be used by the management system

to identify the object.

@see setUserLabel()

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface Network

/**

Software managed objects represent logical information stored in

equipment, including programs and data tables. Software may be nested

within other software, thereby creating a containment relationship. <p>

When the object supports attribute value change notifications, the

attributeValueChange notification shall be emitted when the value of

one of the following atrributes changes: alarm status, affected objects,

user label, version, and current problem list. Because support

for the above attributes is optional, the behaviour for emitting the

attribute value change notification applies only when the corresponding

attribute is supported by the managed object. When the object supports

state change notifications, the stateChangeNotification shall be

emitted if the value of administrative state or operational state

changes (when those attributes are supported). <p>

This interface is based on the M.3100 SoftwareR1 specification.

*/

interface Software: ManagedObject

{

/**

This structure is used to retreive all of the Software attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

@member operatonalState

Conditional. See type for details.

@member administrativeState
Conditional. See type for details.

@member affectedObjects

Conditional. Null if not supported.

@member AlarmSeverityAssignmentProfile Conditional. See type for details.

@member alarmStatus

Conditional. See type for details.

@member currentProblemList
Conditional. Null if not supported.

@member userLabel

Conditional. Null if not supported.

@member vendorName

Conditional. Null if not supported.

@member version

Conditional. Null if not supported.

*/

value SoftwareAttributesType: ManagedObjectAttributesType

{

OperationalStateType

operationalState;

// conditional

AdministrativeStateType
administrativeState;

// conditional

MOIDListType

affectedObjects;

// conditional

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

// conditional

AlarmStatusType

alarmStatus;

// conditional

CurrentProblemListType

currentProblemList;

// conditional

string

userLabel;

// conditional

string

vendorName;

// conditional

string

version;

// conditional

};

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void setAdministrativeState

(in NameType name,

in AdministrativeStateType admininstrativeState)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

The Affected Object List attribute specifies the object

instances which can be directly affected by a change in state or

deletion of this managed object. The attribute does not force

internal details to be specified, but only the necessary level of

detail required for management.

*/

MOIDListType getAffectedObjects

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(affectedObjectListPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfileIDType

getAlarmSeverityAssignmentProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

@see

getAlarmSeverityAssignmentProfile()

*/

void setAlarmSeverityAssignmentProfile

(in NameType name,

in AlarmSeverityAssignmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType getAlarmStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(softwareProcessingErrorAlarmR1Package));

/**

This method returns the current existing problems, with severity, associated

with the managed object.

*/

CurrentProblemListType getCurrentProblemList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

@see setUserLabel()

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void setUserLabel

(in NameType name, in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

string getVendorName

(in NameType objectName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void setVendorName

(in NameType objectName, in string vendorName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method returns the version of the associated resource.

*/

string getVersion

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void setVersion

(in NameType name, in string version)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, procesingErrorAlarmR1,

softwareProcessingErrorAlarmR1Package);

}; // interface Software

/**

This interface is used to create Software objects. Auto-naming and

creation by reference are supported.

 NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created. <p>

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

Assert "Delete only if no contained objects" on the created object.

*/

interface Software_Equipment_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Software object relative

to an Equipment instance.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

*/

SoftwareIDType create

(in EquipmentIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates a Software object subordinate to an Equipment Object

using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipment

*/

SoftwareID createWithRef

(in EquipmentIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in SoftwareIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Software_Equipment_Factory

/**

This interface is used to create Software objects. Auto-naming and

creation by reference are supported.

Assert "Delete only if no contained objects" on the created object.

*/

interface Software_ManagedElement_Factory: ManagedObjectFactory

{

/**

This operation creates a Software object subordinate to a

Managed Element Object.

@see createUnderManagedElement

*/

SoftwareIDType create

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates a Software object subordinate to

a Managed Element Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderManagedElement

*/

SoftwareIDType createWithRef

(in ManagedElementIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in SoftwareIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Software_ManagedElement_Factory

/**

This interface is used to create Software objects. Auto-naming and

creation by reference are supported.

Assert "Delete only if no contained objects" on the created object.

*/

interface Software_Software_Factory: ManagedObjectFactory

{

/**

This operation creates a Software object subordinate to another Software

Object.

@see createUnderManagedElement

*/

SoftwareIDType create

(in SoftwareIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates a Software object subordinate to another

Software object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderManagedElement

*/

SoftwareIDType createWithRef

(in SoftwareIDType superior,
// superior object

in NameComponent name,

// auto-naming if null

in SoftwareIDType ref)

// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Software_Software_Factory

xxx

/**

Managed objects supporting the AbstractLink interface give a topological

description of the capacity between two adjacent Sub-networks, or two Link

Ends; or a Sub-network and an Access Group when Network trail termination

points lie outside the boundary of the largest sub-network.

The use made of the individual attributes and notifications is detailed below:

a end: the link end, sub-network or access group which terminates one

end of the Link [G.853.1,RELATIONSHIP:linkBinds];

available link capacity: the number of free Link Connections or free

bandwidth [G.853.8,ATTRIBUTE:pamAvailableLinkCapacity];

z end: the link end, sub-network or access group which terminates the

other end of the Link [G.853.1,RELATIONSHIP:linkBinds];

signal Id: shows the signal Id of the Link Connections that provide

the capacity for the Link

a link must be provided with capacity by Link connections of the same

signal Id;

Attribute value change notification: shall be emitted when

the values change of the following attributes: availableLinkCapacity,

totalLinkCapacity. <p>

The AbstractLink interface is not instantiable.

*/

interface AbstractLink: ManagedObject

{

value AbstractLinkAttributesType: ManagedObjectAttributesType

{

MOIDType

aEnd;

CapacityType

availableLinkCapacity;

SignalIdType

signalId;

MOIDType

zEnd;

UsageCostTypeOpt
usageCost;

// conditional

string

userLabel;

// conditional

};

/**

This attribute is a pointer to a sub-network, a link end or an

access group in the same network layer domain.

*/

MOIDType getAEnd

(in NameType name)

raises (ObjectFailure);

/**

This attribute indicates the available capacity of a link expressed as either

the number of link connections that are available or the bandwidth that is

available to that link.

*/

CapacityType getAvailableLinkCapacity

(in NameType name)

raises (ObjectFailure);

/**

This attribute defines the characteristic infomation of the layer (in the

G.805 sense) to which the entity under consideration belongs. It is used

to determine whether sub-network connection/connectivity is possible.

*/

SignalId getSignalId

(in NameType name)

raises (ObjectFailure);

/**

This attribute is a pointer to a sub-network, a link end or an

access group in the same network layer domain.

*/

MOIDType getZEnd

(in NameType name)

raises (ObjectFailure);

/**

Returns the cost for using this link. It is to be used as selection/routing

criteria. Supported if the link has an allocated usage cost.

*/

UsageCostType getUsageCost

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(usageCostPackage));

/**

Sets the cost of using this link. It is to be used as selection/routing

criteria. Supported if the link has an allocated usage cost.

** M.3100a1 has this attribute as get only, but it has

to be settable, or at least set-by-create, doesn't it? **

*/

void setUsageCost

(in NameType name, in UsageCostType usageCost)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(usageCostPackage));

/**

This method returns a user friendly name for the associated object.

Supported if an instance supports it.

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object.

Supported if an instance supports it.

*/

void setUserLabel

(in NameType name, in string label)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

/**

Supported if the attributeValueChange notification defined in

Recommendation X.721 is supported by an instance of this managed

object class.

*/

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

}; // interface AbstractLink

/**

Managed objects supporting the AbstractLinkEnd interface contain Network

Connection Termination Points for the purpose of representing topology.

The use made of individual attributes and notification is detailed below:

available link end capacity: represents the spare capacity of the link

end;

link pointer: is a distinguished name of the related link managed

object instance;

contained in sub-network list: is a distinguished name that represents

the parent sub-network of the logical link.

An attribute value change notification shall be emitted when the value of the

availableLinkEndCapacity or the containedInSubnetworkList is changed. <p>

The AbstractLinkEnd interface is not instantiable.

*/

interface AbstractLinkEnd: ManagedObject

{

value AbstractLinkEndAttributesType: ManagedObjectAttributesType

{

PointCapacityType
availableLinkEndCapacity;

AbstractLinkIDType
linkPointer;

SubnetworkIDListType
containedInSubnetworkList;

// conditional

string

userLabel;

// conditional

};

/**

This attribute indicates the number of Network CTPs associated with a Link End

that have spare capacity or the amount of spare bandwidth associated with a

LinkEnd.

*/

PointCapacityType getAvailableLinkEndCapacity

(in NameType name)

raises (ObjectFailure);

/**

This attribute points to a link from a link end.

*/

AbstractLinkIDType getLinkPointer

(in NameType name)

raises (ObjectFailure);

/**

This attribute defines the list of paraent sub-networks which contain

the link end in a given layer. Supported if this link end object instance

is not named from a subnetwork managed object.

This package identifies the aggregate subnetwork(s) that a component

subnetwork is contained in through partitioning.

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkIDListType getContainedInSubnetworkList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void setContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void addContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void removeContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This method returns a user friendly name for the associated object.

Supported if an instance supports it.

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object.

Supported if an instance supports it.

*/

void setUserLabel

(in NameType name, in string label)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange);

}; // interface AbstractLinkEnd

/**

Managed objects supporting the AccessGroup interface group Network Trail

Termination Points for management purposes.

[Rec.G.852.3,ACTION:create link,ACTION POLICY:inputAEnd]

[Rec.G.852.3,ACTION:create link,ACTION POLICY:inputZEnd]

@see [G.852.2,RESOURCE:access group]

*/

interface AccessGroup: ManagedObject

{

value AccessGroupAttributesType: ManagedObjectAttributesType

{

NetworkTPIDListType
accessPointList;

TopEndDirectionalityType

topEndDirectionality;

SignalId

signalId;

SubnetworkIDListType
containedInSubnetworkList;

// conditional

AbstractLinkIDListType
linkPointerList;

// conditional

string

userLabel;

// conditional

};

/**

The Access Point List attribute lists all the Network Trail Termination Points

within an instance of the managed object class AccessGroup.

*/

NetworkTPList getAccessPointList

(in NameType name)

raise (ObjectFailure);

void setAccessPointList

(in NameType name,

NetworkTPIDList accessPointList)

raise (ObjectFailure,

NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

void addAccessPointList

(in NameType name,

NetworkTPIDList accessPointList)

raise (ObjectFailure,

DuplicateItem,

NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

void removeAccessPointList

(in NameType name,

NetworkTPIDList accessPointList)

raise (ObjectFailure,

ItemNotFound,

NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

/**

The TopEndDirectionality attribute type specifies whether the

associated link end managed object is sink, source, bi-directional,

or undefined.

*/

TopEndDirectionalityType

getTopEndDirectionality

(in NameType name)

raise (ObjectFailure);

SignalIdType getSignalId

(in NameType name)

raise (ObjectFailure);

/**

This attribute defines the list of paraent sub-networks which contain

the access group in a given layer. Supported if this accss group object

instance is contained in a sub-network.

This package identifies the aggregate subnetwork(s) that a component

subnetwork is contained in through partitioning.

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkIDListType getContainedInSubnetworkList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void setContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void addContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void removeContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This attribute points to the links terminated by an access group.

Supported if topology management is supported.

[Rec.G.852.3,ACTION:create link, ACTION POLICY:inputAEnd],

[Rec.G.852.3,ACTION:create link, ACTION POLICY:inputZEnd]",

*/

AbstractLinkIDListType getLinkPointerList

(in NameType name)

raise (ObjectFailure,

CONDITIONAL_PACKAGE

(linkPointerListPackage));

/**

This method returns a user friendly name for the associated object. Supported

if a userLabel is supported [Rec.G.852.2,PERMISSION:userLabelFacility].

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object. Supported

if a userLabel is supported [Rec.G.852.2,PERMISSION:userLabelFacility].

*/

void setUserLabel

(in NameType name, in string label)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface AccessGroup

/**

Objects supporting this interface are capable of creating AccessGroup objects.

Only creation by reference is supported.

Assert "Delete only if no contained objects" on the created object.

ObjectFailure exception for delete operation of created object may contain

parameter networkTTPsExisting and failureToRemoveAccessGroup.

*/

interface AccessGroup_LayerNetworkDomain_Factory: ManagedObjectFactory

{

/**

If, during a create operation, the topEndDirectionality attribute

fails to be set or the access group object fails to be created, the create

operation will fail with the specific error with the ObjectFailure exception.

ObjectFailure exception may contain parameter failureToSetDirectionality

and failureToCreateAccessGroup.

*/

AccessGroupIDType createWithRef

(in LayerNetworkDomainIDType superior,

in NameComponent
name,

// no auto-naming, cannot be null

in AccessGroupIDType ref)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

If, during a delete operation, the accessPointList is not NULL the delete

operation will fail with the specific error with the exception

networkTTPsExisting. If the access group managed object is not deleted,

the delete operation will fail with the specific error with the exception

ObjectFailure.

*/

}; // interface AccessGroup_LayerNetworkDomain_Factory

/**

Managed objects supporting the CircuitPack interface represent a plug-in

replaceable unit that can be inserted into or removed from the equipment holder

of the Network Element. Examples of plug-in cards include line cards, processors

and power supply units. The inherited attribute textType (of syntax

GraphicString) is used to indicate the type of the circuit pack. The value of

this attribute should match one of the values of the

acceptableCircuitPackTypeList attribute (of syntax PrintableString) of the

containing equipmentHolder object. If the type of a circuit pack is of

GraphicString characters outside of the PrintableString character set, it will

not match any value of the acceptableCircuitPackList attribute. In this case, no

instance of circuitPackR1 should be instantiated and the holderStatus attribute

of the equipmentHolder object shall have the value 'unknownType'. The attribute

availabilityStatus is used to indicate the availability of the circuit pack. The

availabilityStatus attribute is a set-valued attribute. The following values may

be used:

fail: the circuit pack is failed,

inTest: the circuit pack is in test,

notInstall: the physical circuit pack is not inserted, or if inserted

but its type does not match the type specified in the textType attribute

of the circuitPackR1 instance (even if the physical circuit pack is one

of the acceptable circuit pack type of the containing equipment holder),

degraded: a subset of the ports of the circuit pack have defects,

dependency: the circuit pack is disabled because of a resource which the

circuit pack depends on is not available, and

offLine: the circuit pack is under initializing (i.e., resetting).

The circuitPackR1 may contain additional circuitPackR1 objects.

Circuit Pack inherits from the Equipment interface, which includes the

following seven operations: getAdministrativeState, setAdministrativeState,

getOperationalState, getAlarmSeverityAssignmentProfile,

setAlarmSeverityAssignmentProfile, getAlarmStatus, getCurrentProblemList.

These operations are conditional on the Equipment interface, but not the

Circuit Pack interface. Unfortunately, IDL does not allow the re-definition

of inherited operations. Implementations should be careful to never throw the

NotSupported exception on these operations, even though it is defined in

the IDL. <p>

Also, among the notifications inherited from Equipment are objectCreation,

objectDeletion, stateChange, and equipmentAlarmR1. These are mandatory

for Circuit Pack, not conditional as in Equipment. <p>

Delete only if no contained objects. (Even if the client asserts the

deleteContainedObjects parameter on the delete operation, the object should

throw a ContainedObjects exception.)

*/

interface CircuitPack: Equipment

{

/**

This structure is used to retreive all of the CircuitPack attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

@member affectedObjects

Conditional. Null if not supported.

@member userLabel

Conditional. Null if not supported.

@member vendorName

Conditional. Null if not supported.

@member version

Conditional. Null if not supported.

@member locationName

Conditional. Null if not supported.

*/

value CircuitPackAttributesType: EquipmentAttributesType

{

/**

The following attributes were conditional in EquipmentAttributesType.

They are mandatory now. And their respective operations shall not raises

CONDITIONAL_PACKAGE exception.

CurrentProblemListType

currentProblemList;

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

OperationalStateType

operationalState;

AdministrativeStateType

administrativeState;

*/

AvailabilityStatusType

availabilityStatus;

short

numOfPorts;

// conditional

PortAssociationListType

portAssociationList;

// conditional

SignalRateListType

availableSignalRateList;

// conditional

PortSignalRateAndMappingListType

portSignalRateAndMappingList;

// conditional

StringListType

acceptableCircuitPackTypeList;

// conditional

};

/**

The attribute availabilityStatus is used to indicate whether the

correct physical circuit pack is inserted or not. This attribute is a

sequence of enumerations which includes the value notInstalled. If the

type of the inserted physical circuit pack matches the value of the

circuitPackType attribute (relating to the circuitPack instance) then

the value of the availabilityStatus is an empty set. Otherwise, the

value of the availabilityStatus attribute is notInstalled even if it is

one of the acceptable circuit pack types.

@see
getAvailabilityStatus

*/

AvailabilityStatusType getAvailabilityStatus

(in NameType name)

raises (ObjectFailure);

/**

This method returns the number of ports supported by the circuit pack.

*/

short getNumOfPorts

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(numberOfPortPackage));

/**

The method returns a list associating physical ports on the circuit pack

(identified by their string names) with the objects representing those ports,

contained elsewhere. The choice of values for the string names is critical

since they have physical connotations.

*/

PortAssociationListType getPortAssociationList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(portAssociationsPackage));

/**

This attributes identifies the signal rates supported by the circuit pack

entity.

*/

SignalRateListType getAvailableSignalRateListType

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

This attributes identifies the signal rate associated with a circuit pack

port and its payload mapping. The signal rate and payload mapping is

provisionable. For example, a port with signal rate stm4 may have a payload

mapping of au4-4. Another possible mapping of this rate is a sequence of

four individual au4 (i.e. au4, au4, au4, au4) or a sequence of mixed au3

and au4 (e.g., au3, au3, au3, au4, au4, au4, au3, au3, au3).

*/

PortSignalRateAndMappingListType

getPortSignalRateAndMappingList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

A replace operation of the portSignalRateAndMappingList attribute may cause

the deletion and creation of termination point objects. If this is the case,

objectDeletion and objectCreation notifications will be emitted from the

deleted and created objects. However, if such deletion and/or creation affects

existing user services, the replace request should be denied and an error

response of processingFailure with syntax defined in the

serviceAffectedErrorParameter parameter should be returned.

The ObjectFailure exception may contain parameter serviceAffectedError.

*/

void setPortSignalRateAndMappingList

(in NameType name,

in PortSignalRateAndMappingList rateAndMappingList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

void addPortSignalRateAndMappingList

(in NameType name,

in PortSignalRateAndMappingList rateAndMappingList)

raises (ObjectFailure,

DuplicatedItem,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

void removePortSignalRateAndMappingList

(in NameType name,

in PortSignalRateAndMappingList rateAndMappingList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

This attribute indicates the types of the board that can be contained

in a circuit pack object.

*/

StringListType getAcceptableCircuitPackTypeList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedBoardPackage));

void setAcceptableCircuitPackTypeList

(in NameType name,

StringListType acceptableCircuitPackTypeList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedBoardPackage));

void addAcceptableCircuitPackTypeList

(in NameType name,

StringListType acceptableCircuitPackTypeList)

raises (ObjectFailure,

DuplicatedItem,

CONDITIONAL_PACKAGE

(containedBoardPackage));

void removeAcceptableCircuitPackTypeList

(in NameType name,

StringListType acceptableCircuitPackTypeList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedBoardPackage));

/**

This action is used to request to initialize a circuit pack. The request

can be a complete reset or a partial reset. A complete reset request is

indicated by the negative value in the action argument. A partial reset

request is indicated by a non-negative integer. The value zero implies

the least level of reset. The higher the integer implies more thorough

reset. The determination of the highest integer that is equivalent to a

complete reset is a local matter. When the circuit pack in the process of

resetting, the value offLine of the availablilityStatus attribute shall

be indicated. If the circuit pack is user service sensitive, then a reset

shall be performed only when the circuit pack is in the locked

administrativeState. If the circuit pack is not in the locked

administrativeState, a reset request shall be denied and value

ResetErrorTypeEntityInService of CircuitPackResetError exception

shall be indicated.

The ResetErrorType value is included in the parameter portion of the

CircuitPackResetError exception when the reset action fails for any

other reason than the package being not implemented.

The ObjectFailure exception may contain parameter circuitResetError.

*/

boolean reset

(in NameType name,

short resetLevel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(circuitPackResetPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, staeChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications,

equipmentAlarmEffectOnService);

}; // interface CircuitPack

/**

This interface is used only when a circuitPack provides slots for the

contained boards (e.g. lower-order temination). When the circuitPack is

inserted into the containing board, the circuitPack object representing

the inserted board is automatically created. It could be deleted by the

managing system though(???).

Assert "Delete contained objects" on the created object.

*/

interface CircuitPack_CircuitPack_Auto_Factory:

ManagedObjectFactory

{

}; // interface CircuitPack_CircuitPack_Auto_Factory

/**

This interface is used to relate an instance of a circuitPack to an

equipmentHolder instance. The creation of the circuitPack object is

the result of inserting the physical circuit pack into the resource

represented by the superior object.

The management system may delete this circuit pack and recreate a new one

in order to plan the specific type of the circuit pack, using the

ExplicitlyCreated interface.

The circuit pack including contained objects can only be deleted as the

result of system management when there is no contained objects.

Assert "Delete only if no contained objects" on the created object.

ObjectFailure exception for delete operation of created object may contain

parameter networkTTPsExisting and failureToRemoveAccessGroup.

*/

interface CircuitPack_EquipmentHolder_Auto_Factory:

ManagedObjectFactory

{

}; // interface CircuitPack_EquipmentHolder_Auto_Factory

/**

This interface is used to relate an instance of a circuitPack to an

equipmentHodler instance. The creation of the circuitPack object is

the result of inserting the physical circuit pack into the resource

represented by the superior object.

The circuit pack including contained objects can be deleted as the

result of system managemen.

Assert "Delete contained objects" on the created object.

*/

interface CircuitPack_EquipmentHolder_Auto_Deletable_Factory:

ManagedObjectFactory

{

}; // interface CircuitPack_EquipmentHolder_Auto_Deletable_Factory

/**

This interface is used to explicitly create an instance of circuitPack

relative to an equipmentHolder instance. The creation of the circuitPack

object is the result of system management protocol. If the type of

circuitPack is incompatible with the types supported by the equipmentHolder,

the create request will result in a ObjectFailure exception. The generalError

parameter is then used to report the error and may provide the value of

the circuitPack type attribute.

The circuitPack can only be deleted as the result of system management when

there are no contained objects.

Assert "Delete only if no contained objects" on the created object.

*/

interface CircuitPack_EquipmentHolder_Factory:

ManagedObjectFactory

{

/**

This method is used to create an instance of a circuitPack relative to an

equipmentHolder instance. The creation of the circuitPack object is the

result of system management protocol. If the circuitPackType is incompatible

with the types supported by the equipmentHolder the create request will result

in an object processing failure error. The generalErrorParameter is then used

to report the error and may provide the value of the circuitPackType attribute.

This parameter may be used for other processing failures if needed.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

@param list
the initial list with which the object will be created.

ObjectFailure exception may contain parameter createError and generalError.

*/

CircuitPackIDType create

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName,

in PortSignalRateAndMappingListType

rateAndMappingList

in StringListType

acceptableCircuitPackTypeList)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates a Circuit Pack object subordinate to an Equipment

Holder Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipmentHolder

ObjectFailure exception may contain parameter createError and generalError.

*/

CircuitPackIDType createWithRef

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in CircuitPackIDType ref)
// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface CircuitPack_EquipmentHolder_Factory

/**

This interface is used to explicitly create an instance of circuitPack

relative to an equipmentHolder instance. The creation of the circuitPack

object is the result of system management protocol.

The circuitPack including contained objects can be deleted as the result

of system management.

Assert "Delete contained objects" on the created object.

*/

interface CircuitPack_EquipmentHolder_Deletable_Factory:

ManagedObjectFactory

{

/**

This method is used to create an instance of a circuitPack relative to an

equipmentHolder instance. The creation of the circuitPack object is the

result of system management protocol. If the circuitPackType is incompatible

with the types supported by the equipmentHolder the create request will result

in an object processing failure error. The generalErrorParameter is then used

to report the error and may provide the value of the circuitPackType attribute.

This parameter may be used for other processing failures if needed.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

@param list
the initial list with which the object will be created.

ObjectFailure exception may contain parameter createError and generalError.

*/

CircuitPackIDType create

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in ReplaceableType replaceable,

in string type,

in MOIDListType supportedByObjectList,

in AdministrativeStateType adminState,

in AlarmSeverityAssignmentProfileIDType profile,

in string userLabel,

in string vendorName,

in string version,

in string locationName,

in PortSignalRateAndMappingListType

rateAndMappingList

in StringListType

acceptableCircuitPackTypeList)

raises (ObjectFailure,

InvalidID,

DuplicateName);

/**

This operation creates a Circuit Pack object subordinate to an Equipment

Holder Object using a reference object.

@param ref
the reference object, the values of which will be used

to create the new object

@see createUnderEquipmentHolder

ObjectFailure exception may contain parameter createError and generalError.

*/

CircuitPackIDType createWithRef

(in EquipmentHolderIDType superior,// superior object

in NameComponent name,

// auto-naming if null

in CircuitPackIDType ref)
// reference object

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface CircuitPack_EquipmentHolder_Deletable_Factory

/**

Managed objects supporting the ControlPoint interface control external

devices associated with the managed system, such as relay closure for bell,

lamp, generator, heater, or air conditioner. Each instance of this class

represents one control point. <p>

The current state of a control point can be either closed (i.e., activate) or

open (i.e., released). A control point may optionally have a normal state (i.e.,

closed or open, one or the other). <p>

The external device represented by a control point can be remotely operated

through the 'control' action. A control operation can be momentary (i.e.,

momentarily close or open) or continuous (continuously close or open). <p>

Valid control type of a control point may be momentary only, continuous only, or

both. A control action will be denied if the control action type (continuous or

momentary) is not valid for the control point. <p>

The effect of a control action on a control point is given in Table 1/M.3100

Amendment 1. <p>

Current state, valid control type, normal state (optional), text message (such

as user-friendly label or text) and location (optional) of the control points

are by separate attributes. <p>

*/

interface ControlPoint: ExternalPoint

{

value ControlPointAttributesType: ExternalPointAttributesType

{

ControlStateType
currentControlState;

ValidControlType
validControl;

ControlStateType
normalControlState;

// conditional

};

/**

This attribute indicates the current state of the control point.

*/

ControlStateType getCurrentControlState

(in NameType name)

raises (ObjectFailure);

/**

This attribute indicates the valid type of control signal for this control

point.

*/

ValidControlType getValidControl

(in NameType name)

raises (ObjectFailure);

void setValidControl

(in NameType name,

in ValidControlType validControl)

raises (ObjectFailure);

/**

This attribute indicates the normal state of the control point.

*/

ControlStateType getNormalControlState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(normalControlStatePackage));

void setNormalControlState

(in NameType name,

in ControlStateType controlState)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(normalControlStatePackage));

/**

This action instructs the NE to momentarily operate (close of open) or

continuously operate (close or open) an external control device (such

as a relay closure) represented by a control point. The control action

type parameter is included in the request.

*/

ControlResultType externalControl

(in NameType name,

in ControlActionType controlAction)

raises (ObjectFailure);

}; // interface ControlPoint

/**

This interface is used to create an controlPoint object relative to an

equipment object.

*/

interface ControlPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created controlPoint object shall be stringified pointId.

*/

ControlPointID create

(in EquipmentIDType superior,

in long pointId,

in ValidControlType validControl)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ControlPoint_Equipment_Factory

/**

This interface is used to create an controlPoint object relative to an

managedElement object.

*/

interface ControlPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created controlPoint object shall be stringified pointId.

*/

ControlPointID create

(in ManagedElementID superior,

in long pointId,

in ValidControlType validControl)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ControlPoint_ManagedElement_Factory

/**

A managed object of this class represents an assignment relationship

between the termination point or GTP object listed in the From

Termination attribute and the termination point or GTP objects listed

in the To Termination attribute of this managed object.

The To Termination attribute will always be non-NULL. The From

termination attribute will only be NULL in the case of point-to-

multipoint configurations. If the From Termination attribute has a

value of NULL, the assignment relationship is between the termination

point object or the GTP object listed in the From Termination attribute

of the containing Multipoint Cross-Connection managed object and the

termination point object or GTP object listed in the To Termination

attribute of this managed object.

A point to point cross-connection can be established between: one of

CTP (with TPType equal to) Sink, CTP Bidirectional, TTP Source, TTP

Bidirectional, or GTP; and one of CTP Source, CTP Bidirectional, TTP

Sink, TTP Bidirectional, or GTP.

In a unidirectional cross-connection, the termination or GTP object

pointed to by the From Termination and the termination point or GTP

object pointed to by the To Termination attribute (in this object or

the containing mpCrossConnection) are related in such a way that

traffic can flow between the termination points represented by these

managed objects. In a bidirectional cross-connection, information flows

in both directions.

If the objects listed in the From Termination and To Termination

attributes are GTPs, the nth element of the From Termination GTP is

related to the nth element of the To Termination GTP (for every n).

If the fromTermination attribute has a value of NULL, the

directionality attribute must have the value 'unidirectional'.

The total rate of the From Terminations must be equal to the total rate

of To Terminations.

The attribute Signal Type describes the signal that is cross-connected.

The termination points or GTPs that are cross-connected must have

signal types that are compatible.

If an instance of this object class is contained in a multipoint cross-

connection and the operational state of the containing multipoint

cross- connection is 'disabled', the operational state of this object

will also be 'disabled'.

The following are the definitions of the administrative state and the

operational state attributes:

Administrative State:

- Unlocked: The Cross-Connection object is administratively unlocked.

Traffic is allowed to pass through the connection.

- Locked: No traffic is allowed to pass through the Cross-Connection.

The connectivity pointers in the cross-connected termination points

is NULL.

Operational State:

- Enabled: The Cross-Connection is performing its normal function.

- Disabled: The Cross-Connection is incapable of performing its

normal -cross-connection function.

Notifications emitted by objects supporting this interface: none.

This interface includes the attributes "redline", "userLable", and

"crossConnectionName" that extend Connection to NamedConnection in

M.3100.

*/

interface CrossConnection : ManagedObject

{

value CrossConnectionAttributesType: ManagedObjectAttributesType

{

AdministrativeStateType
adminstrativeState;

OpearationalStateType
opearationalState;

SignalIdType

signalId;

TPIDType

fromTermination;

TPIDType

toTermination;

DirectionalityType
directionality;

boolean

redline;

// conditional

string

userLable;

// conditional

string

crossConnectionName;

// conditional

};

/**

*/

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure);

void setAdministrativeState

(in NameType name,

in AdministrativeStateType adminState)

raises (ObjectFailure);

/**

*/

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure);

/**

This attribute uniquely identifies the signal type of a cross-

connection, TP pool or GTP. The signal type can either be simple,

bundle, or complex. If the signal type is simple, it consists of a

single type of characteristic information. If the signal type is

bundle, it is made up of a number of signal types all of the same

characteristic information. If the signal type is complex, it consists

of a sequence of bundled signal types. The order in the complex signal

type represents the actual composition of the signal.

*/

SignalIdType getSignalId

(in NameType name)

raises (ObjectFailure);

/**

This attribute identifies a TTP (source or bidirectional), a CTP

(sink or bidirectional) or a GTP composed of members of one of these

categories

*/

TPIDType getFromTermination

(in NameType name)

raises (ObjectFailure);

/**

This attribute identifies a CTP (source or bidirectional), a TTP

(sink or bidirectional) or a GTP composed of members of one of these

categories

*/

TPIDType getToTermination

(in NameType name)

raises (ObjectFailure);

/**

The Directionality attribute type specifies whether the associated

managed object is uni- or bi-directional. If it is uni-directional,

the flow of information is from the A end to the Z end.

*/

DirectionalityType getDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute identifies whether the associated managed object is

red lined, e.g. identified as being part of a sensitive circuit.

*/

boolean getRedline

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(redlinePackage));

void setRedline

(in NameType name,

in boolean redline)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(redlinePackage));

/**

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

void setUserLabel

(in NameType name,

in string userLable)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This attribute is a descriptive name for a cross-connection.

*/

string getCrossConnectionName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

void setCrossConnectionName

(in NameType name,

in string crossConnectionName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributValueChange,

attributeValueChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

}; // interface CrossConnection

/**

The value of the fromTermination attribute in the Cross-Connection object

shall not be NULL. When an instance of cross-connection is deleted, the

following attributes will be affected. The crossConnctionObjectPointer

attribute in the termination point objects or in the GTP objects that were

pointing to the deleted cross-connection instance shall be set to point to

the Fabric responsible for the connection of the termination points.

The counters in the appropriate TP Pool objects (if applicable) shall be

updated. The connectivityPointer attributes in the disconnected termination

points shall be set to NULL. Deleting a cross-connection object instance

has no effect on the composition of any GTP.

Assert "Delete only if no contained objects" on the created object.

ObjectFailure exception for delete operation of created object may contain

parameter generalError.

*/

interface CrossConnection_Fabric_Factory: ManagedObjectFactory

{

}; // CrossConnection_Fabric_Factory

/**

The ExternalPoint interface is a superclass for controlPoint and scanPoint

object classes which are used to control external devices or monitor external

conditions respectively. This object class contains common aspects of

controlPoint and scanPoint object classes. The operational state and

administrative state represent the state of the control and scan functions,

i.e. not the state of the external entity.

*/

interface ExternalPoint: ManagedObject

{

value ExternalPointAttributesType: ManagedObjectAttributesType

{

OperationalStateType
operationalState;

AdminstrativeStateType
administrativeState;

MOIDListType

supportedByObjectList;

long

exteralPointId;

string

externalPointMessage;

string

locationName;

// conditional

};

/**

*/

OperatonalStateType getOperationalState

(in NameType name)

raises (ObjectFailure);

/**

*/

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure);

void setAdministrativeState

(in NameType name,

in AdministrativeStateType adminState)

raises (ObjectFailure);

/**

*/

MOIDListType getSupportedByObjectList

(in NameType name)

raises (ObjectFailure);

/**

This attribute identifies the port number where the monitored or controlled

external device is attached. It also serves as the naming attribute for

the managed object. Therefore the id string of NameComponent shall be

stringified integer of port number.

*/

long getExternalPointId

(in NameType name)

raises (ObjectFailure);

/**

This attribute can provide some textual definition of the external point.

It can also be used for identiifying the location of the external point.

*/

string getExternalPointMessage

(in NameType name)

raises (ObjectFailure);

void setExternalPointMessage(

(in NameType name,

in string message)

raises (ObjectFailure);

/**

*/

string getLocationName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

void setLocationName

(in NameType name,

in string locationName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, stateChange);

}; // interface ExternalPoint

/**

This interface is used to create an externalPoint object relative to an

equipment object.

*/

interface ExternalPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created externalPoint object shall be stringified pointId.

*/

ExternalPointID create

(in EquipmentIDType superior,

in long pointId)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ExternalPoint_Equipment_Factory

/**

This interface is used to create an externalPoint object relative to an

managedElement object.

*/

interface ExternalPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created externalPoint object shall be stringified pointId.

*/

ExternalPointID create

(in ManagedElementID superior,

in long pointId)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ExternalPoint_ManagedElement_Factory

/**

Managed objects supporting the LayerNetworkDomain interface represent a

transport administrative domain in which all resources pertain to the same

G.805 layer. [G.853.1,OBJECT:layerNetworkDomain] <p>

It represents the topological aspects of the transport network layer.

[G.853.1,RELATIONSHIP:layerNetworkDomainIsMadeOf]

@see [G.852.2,RESOURCE:layer network domain]

*/

interface LayerNetworkDomain: Network

{

value LayerNetworkDomainAttributesType: NetworkAttributesType

{

SignalIdType
signalId;

};

/**

This attribute defines the characteristic information of the layer (in the

G.805 sense) to which the entity under consideration belongs. It is used to

determined whether sub-network connection/connectivity is possible. The

signal Id may be a simple rate and format or may be a bundle of entities with

the same characteristic information which form an aggregate signal.

*/

SignalIdType getSignalId

(in NameType name)

raises (ObjectFailure);

}; // interface LayerNetworkDomain

/**

Assert "Delete only if no contained objects" on the created object.

*/

interface LayerNetworkDomain_Network_Factory: ManagedObjectFactory

{

LayerNetworkDomainIDType create

(in NetworkIDType superior,

in NameComponent name, // may not be null

in string systemTitle,

in string userLabel,

in SignalIdType signalId)

raises (ObjectFailure,

InvalidID,

DuplicateName);

LayerNetworkDomainIDType createWithRef

(in NetworkIDType superior,

in NameComponent name, // may not be null

in LayerNetworkDomainIDType ref)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface LayerNetworkDomain_Network_Factory

/**

Managed objects supporting the LinkConnection interface are responsible for

the transparent transfer of information between Network Connection Termination

Points. <p>

A Link Connection may be a component of a Trail. A sequence of one or more

Link Connections (and sub-network connections) may be linked together to form

a Trail.

[Rec.G.853.1,RELATIONSHIP:linkConnectionIsSupportedByTrail],

[Rec.G.853.1,RELATIONSHIP:trailIsMadeOfTransportEntities] <p>

A Link Connection may be either uni- or bi-directional.

[Rec.G.853.1,OBJECT:transportConnection] <p>

A point to point unidirectional Link Connection can be established between a

Network connection termination point source or Network connection termination

point bi-directional; and a Network connection termination point sink or

Network connection termination point bi-directional. <p>

A point to point bi-directional Link Connection can be established between a

Network connection termination point bi-directional; and a Network connection

termination point bi-directional. <p>

An operation to create a Link Connection will not be successful and will fail

with an invalid TP type if a requested endpoint is a Network Trail Termination

Point. <p>

For all types of Link Connection, the network termination point(s) pointed to

by the A End attribute is related to the network termination point(s) pointed

to by the Z End attribute in such a way that traffic can flow between the

network termination points represented by these managed objects in a

unidirectional or bi-directional manner as indicated by the directionality

attribute. [G.853.3, ATTRIBUTE:directionality]

@see [G.852.2,RESOURCE:link connection]

*/

interface LinkConnection: Pipe

{

value LinkConnectionAttributesType: PipeAttributesType

{

TrailIDListType

serverTrailList;

// conditional

SubnetworkConnectionIDType
compositePointer;

// conditional

// may be null

TrailIDType

clientTrail;

// conditional

};

/**

The value of this attribute identifies the trail objects (in most cases one)

in a lower order network layer which may be used in parallel to serve a

connection object. Supported if the link connection is supported by a server

trail

*/

TrailIDListType getServerTrailList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(serverTrialListPackage);

/**

This attribute is used where the connectivity instance is a component of a

Sub-network Connection within the same layer. This package identifies an

instance of the Sub-network Connection managed object class. Within a given

layer, a given subnetwork connection is composed of a sequence of link

connections and subnetwork connections. This pointer points from one these

components to the composite sub-network connection. Supported if the link

connection is a component of that sub-network connection.

*/

SubnetworkConnectionIDType getCompositePointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(compositePointerPackage);

/**

The value of this attribute identifies the trail object instance in the same

network layer as the connection served by a connection object. Supported if

the link connection serves a client trail.

*/

TrailIDType getClientTrail

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(clientTrailPackage);

}; // interface LinkConnection

/**

Assert "Not deletable" on the created object.

*/

interface LinkConnection_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface LinkConnection_LayerNetworkDomain_Factory

/**

Assert "Not deletable" on the created object.

*/

interface LinkConnection_TopLink_Factory:

ManagedObjectFactory

{

}; // interface LinkConnection_TopLink_Factory

/**

Managed objects supporting the LogicalLink interface represent a link that

may be administratively composed of link connections or bandwidth that may be

provided by one or more topological links or other logical links.

@see [G.852.2,RESOURCE:link]

*/

interface LogicalLink : AbstractLink

{

value LogicalLinkAttributesType: AbstractLinkAttributesType

{

LinkDirectionalityType
linkDirectionality;

LinkConnectionIDListType

linkConnectionPointerList;

// conditional

};

/**

The Link Directionality attribute specifies whether the associated link

managed object is uni- or bi-directional, or undefined.

*/

LinkDirectionalityType getLinkDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute defines the list of Link Connections in a given layer which

may compose a Logical Link in the same layer. Suppored if pre-provisioned

link connections are supported by the transport technology.

*/

LinkConnectionIDListType getLinkConnectionPointerList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void setLinkConnectionPointerList

(in NameType name,

LinkConnectionIDListType connectionList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void addLinkConnectionPointerList

(in NameType name,

in LinkConnectionIDListType connectionList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void removeLinkConnectionPointerList

(in NameType name,

in LinkConnectionIDListType connectionList)

raises (ObjectFailure,

ItermNotFound,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

/**

The following two actions provide the support for the management of the

capacity of a logical link. It specifies actions to assign and release

link connections and/or bandwidth to a link.

*/

/**

This action assigns link connections to a Logical Link. The pointers to the

link connections that are assigned will be added to the

linkConnectionPointerList attribute of the logicalLink managed object.

<G854-10:OPERATION, assignLinkConnectionOnLink>

ObjectFailure exception for this action may contain parameters

linkAndLinkConnectionNotCompatible, invalidLinkConnection,

notEnoughLinkConnections, linkConnectionAlreadyAssigned,

inconsistentSignalIdentification, inconsistentDirectionality,

failureToSetLinkConnectionCallerId, failureToDecreaseCapacity.

*/

void assignLinkConnectionOnLogicalLink

(in NameType name,

in LayerNetworkDomainIDType layer,

in LinkConnectionIDListType requestedConnectionList,

out LinkConnectionIDListType resultingConnectionList)

raises (ObjectFailure);

/**

This action deassigns a link connection in a layer domain to a logical link

in the same layer domain.

<G854-10:OPERATION, deassignLinkConnectionFromLink>

ObjectFailure exception for this action may contain parameters

linkAndLinkConnectionNotCompatible, invalidLinkConnection,

notAssignedToCaller, failureToDeassignLinkConnection,

failureToIncreaseCapacity.

*/

void deassignLinkConnectionFromLogicalLink

(in NameType name,

in LinkConnectionIDListType requestedConnectionList)

raises (ObjectFailure);

}; // interface LogicalLink

/**

The logicalLink managed object is created by the establishLink or

establishLinkAndLinkEnds action.

The logicalLink managed object is deleted by the removeLink or

removeLinkAndLinkEnds.

Assert "Not deletable" on the created object.

*/

interface LogicalLink_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface LogicalLink_LayerNetworkDomain_Factory

/**

Managed objects supporting the LogicalLinkEnd interface represent the end

of a logical link. <p>

When present, the Network CTPs in Link End List Package identify the

network CTPs that are present in the Logical Link End. There is no name

binding between Logical Link End and the network CTPs that are associated

with the Logical Link.

@see [G.852.2,RESOURCE:link end]

*/

interface LogicalLinkEnd: AbstractLinkEnd

{

value LogicalLinkEndAttributesType:

AbstractLinkEndAttributesType

{

PointDirectionalityType
logicalEndDirectionality;

NetworkCTPIDListType
networkCTPInLinkEndList;

// conditional

};

/**

This attribute specifies whether the associated link end managed object is

sink, source, or bi-directional.

*/

PointDirectionalityType getLogicalEndDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute lists the networkCTPs that are presented in the Logical Link

End managed object. Supported if pre-provisioned network CTPs are supported

by the transport technology.

*/

NetworkCTPIDListType getNetworkCTPInLinkEndList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkCTPsInLinkEndListPackage));

/**

The following two actions provide the support for the management of the

capacity of a link end. It specifies actions to assign and release

networkCTPs and/or bandwidth to a link end.

*/

/**

This action assigns networkCTPs to a logical link end.

ObjectFailure exception may contain parameters:

linkEndAndNetworkCTPNotCompatible, invalidNetworkCTP, notEnoughNetworkCTPs,

networkCTPAlreadyAssigned, inconsistentSignalIdentification,

inconsistentDirectionality, failureToSetNetworkCTPCallerId,

failureToDecreaseCapacity.

*/

void assignNetworkCTPOnLogicalLinkEnd

(in NameType name,

in NetworkCTPIDListType requestedNetworkCTPList,

out NetworkCTPIDListType resultingNetworkCTPList)

raises (ObjectFailure);

/**

This action de-assigns a link connection in a layer domain to a logical

link in the same layer domain.

*/

void deassignNetworkCTPFromLogicalLinkEnd

(in NameType name,

in NetworkCTPIDListType requestedNetworkCTPList)

raises (ObjectFailure);

}; // interface LogicalLinkEnd

/**

Assert "Not deletable" on the created object.

*/

interface LogicalLindEnd_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface LogicalLindEnd_LayerNetworkDomain_Factory

/**

Assert "Not deletable" on the created object.

*/

interface LogicalLindEnd_Subnetwork_Factory:

ManagedObjectFactory

{

}; // interface LogicalLindEnd_Subnetwork_Factory

/**

The Network CTP object class is a class of managed objects that terminates

Link connections and/or originates Sub-network Connections. The resource

receives (sends) information (traffic), via a Link connection, from (to)

an instance representing a NetworkConnection Termination Point, and sends

(receives) it on, via a Sub-network Connection, to (from) instances

representing either NetworkCTP or a NetworkTTP in the same Sub-network.

An instance of this class may only have connectivity relationships (link

connection or sub-network connection) with instances that represent Network

Connection Termination Points which are at the same layer.

[G.852.3,COMMUNITY_POLICY:signalid]

An instance of this class may be sub-network connected, via a Sub-network

Connection, to a single instance which represents a Network Trail Termination

Point at the same layer.

[G.853.1:RELATIONSHIP: subnetworkConnectionIsTerminatedByPointToPoint,

ROLE:a_endCTP]

The Sub-network Connection Pointer attribute points to the managed object

representing the relationship with the network termination point(s), within

the same Sub-network, that receive(s) (send(s)) information (traffic) from (to)

this network termination point, or is null.

[G.853.1: RELATIONSHIP: subnetworkConnectionIsTerminatedByPointToPoint , ROLE:

a_endCTP]

The referenced managed object shall represent a Sub-network Connection. Where

the NetworkCTP participates in many sub-network connections for different

sub-networks, the Sub-network Connection Pointer is null.

Any network termination points identified by the related Sub-network Connection

indicate that a relationship exists, but this does not indicate that information

can flow between the network termination points. This capability is indicated by

a combination of the State Attributes including the Operational State.

The Connectivity Pointer attribute points to the managed object representing the

Connection which relates this instance to the instance representing the Network

Connection Termination Point that sends (receives) information (traffic) to

(from) this network termination point, or is null.

[G.853.1,RELATIONSHIP:, ROLE: z_endCTP]linkConnectionIsTerminatedByPointToPoint

If it is necessary to configure an instance of this object class to be

unidirectional, a subclass may be specified for which directionality is

permitted to be settable.

"[G.852.2,RESOURCE:connection termination point]

*/

interface NetworkCTP: NetworkTP

{

value NetworkCTPAttributesType: NetworkTPAttributesType

{

long

channelNumber;

// conditional;

NetworkCTPIDType
superPartitionPointer;

// conditional;

NetworkCTPIDType
subPartitionPointer;

// conditional;

NetworkTTPIDListType
serverTTPPointer;

// conditional;

};

/**

Supported if the channel number attribute is supported by an instance of this

managed object class.

*/

long getChannelNumber

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(channelNumberPackage));

/**

This package identifies instances of the network CTP managed object class

at higher and lower levels of subnetwork partitioning (within a given layer)

by the use of partitioning pointers.

Supported if pointers to instances of network termination points at higher

or lower levels of sub-network partitioning are supported by this managed

object class.

*/

/**

This attribute is a pointer to a network CTP which is in a higher level

partition. It will only be present for those network CTPs in the lower

partition which have a direct correspondence to the network CTPs at the

higher level. It can be null.

*/

NetworkCTPIDType getSuperPartitionPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkCTPPackage));

/**

This attribute is a pointer to a network CTP which is in a lower level

partition. Where the lowest level of network CTP points to a NE CTP

via the NE assignment pointer, the value of the sub partition pointer

is null.

*/

NetworkCTPIDType getSubPartitionPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkCTPPackage));

/**

This attribute defines the TTP which may serve a CTP and/or linkEnd in

another layer. Usually a TTP or TTPs in a higher order layer will serve

a CTP or CTPs in a lower order layer.

Supported if the server trail termination point pointer attribute is supported

by an instance of this managed object class.

*/

NetworkTTPIDListType getServerTTPPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(serverTTPPointerPackage));

}; // interface NetworkCTP

/**

Assert "Not deletable" on the created object.

*/

interface NetwortCTP_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface NetwortCTP_LayerNetworkDomain_Factory

/**

Assert "Not deletable" on the created object.

*/

interface NetwortCTP_Subnetwork_Factory:

ManagedObjectFactory

{

}; // interface NetwortCTP_Subnetwork_Factory

/**

Managed objects supporting the NetworkTP interface represent the termination

of a transport entity, such as an instance representing a Trail or a Link

Connection. <p>

The sncPointer is used to point to a Sub-network Connection. However, not all

network termination points will have a flexible connection, and it may be more

appropriate to point to another network termination point, for example in a

regenerator the two network connection termination points would point to each

other as there is no flexibility between them. In this instance the

networkTPPointer shall be used. Both pointers are conditional.

[G.853.1,RELATIONSHIP:subnetworkConnectionIsTerminatedByPointToPoint, ROLE:

a_endCTP or z_endCTP] <p>

The Connectivity Pointer attribute points to the managed object representing

the Link connection or Trail which relates this instance to other instance(s)

representing the Network Termination Point(s).

[G.853.1,RELATIONSHIP:trailIsTerminatedByPointToPoint, ROLE: a_endCTP or

z_endCTP]

[G.853.1,RELATIONSHIP:linkConnectionIsterminatedByPointToPoint, ROLE: a_endCTP

or z_endCTP] <p>

The NetworkTP interface is not instantiable.

*/

interface NetworkTP: TerminationPoint

{

value NetworkTPAttributesType: TerminationPointAttributesType

{

PointDirectionalityType
pointDirectionality;

SignalIdType

signalId;

ConfiguredConnectivityType

configuredConnectivity;

// conditional

PipeIDType

connectivityPointer;

// conditional

AdministrativeStateType
administrativeState;

// conditional

OperationalStateType
operationalState;

// conditional

AvailabilityStatusType
availabilityStatus;

// conditional

string

locationName;

// conditional

string

userLabel;

// conditional

MOIDType

neAssignmentPointer;

// conditional

SubnetworkConnectionIDListType

subnetworkConnectionPointer;

// conditional

NetworkTPIDType

networkTPPointer;

// conditional

};

/**

This attribute indicates the directionality of a networkTP managed object

instance.

*/

PointDirectionality getPointDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute defines the characteristic information of the layer to which

the entity under consideration belongs.

*/

SignalIdType getSignalId

(in NameType name)

raises (ObjectFailure);

/**

This attribute indicates the configured connectivity of a Network Termination

Point managed object (or subclass). The possible values for this attribute are

sourceConnect, sinkConnect, bidirectionalConnect and noConnect.

For a Network Termination Point managed object with pointDirectionality equal

to sink, the allowed values for this attribute are noConnect and sinkConnect.

For a Network Termination Point managed object with pointDirectionality equal

to source, the allowed values for this attribute are noConnect and

sourceConnect.

For a Network Termination Point managed object with pointDirectionality equal

to bidirectional, the allowed values for this attribute are noConnect and

bidirectionalConnect.

For some technologies, sinkConnect and sourceConnect may also be allowed for

a bidirectional Network Termination Point managed object.

Supported if configured connectivity indication is supported by this managed

object instance.

*/

ConfiguredConnectivityType getConfiguredConnectivity

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(configuredConnectivityPackage));

/**

This package identifies an instance of a Link connectiion or Trail managed

object class which is terminated by the Network Termination Point.

This attribute points to the Link connection or Trail terminated by the

Network Termination Point.

Supported if the network termination point terminates a link connection or

a trail.

*/

PipeIDType getConnectivityPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(connectivityPointerPackage));

/**

Supported if the resource represented by this managed object is capable of

being administratively removed from service (point view).

*/

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void setAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

OperationalState getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

Supported if the resource represented by this managed object is capable of

representing its availability (point view).

*/

AvailabilityStatusType getAvailabilityStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

string getLocationName

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

void setLocationName

(in NameType name,

in string locationName)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(locationNamePackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This attribute points from the lowest level Network TP in the partitioning

hierarchy to a NE TP which represents the functionality which supports

the Network TP. The sub-partition pointer for a Network CTP which utilises

the NE assignment pointer will be NULL.

Supported if the Network Element view of termination points is available.

*/

MOIDType getNeAssignmentPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(neAssignmentPointerPackage));

/**

This attribute points to the ordered list of subnetwork connection(s) which

have a relationship with the network termination point. When no subnetwork

connection is present this pointer points to a subnetwork or is NULL.

This list has a singal entry for point to point applications, and may have

multiple entries for point to multipoint applications.

Supported if a network termination point may be flexibly connected to another

network termination point.

*/

SubnetworkConnectionIDListType getSubnetworkConnectionPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(sncPointerPackage));

/**

This attributes points to a network termination point.

Supported if there is no flexibity between network termination points

(degenerate case only).

*/

NetworkTPIDType getNetworkTPPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkTTPointerPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

}; // interface NetworkTP

/**

Managed objects supporting the NetworkTTP interface terminate

Trails and Sub-network Connections in the Network viewpoint.

An instance of this class may only have Trail relationships with another

Network Trail Termination Points which are at the same layer.

[G.852.3,COMMUNITY_POLICY:signalid]

An instance of this class may be subnetworkconnected, via a Sub-network

Connection, to a single Network Connection Termination Point, or a Network

Trail Termination Point Source at the same layer.

[G.853.1,RELATIONSHIP:subnetworkConnectionIsTerminatedByPointToPoint, ROLE:

z_endCTP]

The Sub-network Connection Pointer attribute points to the managed object

representing the relationship with one or more Network Connection Termination

Points, within the same Sub-network, that send (receive) information (traffic)

to (from) this network termination point, or is null.

Any network termination point identified by the related Sub-network Connection

indicates that a relationship exists, but this does not indicate that

information can flow between the network termination points. This capability is

indicated in a combination of the State attributes, including the Operational

State.

The Connectivity Pointer attribute points to the managed object representing

the Trail which relates this instance to the instances representing the

Network Trail Termination Points, that send (receive) information (traffic)

to (from) this network termination point at the same layer, or is null.

[G.853.1,RELATIONSHIP:trailIsTerminatedByPointToPoint, ROLE: z_endCTP]

If it is necessary to configure an instance of this object class to be

unidirectional, a subclass may be specified for which directionality is

permitted to be settable.

@see [G.852.2,RESOURCE:trail termination point]

*/

interface NetworkTTP: NetworkTP

{

value NetworkTTPAttributesType: NetworkTPAttributesType

{

ObjectClassListType
supportableClientList;

// conditional

NetworkCTPIDListType
clientCTPList;

// conditional

};

/**

The value of this attribute is the list of object classes representing

the clients which the particular managed object is capable of supporting.

This may be a subset of the client layers identified in Rec. G.803 by

particular server layer managed object.

*/

ObjectClassListType getSupportableClientList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(supportableClientListPackage));

/**

This attribute defines the CTP or list of CTPs which are clients of a TTP

or TTPs in another layer. Usually a single TTP in a higher order layer will

support a number of CTPs in a lower order layer. Alternatively, where

concatenation is used, a number of TTPs in a lower order layer may serve a

CTP or CTPs in a higher order layer.

Supported if management of the client networkCTPs of this managed object is

supported.

*/

NetworkCTPIDListType getClientCTPList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(clientCTPListPackage));

}; // interface NetworkTTP

/**

If, during a delete operation, the networkTTP terminates a trail then the

delete operation will fail with an ObjectFailure exception with parameter

networkTTPTerminatesTrail.

If, during a delete operation, the networkTTP is associated with a subnetwork

or an access group then the delete operation will fail with an ObjectFailure

exception with the parameter networkTTPAssociatedWithSubnetwork or

networkTTPAssociatedWithAccessGroup respectively.

Assert "Delete only if no contained objects" on the created object.

*/

interface NetworkTTP_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

NetworkTTPIDType create

(in LayerNetworkDomainIDType superior,

in NameComponent name, // may not be null

in MOIDListType supportedByObjectList,

in CrossConnectionPointerType crossConnectionPointer,

in CharacteristicInfoType characteristicInfo,

in MOIDType networkLevelPointer,

in AlarmSeverityAssignmentProfileIDType profile,

in PointDirectionalityType pointDirectionality,

in SignalIdType signalId,

in ConfiguredConnectivityType configuredConnectivity,

in PipeIDType connectivityPointer,

in AdministrativeStateType administrativeState,

in string locationName,

in string userLabel,

in MOIDType neAssignmentPointer,

in SubnetworkConnectionIDListType sncPointer,

in NetworkTPIDType networkTPPointer,

in ObjectClassListType supportableClientList,

in NetworkCTPIDListType clientCTPList)

raises (ObjectFailure,

InvalidID,

DuplicateName);

NetworkTTPIDType createWithRef

(in LayerNetworkDomainIDType superior,

in NameComponent name, // may not be null

in NetworkTTPIDType ref)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface NetworkTTP_LayerNetworkDomain_Factory

/**

If, during a delete operation, the networkTTP terminates a trail then the

delete operation will fail with an ObjectFailure exception with parameter

networkTTPTerminatesTrail.

Assert "Delete only if no contained objects" on the created object.

*/

interface NetworkTTP_Subnetwork_Factory:

ManagedObjectFactory

{

NetworkTTPIDType create

(in SubnetworkIDType superior,

in NameComponent name, // may not be null

in MOIDListType supportedByObjectList,

in CrossConnectionPointerType crossConnectionPointer,

in CharacteristicInfoType characteristicInfo,

in MOIDType networkLevelPointer,

in AlarmSeverityAssignmentProfileIDType profile,

in PointDirectionalityType pointDirectionality,

in SignalIdType signalId,

in ConfiguredConnectivityType configuredConnectivity,

in PipeIDType connectivityPointer,

in AdministrativeStateType administrativeState,

in string locationName,

in string userLabel,

in MOIDType neAssignmentPointer,

in SubnetworkConnectionIDListType sncPointer,

in NetworkTPIDType networkTPPointer,

in ObjectClassListType supportableClientList,

in NetworkCTPIDListType clientCTPList)

raises (ObjectFailure,

InvalidID,

DuplicateName);

NetworkTTPIDType createWithRef

(in SubnetworkIDType superior,

in NameComponent name, // may not be null

in NetworkTTPIDType ref)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface NetworkTTP_Subnetwork_Factory

/**

Managed objects supporting the Pipe interface ensure the transfer of

information between two or more termination points. <p>

If an instance of this class is bidirectional, the a- and z-termination points

shall also be bidirectional. If an instance of this class is unidirectional,

the a-point shall be the source TP or bidirectional TPand the z-termination

point shall be the sink TP or bidirectional TP. <p>

For unidirectional connections, the aEndNWTPList attribute shall identify the

source end. <p>

The pipeR2 class is not instantiable because the transfer is effected via

trail and link connection.

*/

interface Pipe : ManagedObject

{

value PipeAttributesType: ManageObjectAttributesType

{

DirectionalityType
directionality;

SignalIdType

signalId;

MOIDListType

aEndNetworkTPList;

MOIDListType

zEndNetworkTPList;

AdministrativeStateType
administrativeState;

// conditional

OperationalStateType
operationalState;

// conditional

AlarmSeverityAssignmentPorfileIDType

alarmSeverityAssignmentProfile;

// conditional

AvailabilityStatusType
availabilityStatue;

// conditional

boolean

protected;

// conditional

MOIDType

qualityOfConnectivityService;

// conditional

MOIDListType

supportedByObjectList;

// conditional

string

userLabel;

// conditional

};

/**

The directionality attribute indicates whether transmission is unidirectional

or bi-directional. <p>

*/

DirectionalityType getDirectionality

(in NameType name)

raises (ObjectFailure);

/**

The Signal Id attribute describes the signal that is transferred across a

Connectivity instance. The managed objects representing the network termination

points that are related by this instance must have signal Ids that are

compatible. <p>

*/

SignalIdType getSignalId

(in NameType name)

raises (ObjectFailure);

void setSignalId

(in NameType name,

in SignalIdType signalId)

raises (ObjectFailure);

/**

The value of this attribute identifies one or more network termination points

of an instance of a sub-class of the Pipe object class. This attribute cannot

be null.

*/

MOIDListType getAEndNetworkTPList

(in NameType name)

raises (ObjectFailure);

void setAEndNetworkTPList

(in NameType name,

in MOIDListType aEndNetworkTPList)

raises (ObjectFailure);

void addAEndNetworkTPList

(in NameType name,

in MOIDListType aEndNetworkTPList)

raises (ObjectFailure,

DuplicateItem);

void removeAEndNetworkTPList

(in NameType name,

in MOIDListType aEndNetworkTPList)

raises (ObjectFailure,

ItemNotFound);

/**

The value of this attribute identifies one or more network termination points

of an instance of a sub-class of the Pipe object class.

*/

MOIDListType getZEndNetworkTPList

(in NameType name)

raises (ObjectFailure);

void setZEndNetworkTPList

(in NameType name,

in MOIDListType zEndNetworkTPList)

raises (ObjectFailure);

void addZEndNetworkTPList

(in NameType name,

in MOIDListType zEndNetworkTPList)

raises (ObjectFailure,

DuplicateItem);

void removeZEndNetworkTPList

(in NameType name,

in MOIDListType zEndNetworkTPList)

raises (ObjectFailure,

ItemNotFound);

/**

*/

AdminstrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeStatePackage));

void setAdministrativeState

(in NameType name,

in AdministrativeStateType adminState)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeStatePackage));

/**

The operational state indicates the capability to carry a signal. <p>

*/

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(operationalStatePackage));

/**

*/

AlarmSeverityAssignmentProfileIDType

getAlarmSeverityAssignmentProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

void setAlarmSeverityAssignmentProfile

(in NameType name,

in AlarmSeverityAssigmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

*/

AvailabilityStatusType getAvailabilityStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

This attribute identifies whether the associated managed object is protected

or not. The value TRUE implies it is protected.

*/

boolean getProtected

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(protectedPackage));

/**

This attribute identifies the quaility of service for Pipe and its subclass,

and require further definition.

*/

MOIDType getQuailityOfConnectivityService

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(quailityOfConnectivityServicePackage));

/**

*/

MOIDListType getSupportedByObjectList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(supportedByPackage));

void setSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(supportedByPackage));

void addSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(supportedByPackage));

void removeSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(supportedByPackage));

/**

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationAlarmR1,

tmnCommunicatioinsAlarmInformationPackage);

}; // interface Pipe

/**

Managed objects supporting the ScanPoint interface to monitor external

conditions related to the managed element, for that events of external devices

(such as power failure, fire alarm, door open, humidity, etc.) are monitored.

Each instance of this object class represents one scan point. Environmental

alarm will be emitted if a scan point detects an abnormal condition. The text

message specified in the externalPointMessage attribute is to be included in the

additionalText field of the environmentalAlarm notification when an alarm is

emitted for the scan point. The severity of such alarms can be configured

through an optional package. <p>

The currentProblemList represents the current problems of the external entity

being monitored, i.e. not current problems with the scan function itself. The

probable cause of the currentProblemList is by itself not a precise indicator of

service affecting alarms (e.g. due to standby resources) and the serviceAffected

attribute is used as a unifying indicator of service affecting conditions.

*/

interface ScanPoint: ExternalPoint

{

value ScanPointAttributesType: ExternalPointAttributesType

{

CurrentProblemListType
currentProblemList;

boolean

serviceAffected;

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

// conditional

};

/**

*/

CurrentProblemListType getCurrentProblemList

(in NameType name)

raises (ObjectFailure);

/**

This attributes indicates whether the alarm condition for monitored external

device is service affecting or not.

*/

boolean getServiceAffected

(in NameType name)

raises (ObjectFailure);

/**

*/

AlarmSeverityAssignmentProfileIDType

getAlarmSeverityAssignmentProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

void setAlarmSeverityAssignmentProfile

(in NameType name

in AlarmSeverityAssignmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, environmentalAlarm);

}; // interface ScanPoint

/**

This interface is used to create an scanPoint object relative to an

equipment object.

*/

interface ScanPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created scanPoint object shall be stringified pointId.

*/

ScanPointID create

(in EquipmentIDType superior,

in long pointId)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ScanPoint_Equipment_Factory

/**

This interface is used to create an scanPoint object relative to an

managedElement object.

*/

interface ScanPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created scanPoint object shall be stringified pointId.

*/

ScanPointID create

(in ManagedElementID superior,

in long pointId)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface ScanPoint_ManagedElement_Factory

/**

Managed objects supporting the Subnetwork interface represent logical

collections of network termination points. <p>

If present the attribute ContainedSubnetworkList will be null if there are no

contained Sub-networks. The attribute ContainedInSubnetworkList will also be

null if there are no containing (parent) Sub-networks.";;

@see [G.852.2,RESOURCE:sub-network]

*/

interface Subnetwork : ManagedObject

{

value SubnetworkAttributesType: ManagedObjectAttributesType

{

SignalIdType
signalId;

AvailabilityStatusType
availabilityStatus;

// conditional

AccessGroupIDListType
containedAccessGroupList;

// conditional

SubnetworkIDListType
containedInSubnetworkList;

// conditional

AbstractLinkEndIDListType

containedLinkEndList;

// conditional

AbstractLinkIDListType
containedLinkList;

// conditional

NetworkTPIDListType
containedNetworkTPList;

// conditional

SubnetworkIDListType
containedSubnetworkList;

// conditional

AbstractLinkIDListType
linkPointerList;

// conditional

MOIDListType

supportedByObjectList;

// conditional

AdministrativeStateType
adminstrativeState;

// conditional

OperationalStateType
operationalState;

// conditional

UsageStateType

usageState;

// conditional

string

userLabel;

// conditional

};

/**

Supported if the availabilityStatus attribute defined in Recommendation X.721

is supported by an instance of this managed object class.

*/

AvailabilityStatusType getAvailabilityStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

This attribute defines the list of access group instances which are contained

the subnetwork. Supported if access group instances are contained in the

sub-network.

*/

AccessGroupIDListType getContainedAccessGroupList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void setContainedAccessGroupList

(in NameType name,

in AccessGroupIDListType accessGroupList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void addContainedAccessGroupList

(in NameType name,

in AccessGroupIDListType accessGroupList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void removeContainedAccessGroupList

(in NameType name,

in AccessGroupIDListType accessGroupList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

/**

This attribute defines the list of paraent sub-networks which contain

the subnetwork in a given layer. Supported if this sub-network object

instance is contained in a sub-network (partitioning is supported).

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkIDListType getContainedInSubnetworkList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void setContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void addContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void removeContainedInSubnetworkList

(in NameType name,

in SubnetworkIDListType containedInSubnetworkList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This attribute is used to describe the internal topology of a subnetwork from

the the point perspective (in a given layer). This topology comprises link ends

and subnetworks. The link ends are listed in this attributes. Supported if

there are contained link end in the sub-network object instance (partitioning

is supported).

*/

AbstractLinkEndIDListType getContainedLinkEndList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void setContainedLinkEndList

(in NameType name,

in AbstractLinkEndIDListType linkEndList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void addContainedLinkEndList

(in NameType name,

in AbstractLinkEndIDListType linkEndList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void removeContainedLinkEndList

(in NameType name,

in AbstractLinkEndIDListType linkEndList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

/**

This package identifies the links that a subnetwork contain through

partitioning.

This link may be named from a different layerNetworkDomain (associated with

a different networkR1 addministrative domain with a compatible signal

identification) than the aggregate subnetwork if permitted by a policy.

This attribute is used to describe the internal topology of a subnetwork

(in a given layer). This topology comprises links and subnetworks. The links

are listed in this attribute. Supported if there are contained links in the

sub-network object instance (partitioning is supported).

*/

AbstractLinkIDListType getContainedLinkList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

void setContainedLinkList

(in NameType name,

in AbstractLinkIDListType linkList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

void addContainedLinkList

(in NameType name,

in AbstractLinkIDListType linkList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

void removeContainedLinkList

(in NameType name,

in AbstractLinkIDListType linkList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

/**

This attribue is a list of pointers to network TPs that are contained in a

subnetwork.

ObjectFailure exception may contain parameter

networkTTPAndSubnetworkNotCompatible, failureToAssociateNetworkTP,

failureToDisassociateNetworktTP.

Supported if there are contained network termination points in the sub-network

object instance.

*/

NetworkTPIDListType getContainedNetworkTPList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void setContainedNetworkTPList

(in NameType name,

in NetworkTPIDListType networkTPList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void addContainedNetworkTPList

(in NameType name,

in NetworkTPIDListType networkTPList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void removeContainedNetworkTPList

(in NameType name,

in NetworkTPIDListType networkTPList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

/**

This package identifies the component subnetwork(s) that an aggregate

subnetwork contains through partitioning.

This attribute is used to describe the internal topology of a subnetwork

(in a given layer). This topology comprises links and subnetworks. The

subnetworks are listed in this attributes.

Supported if there are contained sub networks in this sub-network object

instance (partitioning is supported).

*/

SubnetworkIDListType getContainedSubnetworkList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void setContainedSubnetworkList

(in NameType name,

in SubnetworkIDListType subnetworkList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void addContainedSubnetworkList

(in NameType name,

in SubnetworkIDListType subnetworkList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void removeContainedSubnetworkList

(in NameType name,

in SubnetworkIDListType subnetworkList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

/**

This attribute points to the links terminated by the subnetwork or the link

terminiated by an access group. Supported if a topological view using links,

sub-networks, and access groups is supported (arc view).

*/

AbstractLinkIDListType getLinkPointerList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(linkPointerListPackage));

/**

Supported if an instance supports it.

*/

MOIDListType getSupportedByObjectList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(supportedByPackage));

void setSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(supportedByPackage));

void addSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

DuplicateItem,

CONDITIONAL_PACKAGE

(supportedByPackage));

void removeSupportedByObjectList

(in NameType name,

in MOIDListType objectList)

raises (ObjectFailure,

ItemNotFound,

CONDITIONAL_PACKAGE

(supportedByPackage));

/**

Supported if the administrativeState and operationalState attributes defined

in Recommendation X.721 are supported by an instance of this managed object

class.

*/

AdministrativeStateType getAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void setAdministrativeState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

OperationalState getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

Supported if the usageState attribute defined in Recommendation X.721 is

supported by an instance of this managed object class.

*/

UsageStateType getUsageState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(usageStatePackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

CONITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

}; // interface Subnetwork

/**

If, during a create operation in which networkTTP managed object instances

are required to be created or associated with the subnetwork, the networkTTP

managed object instances failed to be created or associated then an

ObjectFailure exception will be returned with the parameters

failureToCreateNetworkTTP or failureToAssociateNetworkTTP respectively and

the create operation will fail.

If, during a delete operation, the subnetwork is found to be in use

(to have subnetwork connection persent) or is bound to other resources

an ObjectFailure exception with parameter subnetworkInUse or

boundSubnetwork respectively will returned and the delete operation will

fail.

Assert "Delete only if no contained objects" on the created object.

*/

interface Subnetwork_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

SubnetworkIDType create

(in LayerNetworkDomainIDType superior,

in NameComponent name, // may not be null

in SignalIdType signalId,

in AccessGroupIDListType containedAccessGroupList,

in SubnetworkIDListType containedInSubnetworkList,

in AbstractLinkEndIDListType containedLinkEndList,

in AbstractLinkIDListType containedLinkList,

in NetworkTPIDListType containedNetworkTPList,

in SubnetworkIDListType containedSubnetworkList,

in AbstractLinkIDListType linkPointerList,

in MOIDListType supportedByObjectList,

in AdministrativeStateType adminstrativeState,

in string userLabel,

)

raises (ObjectFailure,

InvalidID,

DuplicateName);

SubnetworkIDType createWithRef

(in LayerNetworkDomainIDType superior,

in NameComponent name, // may not be null

in SubnetworkIDType ref)

raises (ObjectFailure,

InvalidID,

DuplicateName);

}; // interface Subnetwork_LayerNetworkDomain_Factory

/**

Managed objects supporting the SubnetworkConnection interface associate the

network termination point object identified in the A end attribute and the

network termination point object(s) listed in the Z end attribute of this

managed object. The Sub-network Connection may be set up between network

termination points (or groups of network termination points) specified

explicitly, or implicitly between managed objects acting as containers of

network termination point managed object instances from which any idle network

termination point or group may be used. <p>

If the managed objects listed in the A End and Z End attributes represent

groups, the nth element of the A end group is related to the nth element of

every Z end group (for every n). There shall be n elements in each group

involved in the Sub-network Connection. <p>

For a group with n elements, the Signal Id shall be taken to be a bundle of n

times the characteristic information of the individual elements, all of which

are the same. <p>

A point to point unidirectional Sub-network Connection can be established

between one of Network connection termination point sink, Network connection

termination point bi-directional, Network trail termination point source,

Network trail termination point bi-directional or Network group termination

point; and one of Network connection termination point source, Network

connection termination point bi-directional, Network trail termination point

sink, Network trail termination point bi-directional or Network group

termination point. <p>

A point to point bi-directional Sub-network Connection can be established

between one of Network connection termination point bi-directional, Network

trail termination point bi-directional or Network group termination point; and

one of Network connection termination point bi-directional, Network trail

termination point bi-directional or Network group termination point. <p>

A point to multipoint unidirectional Sub-network Connection can be established

between one of Network connection termination point sink, Network connection

termination point bi-directional, Network trail termination point source,

Network trail termination point bi-directional or Network group termination

point; and a set whose members are Network connection termination point sources,

Network connection termination point bi-directionals, Network trail termination

point sinks, Network trail termination point bi-directional or Network group

termination point. <p>

A point to multipoint bi-directional Sub-network Connection can be established

between one of Network connection termination point bi-directional, Network

trail termination point bi-directional or Network group termination; and a set

whose members are Network connection termination point bi-directionals, Network

trail termination point bi-directionals or Network group termination points. <p>

The componentListPackage is supported where the Sub-network Connection is made

up of a number of component Sub-network Connections, and Connections, within the

same layer.";;

@see [G.852.2,RESOURCE:sub-network connection]

*/

interface SubnetworkConnection: Pipe

{

value SubnetworkConnectionAttributesType: PipeAttributesType

{

SubnetworkConnectionIDType
compositePointer;

// conditional

// may be null

PipeIDListType

componentPointerList;

// conditional

MOIDType

relatedRoutingProfile;

// conditional

string

userLabel;

// conditional

};

/**

This attribute is used where the connectivity instance is a component of a

subnetwork connection within the same layer. Supported if the Sub-network

Connection is a component of another Sub-network Connection within the same

layer (partitioned sub-networks).

*/

SubnetworkConnectionIDType getCompositePointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(compositePointerPackage));

/**

This attribute is used where the subnetwork connection is made up of a number

of component subnetwork connections and link connections within the

same layer. Supported if the Sub-network Connection is made up of a number of

component Sub-network Connections, and Connections, within the same layer

(partitioned sub-networks).

*/

PipeIDListType getComponentPointerList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(componentPointerPackage));

/**

Supported if routing profiles are supported.

*/

MOIDType getRelatedRoutingProfile

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(relatedRoutingProfilePackage));

/**

Supported if a userLabel is supported.

*/

string getUserLabel

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

void setUserLabel

(in NameType name,

in string userLabel)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface SubnetworkConnection

/**

Assert "Not deletable" on the created object.

*/

interface SubnetworkConnection_Subnetwork_Factory:

ManagedObjectFactory

{

}; // interface SubnetworkConnection_Subnetwork_Factory

/*

This managed object represents the termination of a transport

entity, such as a trail or a connection. The characteristic information

attribute is used to identify equivalence between subclasses of

termination points in order to determine whether cross connection or

connectivity is possible. The operational state reflects the perceived

ability to generate and/or receive a valid signal. Subclasses of

termination point shall specify the attributes and states for which

attribute value change and state change notifications will be

generated.

Notifications emitted by objects supporting this interface:

AttributeValueChange, CommunicationsAlarm, ObjectCreation,

ObjectDeletion, StateChange.

TerminationPoint interface is not instantiable.

*/

interface TerminationPoint : ManagedObject

{

value TerminationPointAttributesType:

ManagedObjectAttributesType

{

MOIDListType

supportedByObjectList;

OperationalStateType
operationalState;

// conditional

CrossConnectionPointerType

crossConnectionPointer;

// conditional

CharacteristicInfoType
characteristicInfo;

// conditional

MOIDType

networkLevelPointer;

// conditional

CurrentProblemListType
currentProblemList;

// conditional

AlarmStatusType

alarmStatus;

// conditional

AlarmSeverityAssignmentProfileIDType

alarmSeverityAssignmentProfile;

// conditional

};

/**

The Supported By List identifies a set of object instances which are

capable of directly affecting a given managed object. The object

instances include both physical and logical objects. This attribute

does not force internal details to be specified, but only the necessary

level of detail required for management. If the object instances

supporting the managed object are unknown to that object, then this

attribute is an empty list.

*/

MOIDList getSupportedByObjectList

(in NameType name)

raises (ObjectFailure);

OperationalStateType getOperationalState

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(operationalStatePackage));

/**

This method returns a reference to the Cross-connection in which the

termination point is an endpoint. If the TP is not involved in a

connection, Null will be returned.

*/

CrossConnectionPointer getCrossConnectionPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(crossConnectionPointerPackage));

/**

Characteristic information is used to verify the connectability of

instances of the termination point subcalsses.

*/

CharacteristicInfoType getCharacteristicInfo

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(characteristicInformationPackage));

/**

The network level pointer identifies a network level object. The

value of the network level pointer shall only be modified by the

managing system.

*/

MOIDType getNetworkLevelPointer

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkLevelPackage));

void setNetworkLevelPointer

(in NameType name,

in MOIDType networkLevelPointer)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(networkLevelPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemListType getCurrentProblemList

(in NameType name)

raises (Objectfailure,

CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

AlarmStatusType getAlarmStatus

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

/* If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) managed

system assigns the severity or b) the value 'indeterminate' is used. */

AlarmSeverityAssignmentProfileIDType

(in NameType name)

getAlarmSeverityAssignmentProfile

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

void setAlarmSeverityAssignmentProfile

(in NameType name,

AlarmSeverityAssignmentProfileIDType profile)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributValueChange,

attributeValueChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationAlarmR1,

tmnCommunicationsAlarmInfomrationPackage);

}; // interface TerminationPoint

/**

Managed objects supporting the TopLink interface represent a link

in a client layer provided by one and only one server trail. <p>

The serverTrail attribute is a pointer to the trail in the server layer network

domain that supports this topological link. The serverTrail attribute may be

null if the trail in the server layer network domain that supports this

topological link is not assigned. <p>

The use made of the individual attributes and notifications is detailed below:

total link capacity: the total number of Link Connections or bandwidth

available [G.853.8,ATTRIBUTE:pamMaxProvisionableCapacity];

maximum link connection count: the maximum number of link connections

available on connection with flexible bandwidth management;

potential link capacity: the number of potential Link Connections or

potential bandwidth that could be provisioned

[G.853.8, ATTRIBUTE:pamPotentialLinkCapacity];

provisioned link capacity: the number of provisioned Link Connections or

the provisioned bandwidth

[G.853.8, ATTRIBUTE:pamProvisionedLinkCapacity];

provisioned link connection count: the number of link connections

assigned using flexible bandwidth management.

An attribute value change notification shall be emitted when the value of the

totalLinkCapacity, maximumLinkConnectionCount, potentialLinkCapacity,

provisionedLinkCapacity or provisionedLinkConnectionCount is changed.

@see [G.852.2,RESOURCE:topological link]

*/

interface TopLink : AbstractLink

{

value TopLinkAttributesType:

AbstractLinkAttributesType

{

DirectionalityType
directionality;

TrailIDType

serverTrail;

CapacityType

totalLinkCapacity;

// conditional

long

maximumLinkConnectionCount;

// conditional

CapacityType

potentialLinkCapacity;

// conditional

CapacityType

provisionedLinkCapacity;

// conditional

long

provisionedLinkConnectionCount;

// conditional

};

/**

*/

DirectionalityType getDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute pointers to a trail in the server layer that supports the

link in a client.

*/

TrailIDType getServerTrail

(in NameType name)

raises (ObjectFailure);

/**

This attribute indicates the total capacity of a link which may be the number

of link connections contained in a link of the total bandwidth available to

the link. Supported if pre-provisioned adaptation or link connection or link

management are supported by the transport technology.

*/

CapacityType getTotalLinkCapacity

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(totalLinkCapacityPackage));

/**

This attribute indicates the maximum number of link connections associated

with a link when flexible bandwidth allocation is supported.

*/

long getMaximumLinkConnectionCount

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(maximumLinkConnectionCountPackage));

/**

This attribute indicates the number of link connections or the amount of

bandwidth that has not yet been assigned to a link, but that could be

assigned to the link from the server trail. Supported if pre-provisioned

adaptation or link connection or link management are supported by the

transport technology.

*/

CapacityType getPotentialLinkCapacityPackage

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(potentialLinkCapacityPackage));

/**

This attribute indicates the number of link connections assigned to a link

or the amount of bandwidth assigned to a link. Supported if pre-provisioned

adaptation or link connection or link management are supported by the

transport technology.

*/

CapacityType getProvisionedLinkCapacity

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(provisionedLinkCapacityPackage));

/**

This attribute indicates the number of link connections assigned to that

link when flexible bandwidth allocation is supported.

*/

long getProvisionedLinkConnectionCount

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(provisionedLinkConnectionCountPackage));

/**

The following two actions provide the support for the management of the

capacity of a topological link. It specifies actions to assign and release

link connections and/or bandwidth to topological link.

*/

/**

This action adds capacity to a topological link by adding link connections

or increasing the available bandwidth. This action will return an

AddCapacityToTopLinkResult with a resultingLinkConnections field

containing a NULL value when dynamic bandwidth is being assigned.

ObjectFailure exception may contain parameter noSuchLink, insufficientCapacity,

invalidChannelsNumber, channelsAlreadyProvisioned, failureToCreateLCs,

failureToAssociateLCs, failureToSupportLCs, failureToIncreaseCapacity.

*/

void addCapacityToTopLink

(in NameType name,

in RequestedCapacityType requestedCapacity,

out CapacityType resultingCapacity,

out LinkConnectionIDListType resultingLinkConnection)

raises (ObjectFailure);

/**

This action removes capacity from the topological link by removing link

connections and/or bandwidth from the link.

ObjectFailure exception may contain parameter noSuchLink, insufficientCapacity,

invalidChannelsNumber, failureToRemoveLCs, failureToDecreaseCapacity.

*/

void removeCapacityFromTopLink

(in NameType name,

in RequestedCapacityType requestedCapacity,

out CapacityType resultingCapacity)

raises (ObjectFailure);

}; // interface TopLink

/**

The topological link managed object is either automatically created when the

trail in the server network layer domain that supports the link is created

or is created by an establishTopologicalLink or an

establishTopologicalLinkAndLinkEnds action.

The topological link managed object is deleted either by a

removeTopologicalLink or removeTopologicalLinkAndLinkEnds action or by

the deletion of the trail if the topologicalLink managed object had previously

been created automatically.

Assert "Not deletable" on the created object.

*/

interface TopLink_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface TopLink_LayerNetworkDomain_Factory

/**

Managed objects supporting the TopLinkEnd interface represent the

end of a topological link when viewed from the point's perspective. <p>

The Top Link End object is related to one and only one network TTP in

the server layer. <p>

The use made of the individual attributes and notifications is detailed below:

total link end capacity: the total number of network CTPs or the

bandwidth available [G.853.8,ATTRIBUTE: pamMaxProvisionableCapacity];

maximum network CTP count: the maximum number of network CTPs available

at the LinkEnd when using flexible bandwidth management;

potential link end capacity: the number of potential network CTPs or

potential bandwidth that could be provisioned

[G.853.8, ATTRIBUTE: pamPotentialLinkCapacity];

provisioned link end capacity: the number of provisioned network CTPs or

the provisioned bandwidth

[G.853.8, ATTRIBUTE: pamProvisionedLinkCapacity];

provisioned network CTP count: the number of network CTP assigned to the

link end when using flexible bandwidth management.

An attribute value change notification shall be emitted when the value of the

totalLinkEndCapacity, maximumNetworkCTPCount, potentialLinkEndCapacity,

provisionedLinkEndCapacity or provisionedNetworkCTPCount is changed.

@see [G.852.2,RESOURCE:topological link end]

*/

interface TopLinkEnd : AbstractLinkEnd

{

value TopLinkEndAttributesType:

AbstractLinkEndAttributesType

{

PointDirectionalityType
pointDirectionality;

NetworkTTPIDListType
serverTTPPointer;

PointCapacityType
totalLinkEndCapacity;

// conditional

long

maximumNetworkCTPCount;

// conditional

PointCapacityType
potentialLinkEndCapacity;

// conditional

PointCapacityType
provisionedLinkEndCapacity;

// conditional

long

provisionedNeworkCTPCount;

// conditional

};

/**

*/

PointDirectionalityType getPointDirectionality

(in NameType name)

raises (ObjectFailure);

/**

This attribute defines the TTP which may serve a CTP and/or linkEnd in another

layer. Usually a TTP or TTPs in a higher order layer will serve a CTP or CTPs

in a lower order layer.

*/

NetworkTTPIDListType getServerTTPPointer

(in NameType name)

raises (ObjectFailure);

/**

This attribute indicates the total capacity of a link end which is either

the total number of network CTPs associated with a link end or the total

bandwidth of the link end. Supported if pre-provisioned adaptation or

link connection or link management are supported by the transport technology.

*/

PointCapacityType getTotalLinkEndCapacity

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(totalLinkCapacityEndPackage));

/**

This attribute indicates the maximum number of networkCTPs associated

with a link end when flexible bandwidth allocation is supported.

*/

long getMaximumNetworkCTPCount

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(maximumNetworkCTPCountPackage));

/**

This attribute indicates the number of network CTP or the amount of

bandwidth that has not yet been assigned to a link end, but that could be

assigned to the link end from the server trail termination point.

Supported if pre-provisioned adaptation or link connection or link management

are supported by the transport technology.

*/

PointCapacityType getPotentialLinkEndCapacityPackage

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(potentialLinkEndCapacityPackage));

/**

This attribute indicates the number of network CTPs assigned to a link end

or the amount of bandwidth assigned to a link end. Supported if

pre-provisioned adaptation or link connection or link management are

supported by the transport technology.

*/

PointCapacityType getProvisionedLinkEndCapacity

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(provisionedLinkEndCapacityPackage));

/**

This attribute indicates the number of network CTPs associated with a

link end that have been assigned when flexible bandwidth allocation is

supported.

*/

long getProvisionedNetworkCTPCount

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(provisionedNetworkCTPCountPackage));

/**

The following two actions provide the support for the management of the

capacity of a topological link end. It specifies actions to assign and release

network CTPs and/or bandwidth to topological link end.

*/

/**

This action adds capacity to a topological link end by adding network CTPs

or by increasing the available bandwidth.

ObjectFailure exception may contain parameter noSuchLinkEnd,

insufficientCapacity, invalidChannelsNumber, channelsAlreadyProvisioned,

failureToCreateLCs, failureToAssociateLCs, failureToSupportLCs,

failureToIncreaseCapacity.

*/

void addCapacityToTopLinkEnd

(in NameType name,

in RequestedPointCapacityType requestedCapacity,

out PointCapacityType resultingCapacity,

out NetworkCTPIDListType resultingNetworkCTPList,

out PointCapacityType resultingProvisionedCapacity)

raises (ObjectFailure);

/**

This action removes capacity from a topological link end by removal of

network CTPs from the topological link end and/or by the removal of bandwidth.

This action will return a NULL value resultingLinkConnectionList when

dynamic bandwidth is being unassigned.

ObjectFailure exception may contain parameter noSuchLinkEnd,

insufficientCapacity, invalidChannelsNumber, failureToRemoveLC,

failureToDecreaseCapacity.

*/

void removeCapacityFromTopLinkEnd

(in NameType name,

in RequestedPointCapacityType requestedCapacity,

out PointCapacityType resultingCapacity,

out LinkConnectionIDListType

resultingLinkConnectionList)

raises (ObjectFailure);

}; // interface TopLinkEnd

/**

Assert "Not deletable" on the created object.

Where is GDMO name binding in M.3100 amd 1 ???

*/

interface TopLinkEnd_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface TopLinkEnd_LayerNetworkDomain_Factory

/**

Managed objects supporting the Trail interface in layer networks are

responsible for the integrity of transfer of characteristic information from

one or more other layer networks. <p>

A Trail is composed of two or more Network Trail Termination Points and one or

more Link Connection or Sub-network Connections, and associated Network

Connection Termination Points. <p>

A point to point unidirectional Trail can be established between a Network TTP

source or Network TTP bid; and a Network TTP sink or Network TTP bid. <p>

A point to point bi-directional Trail can be established between a Network TTP

bid; and a Network TTP bid. <p>

For all types of Trail, the termination point(s) pointed to by the A End

attribute is related to the network termination point(s) pointed to by the Z End

attribute in such a way that traffic can flow between the network termination

points represented by these managed objects in a unidirectional or

bi-directional manner as indicated by the directionality attribute. <p>

The layerConnectionList attribute, when present, lists the subnetwork

connections and link connections (in the same layer) which compose the trail..

This represents a single partitioned view of the decomposition of a trail into

its component subnetwork connections and link connections.

@see [G.852.2,RESOURCE:trail]

*/

interface Trail: Pipe

{

value TrailAttributesType: PipeAttributesType

{

PipeIDListType

connectionList;

// conditional

MOIDType

trafficDescriptor;

// conditional

TopLinkIDListType
clientLinkPointerList;

// conditional

LinkConnectionIDListType

clientLinkConnectionPointerList;

// conditional

};

/**

This attribute defines the list of Link Connections and subnetwork connections

in a given layer which may compose a Trail in the same layer. This composition

of connectivity instances may be a simple sequence or, in the multipoint

case a tree structure. Supported if there is a requirement to view the

sequence of subnetwork connections and link connections which make up the

trail in the same layer.

*/

PipeIDListType getConnectionList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(layerConnectionListPackage));

/**

This attribute contains the traffice descriptor of a trail. It is to be

used with flexible bandwidth allocation. Supported if flexible bandwidth

allocation is supported.

ObjectFailure exception may contain parameter

newServiceCharacteristicsExistsAlready, newTrafficDescriptorExistsAlready,

invalidServiceCharacteristicsRequested, invalidTrafficDescriptorRequested.

*/

MOIDType getTrafficDescriptor

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(trafficDescriptorPackage));

void setTrafficDescriptor

(in NameType name,

in MOIDType descriptor)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(trafficDescriptorPackage));

/**

This attribute is a set of pointers to the topological links that reflect

the capacity of a trail in the client layer network domain(s). Supported if

there is a requirement to view the link (s) in a higher layer which are

supported by this trail",

*/

TopLinkIDListType getClientLinkPointerList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(clientLinkPointerPackage));

/**

This attribute of a trail is a set of pointers to the link connections in

the client layer network domain(s) that are supported by the trail.

Supported ifthere is a requirement to view the link connection(s) in a

higher layer which are supported by this trail.

*/

LinkConnectionIDListType getClientLinkConnectionPointerList

(in NameType name)

raises (ObjectFailure,

CONDITIONAL_PACKAGE

(clientLinkConnectionPointerListPackage));

}; // interface Trail

/**

Assert "Not deletable" on the created object.

*/

interface Trail_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

}; // interface Trail_LayerNetworkDomain_Factory

/**

NOTIFICATIONS

*/

/**

This interface defines additional notifications. These notifications

are similar to those in module ITU_X721, but they include additional

information. <p>

Should we use the additional information parameter in the ITU_X721

Notifications instead of defining new notification operations? <p>

Also, in M.3100 all of these except for equipmentAlarmEffectOnService

contain two other parameters, logRecordID (integer) and correlatedRecordName

(object name). The first seems unnecessary since the CORBA log service

automatically assigns a record ID to each log record. The second also

doesn't seem necessary since the notification structures all have fields

identifying correlated notifications. In addition, it looks like in the

CORBA logging service log records will not be objects and hence won't have

names bound to them.

*/

interface Notifications

{

/**

A Communications Alarm notification is used to report when an object

detects a communications error. This notification is different from the

notification defined in the ITU_X721 module because it includes the

suspect object list parameter.

@param alarmInfo

structure containing the alarm info

@param suspectObjectList
object(s) that are likely the root cause of

the alarm

*/

oneway void communicationsAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectListType suspectObjectList);

/**

An Environmental Alarm notification is used to report a problem in

the environment. This notification is different from the notification

defined in the ITU_X721 module because it includes the suspect object

list parameter.

@param alarmInfo

structure containing the alarm info

@param suspectObjectList
object(s) that are likely the root cause of

the alarm

*/

oneway void environmentalAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectListType suspectObjectList);

/**

An Equipment Alarm notification is used to report a failure in the

equipment. This notification is different from the notification defined

in the ITU_X721 module because it includes the suspect object list

parameter.

@param alarmInfo

structure containing the alarm info

@param suspectObjectList
object(s) that are likely the root cause of

the alarm

*/

oneway void equipmentAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectListType suspectObjectList);

/**

An Equipment Alarm notification is used to report a failure in the

equipment. This notification is different from the notification defined

in the ITU_X721 module because it includes the "alarm effect on service"

parameter.

@param alarmInfo

structure containing the alarm info

@param alarmEffectOnService
true if alarmed condition is service affecting

*/

oneway void equipmentAlarmEffectOnService

(in AlarmInfoType alarmInfo,

in boolean alarmEffectOnService);

/**

A Processing Error Alarm notification is used to report processing

failure in a managed object. This notification is different from the

notification defined in the ITU_X721 module because it includes the

suspect object list parameter.

@param alarmInfo

structure containing the alarm info

@param suspectObjectList
object(s) that are likely the root cause of

the alarm

*/

oneway void processingErrorAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectListType suspectObjectList);

}; // interface Notifications

}; // module ITU_M3100

#endif // _ITU_M3100_IDL_

Appendix B – Generic Information Model Constants

#ifndef _ITU_M3100CONST_IDL_

#define _ITU_M3100CONST_IDL_

#include <Naming.idl>

#include <itu_x721.idl>

/**

This module contains IDL interface definition based on objects defined in

M.3100 (as well as one, System, from X.721). The IDL definitions in this

file are only constant values used within this module. The objects from

M.3100 are in the separate files, but included in the "ITU_M3100" module.

*/

module ITU_M3100

{

const string moduleName = "ITU_M3100";

/**

CONSTANTS

*/

/**

This module contains constant values identifying information

elements included in the Additional Information parameters of

notifications.

*/

module AdditionalInformationConst

{

const string moduleName =

"ITU_M3100::AdditionalInformationConst";

const short alarmEffectOnService = 1;

const short suspectObjectList = 2;

const short userLabel = 3;

}; // module AdditionalInformationConst

/**

This module contains the constant values defined for the

CharacteristicInfo UID. These values were borrowed from M.3100.

*/

module CharacteristicInfoConst

{

const string moduleName =

"ITU_M3100::CharacteristicInfoConst";

/**

opticalSPITTP* object instances with stmLevel attribute = 1

*/

const short opticalSTM1SPICI = 1;

/**

opticalSPITTP* object instances with stmLevel attribute = 4

*/

const short opticalSTM4SPICI = 2;

/**

opticalSPITTP* object instances with stmLevel attribute = 16

*/

const short opticalSTM16SPICI = 3;

/**

electricalSPITTP* object instances with stmLevel attribute = 1

*/

const short electricalSTM1SPICI = 4;

/**

rsCTP* object instances with stmLevel attribute = 1

*/

const short rsSTM1SPICI = 5;

/**

rsCTP* object instances with stmLevel attribute = 4

*/

const short rsSTM4SPICI = 6;

/**

rsCTP* object instances with stmLevel attribute = 16

*/

const short rsSTM16SPICI = 7;

/**

msCTP* object instances with stmLevel attribute = 1

*/

const short msSTM1SPICI = 8;

/**

msCTP* object instances with stmLevel attribute = 4

*/

const short msSTM4SPICI = 9;

/**

msCTP* object instances with stmLevel attribute = 16

*/

const short msSTM16SPICI = 10;

const short au3TU3VC3CI = 11;

const short au4VC4CI = 12;

const short tu11VC11CI = 13;

const short tu12VC12CI = 14;

const short tu2VC2CI = 15;

const short tu12VC11CI = 16;

const short vpCI = 17;

const short vcCI = 18;

const short e0CI = 19;

const short e1CI = 20;

const short e2CI = 21;

const short e3CI = 22;

const short e4CI = 23;

}; // moduel CharacteristicInfoConst

/**

This module contains the constant values defined for the General

Error Cause UID. The values were borrowed from the M.3100 corrigendum

General Error Cause type definition.

*/

module GeneralErrorCauseConst

{

const string moduleName =

"ITU_M3100::GeneralErrorCauseConst";

/**

ObjectInIncompatibleState is used to specify that the object

is in a state provided.

*/

const short objectInIncompatibleState = 1;

/**

NoValidRelatedObject is used to specify related objects that

do not exist in the MIB.

*/

const short noValidRelatedObject = 2;

/**

InvolvedInOffering is used to identify object(s) that are

already involved in a conflicting service offering.

*/

const short involvedInOffering = 3;

/**

ServiceNotSupported is used to indicate that the operation is

attempting to initiate a service that is not supported by the

equipment.

*/

const short serviceNotSupported = 4;

/**

ProvisioningOrderConflict is used to identify that a service

is being provisioned in an order that is not supported by the

equipment.

*/

const short provisioningOrderConflict = 5;

/**

EquipmentFailure is used to indicate that an equipment failure

as occured during the operation.

*/

const short equipmentFailure = 6;

/**

MaxNumberExceeded is used to indicate that requested create

operation cannot be completed as the maximum number of instances

are reached.

*/

const short maxNumberExceeded = 7;

/**

ContainedObjects is used to indicate that requested delete

operation cannot be completed as there are contained instances.

*/

const short containedObjects = 8;

}; // module GeneralErrorCauseConst

/**

This module contains the registered values for parameters

defined in M.3100.

*/

module ParameterConst

{

const string moduleName =

"ITU_M3100::ParameterConst";

/**

The alarmEffectOnServiceParameter is a parameter to be included as an

element of a set in AdditionalInformation parameter of the AlarmInfo

defined in X.721. The alarmEffectOnServiceParameter indicates whether

the service is affected by the alarm.

Since context of alarmEffectOnServiceParameter is EVENT-INFO, it will

be handled by specific notification which include this parameter.

const short alarmEffectOnService = 1;

*/

/**

If the maximum number of instances of the object class exist within the

superior (containing) managed object, attempts to create additional

instances will result in the CMIP processing failure error.

The syntax of the any in AdditionalInformationList of ObjectFailure exception

is an integer defined by createError. The value of the integer indicates the

number of instances that are currently contained in the superior object.

*/

const short createError = 2;

/**

General Error Parameter are a way of reporting detailed information on

errors that have occurred. This is a capability that is added to M.3100 in

it's 7/98 corrigendum. To prevent the need to re-register many object

interfaces, the corrigendum proposed it's use quite sparingly, mainly only

in name bindings where it only applies to object creations and deletions. It

may make sense to use it more liberally in this interface specification. <p>

The places the corrigendum does mention that are not reflected here are the

delete operations for the following objects: circuit pack (under equipment

holder) cross-connection (under fabric), equipment (under managed element and

equipment) EFD (under managed element), and fabric (under managed element).

Also, the corrigendum proposes it be sent back on a failed create operation

for EFDs (under managed element). Since CORBA implementations will likely use

an off-the-shelf notification service, including notification channels,

getting this behavior on notification channel creation will be difficult.

The delete operation on the Managed Object interface could be updated to throw

this exception, making it available to the other objects listed above.

Unfortunately, CORBA IDL does not allow these objects to overload the delete

operation inherited from ManagedObject to include this exception.

@param GeneralErrorList
the list of problems encountered.

The syntax of the any in AdditionalInformationList of ObjectFailure exception

is an GeneralErrorListType defined by generalError.

*/

const short generalError = 3;

/**

ResetErrorType

*/

const short circuitPackResetError = 4;

/**

ServiceAffectingErrorType

*/

const short serviceAffectedError = 5;

const short boundSubnetwork = 6;

/**

ChannelListType

*/

const short channelsAlreadyProvisioned = 7;

const short failureToAddLinkConnections = 8;

const short failureToAddNetworkCTPs = 9;

const short failureToAssociateLCs = 10;

const short failureToAssociateNetworkTTP = 11;

const short failureToDeassignLinkConnection = 12;

const short failureToDeassignNetworkCTP = 13;

/**

CapacitiesType

*/

const short failureToDecreaseCapacity = 14;

/**

CapacitiesType

*/

const short failureToIncreaseCapacity = 15;

const short failureToRemoveLC = 16;

const short failureToBindLink = 17;

const short failureToBindLinkEnd = 18;

const short failureToBindTopologicalLink = 19;

const short failureToCreateAccessGroup = 20;

const short failureToCreateLink = 21;

const short failureToCreateLCs = 22;

const short failureToCreateLinkEnd = 23;

const short failureToCreateNetworkTTP = 24;

const short failureToCreateSubnetwork = 25;

const short failureToDisassociateNetworkTTP = 26;

const short failureToRemoveAccessGroup = 27;

const short failureToRemoveNetworkCTPs = 28;

const short failureToRemoveNetworkTTP = 29;

const short failureToRemoveSubnetwork = 30;

const short failureToSetDirectionality = 31;

const short failureToSetLinkConnectionCallerId = 32;

const short failureToSetNetworkCTPCallerId = 33;

const short failureToSetUserIdentifier = 34;

const short failureToSupportLCs = 35;

const short inconsistentDirectionality = 36;

const short inconsistentSignalIdentification = 37;

/**

CapacitiesType

*/

const short insufficientCapacity = 38;

/**

ChannelListType

*/

const short invalidChannelsNumber = 39;

/**

MOIDType

*/

const short invalidLinkConnection = 40;

/**

MOIDType

*/

const short invalidNetworkCTP = 41;

const short invalidServiceCharacteristicsRequested = 42;

const short invalidTPType = 43;

const short invalidTrafficDescriptorRequested = 44;

/**

MOIDType

*/

const short linkConnectionAlreadyAssigned = 45;

/**

MOIDListType

*/

const short linkEndAndNetworkCTPNotCompatible = 46;

/**

MOIDListType

*/

const short linkAndLinkConnectionNotCompatible = 47;

/**

MOIDType

*/

const short networkCTPAlreadyAssigned = 48;

const short networkTTPAndAccessGroupNotCompatible = 49;

const short networkTTPAndSubnetworkNotCompatible = 50;

/**

MOIDType

*/

const short networkTTPAssociatedWithAccessGroup = 51;

/**

MOIDType

*/

const short networkTTPAssociatedWithSubnetwork = 52;

const short networkTTPsExisting = 53;

/**

MOIDType

*/

const short networkTTPTerminatesTrail = 54;

/**

SignalIDType

*/

const short newServiceCharacteristicsExistsAlready = 55;

/**

SignalIDType

*/

const short newTrafficDescriptorExistsAlready = 56;

const short noLinkCapacity = 57;

const short noLinkEndCapacity = 58;

/**

MOIDType

*/

const short noSuchLink = 59;

/**

MOIDType

*/

const short noSuchLinkEnd = 60;

/**

MOIDType

*/

const short notAssignedToCaller = 61;

/**

long

*/

const short notEnoughLinkConnections = 62;

/**

long

*/

const short notEnoughNetworkCTPs = 63;

const short SubnetworkInUse = 64;

}; // module ParameterConst

/**

This module contains the constant values defined for the

ProbableCause UID. These values were borrowed from M.3100.

*/

module ProbableCauseConst

{

const string moduleName =

"ITU_M3100::ProbableCauseConst";

const short indeterminate = 0;

/**

The following are used with communications alarms.

*/

const short aIS = 1 ;

const short callSetUpFailure = 2;

const short degradedSignal = 3;

const short farEndReceiverFailure = 4;

const short framingError = 5;

const short lossOfFrame = 6;

const short lossOfPointer = 7;

const short lossOfSignal = 8;

const short payloadTypeMismatch = 9;

const short transmissionError = 10;

const short remoteAlarmInterface = 11;

const short excessiveBER = 12;

const short pathTraceMismatch = 13;

const short unavailable = 14;

const short signalLabelMismatch = 15;

const short lossOfMultiFrame = 16;

const short receiveFailure = 17;

const short transmitFailure = 18;

const short modulationFailure = 19;

const short demodulationFailure = 20;

const short broadcastChannelFailure = 21;

const short connectionEstablishmentError = 22;

const short invalidMessageReceived = 23;

const short localNodeTransmissionError = 24;

const short remoteNodeTransmissionError = 25;

const short routingFailure = 26;

/**

Values 27-50 are reserved for communications alarm related

probable causes

*/

/**

The following are used with equipment alarms.

*/

const short backplaneFailure = 51;

const short dataSetProblem = 52;

const short equipmentIdentifierDuplication = 53;

const short externalIFDeviceProblem = 54;

const short lineCardProblem = 55;

const short multiplexerProblem = 56;

const short nEIdentifierDuplication = 57;

const short powerProblem = 58;

const short processorProblem = 59;

const short protectionPathFailure = 60;

const short receiverFailure = 61;

const short replaceableUnitMissing = 62;

const short replaceableUnitTypeMismatch = 63;

const short synchronizationSourceMismatch = 64;

const short terminalProblem = 65;

const short timingProblem = 66;

const short transmitterFailure = 67;

const short trunkCardProblem = 68;

const short replaceableUnitProblem = 69;

/**

an equipment alarm to be issued if the system detects that the

real time clock has failed.

*/

const short realTimeClockFailure = 70;

const short antennaFailure = 71;

const short batteryChargingFailure = 72;

const short diskFailure = 73;

const short frequencyHoppingFailure = 74;

const short iODeviceError = 75;

const short lossOfSynchronisation = 76;

const short lossOfRedundancy = 77;

const short powerSupplyFailure = 78;

const short signalQualityEvaluationFailure = 79;

const short tranceiverFailure = 80;

/**

Values 81-100 are reserved for equipment alarm related

probable causes.

*/

/**

The following are used with environmental alarms.

*/

const short airCompressorFailure = 101;

const short airConditioningFailure = 102;

const short airDryerFailure = 103;

const short batteryDischarging = 104;

const short batteryFailure = 105;

const short commercialPowerFailure = 106;

const short coolingFanFailure = 107;

const short engineFailure = 108;

const short fireDetectorFailure = 109;

const short fuseFailure = 110;

const short generatorFailure = 111;

const short lowBatteryThreshold = 112;

const short pumpFailure = 113;

const short rectifierFailure = 114;

const short rectifierHighVoltage = 115;

const short rectifierLowFVoltage = 116;

const short ventilationsSystemFailure = 117;

const short enclosureDoorOpen = 118;

const short explosiveGas = 119;

const short fire = 120;

const short flood = 121;

const short highHumidity = 122;

const short highTemperature = 123;

const short highWind = 124;

const short iceBuildUp = 125;

const short intrusionDetection = 126;

const short lowFuel = 127;

const short lowHumidity = 128;

const short lowCablePressure = 129;

const short lowTemperature = 130;

const short lowWater = 131;

const short smoke = 132;

const short toxicGas = 133;

const short coolingSystemFailure = 134;

const short externalEquipmentFailure = 135;

const short externalPointFailure = 136;

/**

Values 137-150 are reserved for environmental alarm related

probable causes.

*/

/**

The following are used with Processing error alarms.

*/

const short storageCapacityProblem = 151;

const short memoryMismatch = 152;

const short corruptData = 153;

const short outOfCPUCycles = 154;

const short sfwrEnvironmentProblem = 155;

const short sfwrDownloadFailure = 156;

/**

A processing error alarm to be issued if the system detects

that it has lost the time in the real time clock but the clock

itself is working. This could happen e.g. during a power cut in a

small NE which does not have battery backup for the real time

clock.

*/

const short lossOfRealTime = 157;

/**

A processing error alarm to be issued after the system has

reinitialised. This will indicate to the management systems that

the view they have of the managed system may no longer be valid.

Usage example: The managed system issues this alarm after a

reinitialization with severity warning to inform the management

system about the event. No clearing notification will be sent.

*/

const short reinitialized = 158;

const short applicationSubsystemFailure = 159;

const short configurationOrCustomisationError = 160;

const short databaseInconsistency = 161;

const short fileError = 162;

const short outOfMemory = 163;

const short softwareError = 164;

const short timeoutExpired = 165;

const short underlayingResourceUnavailable = 166;

const short versionMismatch = 167;

/**

Values 168-200 are reserved for processing error alarm related probable

causes.

*/

const short bandwidthReduced = 201;

const short congestion = 202;

const short excessiveErrorRate = 203;

const short excessiveResponseTime = 204;

const short excessiveRetransmissionRate = 205;

const short reducedLoggingCapability = 206;

const short systemResourcesOverload = 207;

}; // moduel ProbableCauseConst

/**

This module contains the constant values defined for the

ProblemCause UID. These values were borrowed from M.3100.

*/

module ProblemCauseConst

{

const string moduleName =

"ITU_M3100::ProblemCauseConst";

/**

An additional value, unknown = -1, that is not in M.3100 was

added here because M.3100 defines problem cause as a choice

between an integer (as above) or null, for unknown. Instead of

the null choice, unknown problems will be represented by an

integer value of -1. Since UID values are signed short, -1 is

acceptable.

*/

const short unknown = -1;

const short noSuchTpInstance = 0;

const short noSuchGtpInstance = 1;

const short noSuchTpPoolInstance = 2;

const short mismatchingTpInstance = 3;

const short mismatchingGtpInstance = 4;

const short partOfGtp = 5;

const short involvedInCrossConnection = 6;

const short memberOfTpPool = 7;

const short alreadyMemberOfGtp = 8;

const short noTpInTpPool = 9;

const short noMoreThanOneTpIsAllowed = 10;

const short noMoreThanTwoTpsAreAllowed = 11;

/**

alreadyConnected is used to indicate the two termination

points requested to be cross-connected are already cross-connected

versus involvedInCrossConnection is used to indicate one or more

termination points are cross-connected but not to each other.

*/

const short alreadyConnected = 12;

const short notAlreadyConnected = 13;

}; // moduel ProblemCauseConst

}; // module ITU_M3100

#endif // _ITU_M3100CONST_IDL_

PAGE 2

