

[bookmark: _Toc270548527]3GPPSA5-TM Forum Model Alignment meetings 	S5vTMFa203

Source:	Editor (Ericsson)
Title:	Model Repertoire (for Converged Management of Fixed/Mobile Networks)
Document for:	Approval
1.   	Decision/action requested
This V1.3 is output of 3GPPSA5-TM Forum Model alignment F2F Nanjing meeting, October 17-19, 2011. The YELLOWED text needs revision.
2. 	References
None
3.		Current status
The following is a stand alone document that captures the current status and agreement of the characteristics of the Model Repertoire discussed in the Joint 3GPP/TM Forum model alignment project.

Converged Management of Fixed/Mobile Networks – 
Model Repertoire Version 1.32
Source: Joint 3GPP/TM Forum model alignmentalignement projectProject
Editor: Edwin Tse (Ericsson)
Disclaimer: Final agreement on this document cannot occur until “Governance / Terms of Reference / Working Procedures” agreements between the involved organizations (including 3GPP & TM Forum) have been established.


[bookmark: page1]Table of Contents
1	Scope	5
2	References	5
3	Definitions and abbreviations	6
3.1	Definitions	6
3.2	Abbreviations	6
4	Requirements	6
5	Model Elements and Notations	7
5.1	General	7
5.2	Basic model elements	7
5.2.1	Attribute	7
5.1.2	Association relationship	9
5.1.3	Aggregation association relationship	10
5.1.4	Composite aggregation association relationship	10
5.1.5	Generalization relationship	11
5.1.6	Dependency relationship	11
5.1.7	Comment	12
5.1.8	Multiplicity, a.k.a. cardinality in relationships	12
5.1.9	Role	13
5.1.10	Xor constraint	13
5.3	Stereotype	14
5.3.1	<<ProxyClass>>	14
5.3.2	<<InformationObjectClass>>	15
5.3.3	<<names>>	15
5.3.4	<<dataType>>	16
5.3.5	<<enumeration>>	17
5.4	Others	18
5.4.1	Association class	18
5.4.2	Abstract class	19
5.4.3	Predefined data types	19
6	Qualifier	20
7	Design patterns	20
7.1	Use of association class	20
7.2	Use of “intervening class”	20
7.3	Use of “ExternalXyz class”	20
Annex A (informative): Examples of using <<ProxyClass>> to model Link related IOCs	21
A.1	First Example	21
A.2	Second Example	22
1        Scope	5
2	References	5
3	Definitions and abbreviations	6
3.1	Definitions	6
3.2	Abbreviations	6
4	Requirements	6
5	Model Elements and Notations	7
5.1	Basic model elements	7
5.1.1	Attribute	7
5.1.2	Aggregation relationship	8
5.1.3	Association relationship	8
5.1.4	Generalization relationship	9
5.1.5	Dependency relationship	10
5.1.6	Comment	10
5.1.7	Multiplicity, a.k.a. cardinality used in relationship	10
5.1.8	Rolename	11
5.1.9	Xor constraint	11
5.2	Stereotype	12
5.2.1	<<ProxyClass>>	12
5.2.2	<<InformationObjectClass>>	13
5.2.3	<<names>>	13
5.2.4	<<dataType>>	14
5.2.5	<<enumeration>>	15
5.3	Others	16
5.3.1	Association class	16
5.3.2	Abstract class	17
5.3.3	Predefined data type	17
6.	Qualifier	17
A.1	First Example	19
A.2	Second Example	20
[bookmark: copyrightaddon]


Table of Figures
Figure 1: Attribute notation	8
Figure 2: Bidirectional association relationship notation	9
Figure 3: Unidirectional association relationship notation	9
Figure 4: Non-navigational association relationship notation	9
Figure 5: Aggregation association relationship notation	10
Figure 6: Composite aggregation association relationship notation	10
Figure 7: Generalization relationship notation	11
Figure 8: Dependency relationship notation	11
Figure 9: Comment notation	12
Figure 10: Cardinality notation	12
Figure 11: Role notation	13
Figure 12: {xor} notation	13
Figure 13: <<ProxyClass>> notation	14
Figure 14: <<InformationObjectClass>> notation	15
Figure 15: <<names>> notation	15
Figure 16: <<dataType>> notations	16
Figure 17: Usage example of <<dataType>>	16
Figure 18: <<enumeration>> notation	17
Figure 19: Association class notation	18
Figure 20: Abstract class notation	18
Figure 21: <<ProxyClass>> Notation Example A.1	20
Figure 22: <<ProxyClass>> Notation Example A.2	21
Figure 1: Attribute notation	7
Figure 2: Aggregation relationship notation	8
Figure 3: Bidirectional association and name notation	9
Figure 4: Non navigational association and name notation	9
Figure 5: Unidirectional association and name notation	9
Figure 6: Generalization relationship notation	9
Figure 7: Dependency relationship notation	10
Figure 8: Comment notation	10
Figure 9: Cardinality notation	11
Figure 10: Rolename notation	11
Figure 11: {xor} notation	12
Figure 12: <<ProxyClass>> notation	13
Figure 13: <<InformationObjectClass>> notation	13
Figure 14: <<names>> notation	14
Figure 15: <<dataType>> notations	14
Figure 16: Usage example of <<dataType>>	15
Figure 17: <<enumeration>> notation	15
Figure 18: Association class notation	16
Figure 19: Abstract class notation	17
Figure 20: <<ProxyClass>> Notation Example A.1	19
Figure 21: <<ProxyClass>> Notation Example A.2	20



Tables
Table 1: UML defined data types	19
Table 2: Non-UML defined data types	19



1 [bookmark: _Toc303068539][bookmark: _Toc308540957]1        Scope
The JWG on Model Alignment work has chosen UML to capture behaviour of systems/entities under management.
UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations and model elements is not necessary for the purpose of JWG Model Alignment work. This paper documents the necessary and sufficient set of UML notations and model elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by JWG Model Alignment work. Collectively, this set of notations and model elements is called the FNM (developed by the Converged Management of Fixed/Mobile Networks project) modelling repertoire.
JWG Model Alignment specifications shall employ the UML notation and model elements of this repertoire.  In the course of the JWG Model Alignment work, JWG Model Alignment group may modify (add, delete, modify) UML notation and model elements of this repertoire when necessary.
2 [bookmark: _Toc303068540][bookmark: _Toc308540958]2	References
[1]	OMG Unified Modelling Language (OMG UML), Infrastructure, Version 2.3. 
[2]	OMG Unified Modelling Language (OMG UML), Superstructure, Version 2.3. 
[3]	3GPP TS 32.300: 3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Telecommunication management; Configuration Management (CM); Name convention for Managed Objects.
[4]	3GPP TS 23.002: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network architecture.

3 [bookmark: _Toc303068541][bookmark: _Toc308540959]
3	Definitions and abbreviations
3.1 [bookmark: _Toc303068542][bookmark: _Toc308540960]3.1	Definitions
Distinguished Name: See 3GPP TS 32.300 [3].
Naming attribute: See 3GPP TS 32.300 [3]. 
Lower Camel Case: It is the practice of writing compound words in which the words are joined without spaces. Initial letter of all except the first word shall be capitalized.  A word can be represented in abbreviated form. The abbreviation must be documented.  Examples: ‘mNIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor details” respectively.  
Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised.  Examples: ‘MNIdentity’ and ‘MinorDetails’ are the UCC for “managed node identity” and “minor details” respectively.  

3.2 [bookmark: _Toc303068543][bookmark: _Toc308540961]3.2	Abbreviations
CM				Configuration Management
DN	Distinguished Name
FNM	Federated Network Model 
IOC	Information Object Class
IRP	Integration Reference Point
JWG	(3GPP/TM Forum) Joint Working Group
LCC	Lower Camel Case
NRM	Network Resource Model
OMG	Object Management Group
UCC	Upper Camel Case
UML	Unified Modelling Language (OMG)
4 [bookmark: _Toc303068544][bookmark: _Toc308540962]4	Requirements
The UML notations and model elements captured in this repertoire shall be used to model behaviours of the systems/entities specified by the JWG Model Alignment work such as the Umbrella model of the FNM discussed in Converged Management of Fixed/Mobile Network project.
[bookmark: historyclause]

5 [bookmark: _Toc303068545][bookmark: _Toc308540963]5	Model Elements and Notations
5.1 [bookmark: _Toc308540964][bookmark: _Toc303068546][bookmark: _Ref305663813][bookmark: _Ref305669083]General
Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.
The examples used in this document are for illustration purposes only and may or may not exist in specifications.
UML properties not described in this document shall not be used in specifications based on this repertoire.
5.2 [bookmark: _Ref305747462][bookmark: _Toc308540965]5.1	Basic model elements
UML has defined a number of basic model elements. This sub-clause lists the selected subset selected for use in specifications based on thise repertoire. The semantics of these selected basic model elements are defined in [1].

For each basic model elements listed, there are three parts.  The first part containsis its description. The second part containsis its graphical notation examples and the third part containsis the rule, if any, recommended for labelling or naming it.
Note that tThe graphical notation has the following characteristics:
1. Each one is used to represent a particular basic model element as described.  Although it is a valid representation of the basic model element, it is not a valid representation of a UML model. 
2. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations" and "Additional compartments may be supplied to show other details…" This repertoire only allows the use of the name (top) and attribute (middle) compartments. The operation (bottom) compartment may be present but is always empty, as shown in figure below.

3. Classes may or may not have attributes. The graphical notation of a UML Class may show an empty operation compartment (i.e. the third compartment). See the graphical notation of 5.1.1 has an empty third compartment.
4. The graphical notation of a UML Cclass may show an empty attribute (middle) compartment (i.e. the second compartment)even if the class has attributes, as shown in figure below..
 See the graphical notation of 5.1.2 has an empty second compartment.
5. The attribute compartment shall show all attributes of the classes involved in an inheritance relationship.
6. 
7. [bookmark: _Ref305663716]The visibility symbol shall not(see the graphical symbol of 5.1.1) may appear along with the class attribute, as shown below.  If so, ignore it.  Visibility concept, as property of a model element, is not used in Repertoire.

5.2.1 The examples used in this document are for illustration purposes and may or may not exist in specifications.
5.2.2 [bookmark: _Toc303068547][bookmark: _Ref305667316][bookmark: _Ref305670301][bookmark: _Ref305670555][bookmark: _Toc308540967]5.1.1	Attribute 
5.2.2.1 [bookmark: _Toc303068548][bookmark: _Ref305749510]5.1.1.1	Description
It is a typed element representing a property of a class.  See 10.2.5 Property of [1].  
An element that is typed implies that the element can only refer to a constrained set of values. 
See 10.1.4 Type of [1] for more information on type.  
See 5.3.45.2.3 and 5.4.35.3.3 for predefined data types and user-defined data types that can apply type information to an element.  
[bookmark: _Toc303068549]Attributes shall have the following properties:	Comment by Bernd: To be decided if similar details should also be added to the other UML artefacts.
· Attribute Documentation
Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
· Ordered
For a multi-valued multiplicity; this specifies whether the values in an instantiation of this attribute are sequentially ordered. (See section 7.3.44 and its Table 7.1 of [2])
Legal values: true, false; default value =  false.
· Unique
For a multi-valued multiplicity, this specifies whether the values in an instantiation of this attribute are unique (i.e., no duplicate attribute values are allowed). (See section 7.3.44 and its Table 7.1 of [2])
Legal values: true, false; default value = true.
· Read Only
If true, the attribute can only be read, and not written by the manager; default value is false. (See section ?? of [?]).	Comment by Bernd_111017: May be we need write property also.
· Type
Refers to a predefined or user defined data type. (See section ?? of [?]).
· Default Value
Provides the value that the attribute has to start with in case the value is not provided during creation or already defined because of a system state. (See section ?? of [?]).
· Multiplicity
Defines the number of values the attribute can simultaneously have. (See section ?? of [?]).
· Invariant
Identifies whether the value of the attribute can be changed; default value is false.	Comment by Bernd_111017: Invariant for manager or agent

May need an other name since UML uses this term differently
· Value Range
Identifies the allowed values the attribute can have. (See section ?? of [?]).
· Attribute Notifications
Identifies whether a notification has to be sent in case of a value change.
· Support Qualifier
Legal values: optional, mandatory, conditionalMandatory, conditionalOptional, conditional; default value =  mandatory.
5.2.2.2 
5.2.2.3 
5.2.2.4 5.1.1.2	Example
This example shows three attributes, i.e., a, b and c, listed in the attribute (the second) compartment of the class Xyz.

[bookmark: _Toc308514531]Figure 1: Attribute notation
5.2.2.5 [bookmark: _Toc303068550][bookmark: _Ref305667506]5.1.1.3	Name style
An attribute has a name shall use. the  The Lower Camel Case (LCC) style.shall be used for it.
5.1.2 [bookmark: _Toc302902217][bookmark: _Toc302902909][bookmark: _Toc302902976][bookmark: _Toc302903071][bookmark: _Toc302903156][bookmark: _Toc302903308][bookmark: _Toc302903390][bookmark: _Toc302903472][bookmark: _Toc302903645][bookmark: _Toc302903727][bookmark: _Toc302918657][bookmark: _Toc303068466][bookmark: _Toc303068551][bookmark: _Toc303068673][bookmark: _Toc303068786][bookmark: _Toc303068552]Aggregation relationship
5.1.3 [bookmark: _Toc303068553]Description
5.1.4 It shows a class as a part of or subordinate to another class.
5.1.5 [bookmark: _Toc308514315][bookmark: _Toc308540971]An aggregation is a special type of association in which objects are assembled or configured together to create a more complex object.  Aggregation protects the integrity of an assembly of objects by defining a single point of control called aggregate, in the object that represents the assembly.
5.1.6 See 7.3.2 AggregationKind (from Kernel) of [2].
5.1.7 [bookmark: _Toc303068554]5.1.2.2	Example
5.1.8 This example shows a hollow diamond attached to the end of a path to indicate aggregation. The diamond is attached to the class that is the aggregate.  Aggregation association shall have a name (see 5.1.2.3) and shall have indication of cardinality (see 5.1.7).
5.1.9 
5.1.10 Figure  SEQ Figure \* ARABIC 2: Aggregation relationship notation
5.1.11 [bookmark: _Toc303068555]5.1.2.3	Name style
5.1.12 An aggregation association name shall use the LCC style.
5.1.13 [bookmark: _Toc303068556][bookmark: _Ref308535726][bookmark: _Toc308540979]5.1.3	Association relationship 
5.1.13.1 [bookmark: _Toc303068557]5.1.3.1	Description
It shows a relationship between two classes and describes the reasons for the relationship and the rules that might govern that relationship.
It has a name.  It has ends.  Its end, the association end(s), specifies the role that the object at one end of a relationship performs.  Each end of a relationship has properties that specify the role (see 5.1.95.1.8), multiplicity (see 5.1.85.1.7), visibility and navigability (see the arrow symbol used in 5.1.2.25.1.3.2) and may have constraints. Note that visibility would not be used (see bullet 44 of 5.15.1).
 
See 7.3.3 Association of [2].
These tThree examples below show a binary association between two model elements. The association can include the possibility of relating a model element to itself. 
The first example (Figure 2Figure 3) shows a bi-directional navigational association in that each model element has a pointer to the other. The second example (Figure 3) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer to the target model element and not vice-versa. The thirdsecond example (Figure 4Figure 4) shows a bi-directional non-navigational association in that each model element does not have a pointer to the other; i.e., such associations are just illustrative. The third example (Figure 5) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer the target model element and not vice-versa.
5.1.13.2 [bookmark: _Toc303068558][bookmark: _Ref305663593]5.1.3.2	Example
An association shall have an name (see 5.1.4.3), shall have indication of cardinality (not shown in the examples below; see 5.1.85.1.7) and shall, except the case of non-navigational association, have an indication of the role name (see 5.1.95.1.8).
The model element involved in an association is said to be “playing a role” in that association. The Rrole has a name such as +theAClass inof the examples below.  See 5.1.95.1.8. Note that the "+" character in front of the role name, indicating the visibility, is ignored.

[bookmark: _Ref305663890][bookmark: _Toc308514533]Figure : Bidirectional association relationship notation

[bookmark: _Ref308362207][bookmark: _Ref308362068][bookmark: _Toc308514534]Figure 3: Unidirectional association relationship notation


[bookmark: _Ref305663920][bookmark: _Toc308514535]Figure : Non- navigational association relationship notation
Note that some tools do not use arrows in the UML graphical representation for bidirectional associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a non-navigational association.
5.1.13.3 
5.1.13.4 
5.1.13.5 [bookmark: _Ref305663974]Figure  SEQ Figure \* ARABIC 5: Unidirectional association relationship notation
5.1.13.6 [bookmark: _Toc303068559]5.1.3.3	Name style
A rolen association name shall use the LCC style.
5.1.14 [bookmark: _Toc308540980]Aggregation association relationship
5.1.14.1 Description
It shows a class as a part of or subordinate to another class.
An aggregation is a special type of association in which objects are assembled or configured together to create a more complex object. Aggregation protects the integrity of an assembly of objects by defining a single point of control called aggregate, in the object that represents the assembly.
An aggregation shall contain a description of its use.
See 7.3.2 AggregationKind (from Kernel) of [2].
5.1.14.2 Example
A hollow diamond attached to the end of a relationship is used to indicate an aggregation. The diamond is attached to the class that is the aggregate. The aggregation association shall have an indication of cardinality at each end of the relationship (see 5.1.8).

[bookmark: _Toc308514537]Figure 5: Aggregation association relationship notation
5.1.14.3 Name style
It has no name so there is no name style.
5.1.15 [bookmark: _Toc308540981]Composite aggregation association relationship	Comment by Bernd: Agrreed:
Sequence of sections should be 5.1.3, 5.1.2, 5.1.10
5.1.15.1 Description
A composite aggregation association is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as well.
A composite aggregation shall contain a description of its use.
See 7.3.3 Association (from Kernel) of [2].
5.1.15.2 Example
A filled diamond attached to the end of a relationship is used to indicate a composite aggregation. The diamond is attached to the class that is the composite. The composition association shall have an indication of cardinality at each end of the relationship (see 5.1.8).
A composite aggregation association can e.g., be used to model an optional set of attributes of the composite class.

[bookmark: _Toc308514538]Figure 6: Composite aggregation association relationship notation
5.1.15.3 Name style
It has no name so there is no name style.
5.1.16 [bookmark: _Toc308540982]
5.1.17 The association name format for unidirectional association, bidirectional and non-navigational associations are TBD.
5.1.18 [bookmark: _Toc303068560][bookmark: _Ref305671840][bookmark: _Toc308540984]5.1.4	Generalization relationship
5.1.18.1 [bookmark: _Toc303068561]5.1.4.1	Description
It indicates a relationship in which one class (the child) inherits fromis based on another class (the parent).
See 7.3.20 Generalization of [2].
5.1.18.2 [bookmark: _Toc303068562]5.1.4.2	Example
This example shows a generalization relationship between a more general model element (the IRPAgent) and a more specific model element (the IRPAgentV_vendor_A) that is fully consistent with the first element and that adds additional information.

[bookmark: _Toc308514539]Figure : Generalization relationship notation
5.1.18.3 [bookmark: _Toc303068563]5.1.4.3	Name style
It has no name so there is no name style.
5.1.19 [bookmark: _Toc303068564][bookmark: _Toc308540985]5.1.5	Dependency relationship 
5.1.19.1 [bookmark: _Toc303068565]5.1.5.1	Description
“A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their specification or implementation. This means that the complete semantics of the depending elements is either semantically or structurally dependent on the definition of the supplier element(s)...“, an extract from 7.3.12 Dependency of [2].
5.1.19.2 [bookmark: _Toc303068566]5.1.5.2	Example
This example shows that the BClass instances have a semantic relationship with the AClass instances. It indicates a situation in which a change to the target element (the AClass in the example) will require a change to the source element (the BClass in the example) in the dependency. 

[bookmark: _Toc308514540]Figure : Dependency relationship notation
5.1.19.3 [bookmark: _Toc303068567]5.1.5.3	Name style
It A dependency relationship has no name so there is no name style.
5.1.20 [bookmark: _Toc303068568][bookmark: _Toc308540986]5.1.6	Comment
5.1.20.1 [bookmark: _Toc303068569]5.1.6.1	Description
A comment is a textual annotation that can be attached to a set of elements. `
See 7.3.9 Comment (from Kernel) from [2].
5.1.20.2 [bookmark: _Toc303068570]5.1.6.2	Example
This example shows a comment, as a rectangle with a "bent corner" in the upper right corner. It contains text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[bookmark: _Toc308514541]Figure : Comment notation
5.1.20.3 [bookmark: _Toc303068571]5.1.6.3	Name style
It has no name so there is no name style.
5.1.21 [bookmark: _Toc302902223][bookmark: _Toc302902915][bookmark: _Toc302902982][bookmark: _Toc302903077][bookmark: _Toc302903176][bookmark: _Toc302903329][bookmark: _Toc302903411][bookmark: _Toc302903493][bookmark: _Toc302903666][bookmark: _Toc302903748][bookmark: _Toc302918678][bookmark: _Toc303068487][bookmark: _Toc303068572][bookmark: _Toc303068679][bookmark: _Toc303068792][bookmark: _Toc303068573][bookmark: _Ref305662587][bookmark: _Ref305663540][bookmark: _Ref305664074][bookmark: _Toc308540987]Multiplicity, a.k.a. cardinality used in relationships 
5.1.21.1 [bookmark: _Toc303068574]5.1.7.1	Description
“A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable cardinalities for an instantiation of this element…“, an extract from 7.3.32 MultiplicityElement of [2].
5.1.21.2 [bookmark: _Toc303068575]5.1.7.2	Example
This example shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is that one to many. One Network instance is associated with zero, one or more SubNetwork instances. Other valid examples can show the “many to many” relationship.
The cardinality zero is not used to indicate the IOC’s  so-called “transient state” characteristic.  For example, it is not used to indicate that the instance is not yet created but it is in the process of being created.  The cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs.  All IOCs defined are considered to have such inherent “transient state” characteristics.  
Note that the use of “0..*”, "0..n" or ‘*’ means “zero to many”. The use of ‘*’ is recommended.
Note that there is no default value for cardinality.  If cardinality one is intended, then ‘1’ shall be used in the graphical notation (as shown in the example below).

[bookmark: _Toc308514542][bookmark: _Toc303068576]Figure : Cardinality notation
5.1.21.3 
5.1.21.4 5.1.7.3	Name style
It has no name so there is no name style.
5.1.22 [bookmark: _Toc302902225][bookmark: _Toc302902917][bookmark: _Toc302902984][bookmark: _Toc302903079][bookmark: _Toc302903181][bookmark: _Toc302903334][bookmark: _Toc302903416][bookmark: _Toc302903498][bookmark: _Toc302903671][bookmark: _Toc302903753][bookmark: _Toc302918683][bookmark: _Toc303068492][bookmark: _Toc303068577][bookmark: _Toc303068681][bookmark: _Toc303068794][bookmark: _Ref305663522][bookmark: _Toc308540988]Role
5.1.22.1 [bookmark: _Toc303068579]5.1.8.1	Description
It indicates a navigation capability between two classes involved in an association relationship (see 5.1.2). A role is named. The direction of navigation is to the class attached to the end of the association relationship with (or near) the role name.
The use of role name in the graphical representation is mandatory for bidirectional and unidirectional association relationship notations (see Figure 2 and Figure 3). Role name shall not be used in non-navigational association relationship notation (see Figure 4).
A roleSee 3.43.2.6 of [1].
[bookmark: _Toc303068580] at the navigable end of a relationship becomes (or is mapped into) an attribute in the source class of the relationship. Therefore roles have the same behaviour (or properties) as attributes. See section \* MERGEFORMAT .
5.1.22.2 5.1.8.2	Example
This example shows that a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.theCompany would hold the DN, i.e. "Company=XYZ". 
A role has a name.  Use noun for the name.  

[bookmark: _Toc308514543]Figure : Role notation
5.1.22.3 [bookmark: _Toc303068581]5.1.8.3	Name style
A role has a name. Use noun for the name. The name style follows the attribute name style; see section 5.2.1.3.
Corresponding naming rules for the representation of the role in the protocol specific specification need to be added.Its name style is TBD.
5.1.23 [bookmark: _Toc303068582][bookmark: _Toc308540989]5.1.9	Xor constraint
5.1.23.1 [bookmark: _Toc303068583]5.1.9.1	Description
“A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those elements required to evaluate the constraint specification…“, an extract from 7.3.10 Constraint (from Kernel) of [2].
For a constraint that applies to two elements such as two associations, the constraint shall be shown as a dashed line between the elements labeled by the constraint string (in braces).  The constraint string, in this case, is xor.
Constraints attached to Comment and attached to an attribute are TBD.
5.1.23.2 [bookmark: _Toc303068584]5.1.9.2	Example
This example shows an Account (e.g. account 0960) that is associated with a Person (e.g. John Smith) or a Corporation (e.g. ABC Inc).


[bookmark: _Toc308514544]Figure : {xor} notation
5.1.23.3 [bookmark: _Toc303068585]5.1.9.3	Name style
It has no name so there is no name style.
5.3 [bookmark: _Ref305747359][bookmark: _Toc303068586][bookmark: _Toc308514333][bookmark: _Toc308540990]	Comment by Bernd: Agrreed:
Sequence of sections should be 5.1.3, 5.1.2, 5.1.10
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 [bookmark: _Toc308514339][bookmark: _Toc308540996]
5.10 [bookmark: _Toc308514340][bookmark: _Toc308540997]
5.11 
5.12 
5.13 
5.14 [bookmark: _Toc308541001]5.2	Stereotype
Sub-clause 5.15.1 listed the UML defined basic model elements. UML defined a stereotype concept allowing the specification of user-defined model elements.
This sub-clause lists all allowable stereotypes for this rRepertoire. 
For each stereotype model elements listed, there are three parts.  The first part containsis its description. The second part containsis its graphical notation examples and the third part containsis the rule, if any, recommended for labelling or naming it.
5.14.1 [bookmark: _Toc302918693][bookmark: _Toc303068502][bookmark: _Toc303068587][bookmark: _Toc303068685][bookmark: _Toc303068798][bookmark: _Toc303068588][bookmark: _Toc308541002]<<ProxyClass>>
5.14.1.1 [bookmark: _Toc303068589]5.2.1.1	Description
It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.
The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> is present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.
A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.
The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.
5.14.1.2 [bookmark: _Toc303068590]5.2.1.2	Example
This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions. 
Note that <<MonitoredEntity>> does not define any attribute.  The attributes are already defined by all NRM <<InformationObjectClass>>.	Comment by Bernd: Agreed to be removed.
 
[bookmark: _Toc308514546]Figure : <<ProxyClass>> notation
See Annex AAnnex A for more examples that use <<ProxyClass>>.
5.14.1.3 [bookmark: _Toc303068591][bookmark: _Ref305669559]5.2.1.3	Name style
For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see 5.3.25.2.2).
5.14.2 [bookmark: _Toc302918698][bookmark: _Toc303068507][bookmark: _Toc303068592][bookmark: _Toc303068687][bookmark: _Toc303068800][bookmark: _Toc303068593][bookmark: _Ref305669555][bookmark: _Ref305669577][bookmark: _Ref305670541][bookmark: _Ref305671516][bookmark: _Ref305671897][bookmark: _Toc308541003]<<InformationObjectClass>>
5.14.2.1 [bookmark: _Toc303068594]5.2.2.1	Description
Editor’s Note: There is differences between this stereotype definition and the normal (e.g. OMG-defined) UML class definition.  Will decide if we a) would use normal class definition with implicit differences or b) use this stereotype.
The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.
An UML class represents a capability or concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.
See more on UML class in 10.2.1 of [1].
5.14.2.2 [bookmark: _Toc303068595]5.2.2.2	Example
This example shows an RncFunction <<InformationObjectClass>>.

[bookmark: _Toc308514547]Figure : <<InformationObjectClass>> notation
5.14.2.3 [bookmark: _Toc303068596]5.2.2.3	Name style
TBD but need to mention that the name cannot end with an underscore (less it would conflict with names for abstract class).
5.14.3 [bookmark: _Toc303068597][bookmark: _Ref305596228][bookmark: _Toc308541004]<<names>>
5.14.3.1 [bookmark: _Toc303068598]5.2.3.1	Description
It specifies a unidirectional composition. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target class and among other targeted instances of other classes that have the same <<names>> composition with the source. 
The source class and target class shall each has its own naming attribute.  
The Ccomposition aggregation association relationship is used as the act of name containment provideings a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name.  From the management perspective access to the part is through the whole. Multiplicity shall be indicated at both ends of the relationship.
A target instance can not have multiple <<names>> with multiple sources, i.e. a target instance can not participate in or belong to multiple namespaces. 
5.14.3.2 [bookmark: _Toc303068599]5.2.3.2	Example
This shows that all instances of MscFunction are uniquely identifiable within a ManagedElement instance's namespace. 

[bookmark: _Toc308514548]Figure : <<names>> notation
5.14.3.3 [bookmark: _Toc303068600]5.2.3.3	Name style
It has no name so there is no name style.
5.14.4 [bookmark: _Toc303068601][bookmark: _Ref305596378][bookmark: _Ref305671447][bookmark: _Ref308537250][bookmark: _Ref308537279][bookmark: _Toc308541005]<<dataType>>
5.14.4.1 [bookmark: _Toc303068602]Description
It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by user (e.g. specification authors).
This rRepertoire uses two kinds of data types: predefined data types and user-defined data types.  The former is defined in subclause 5.4.35.3.3.  The latter is defined by the specifications authors using this <<dataType>> model element.
The user-defined data types supports the modelling of structured data types (see <<dataType>> notations in 5.3.4.25.2.4.2).  When user-defined or predefined data type is used to apply type information to a class attribute (see 5.2.15.1.1), the data type name is shown along with the class attribute.  See Uuser example of <<dataType>> in 5.3.4.25.2.4.2.
5.14.4.2 [bookmark: _Toc303068603][bookmark: _Ref305670258]5.2.4.2	Example
The following examples are two user-defined data types.   The left-most is named PLMN_Id that consists of Mobile Country Code (MCC) and Mobile Network Code (MNC), whose types are the predefined data types in 5.4.35.3.3.  The right-most is named Xyz that consists of two predefined data types (i.e., String, Integer and one user-defined data type PLMN_Id.  	Comment by Bernd: Is "_" allowed in the name?

[bookmark: _Toc308514549]Figure : <<dataType>> notations
The following example shows a ZClass using two user-defined data types and two predefined data types.

[bookmark: _Toc308514550]Figure : Usage example of <<dataType>>
5.14.4.3 [bookmark: _Toc303068604]5.2.4.3	Name style
For <<dataType>> name, use the same style as <<InformationObjectClass>> (see 5.3.25.2.2).
For <<dataType>> attribute, use the same style as Attribute (see 5.2.15.1.1).
5.14.5 [bookmark: _Toc303068605][bookmark: _Ref308537337][bookmark: _Ref308537358][bookmark: _Toc308541006]5.2.5	<<enumeration>>
5.14.5.1 [bookmark: _Toc303068606]5.2.5.1	Description
An enumeration is a data type.  It contains sets of named literals that represent the values of the enumeration. An enumeration literal can represent a predefined data type (see 5.3.3) or a user-defined data type (see 5.2.4).
An enumeration has a name.
See 10.3.2 Enumeration of [1].
5.14.5.2 [bookmark: _Toc303068607]5.2.5.2	Example
This example shows an enumeration model element whose name is Day and it has seven enumeration literals.  The upper compartment contains the keyword <<enumeration>> and the name of the enumeration.  The lower compartment contains an ordered list of enumeration literals.	Comment by Bernd: Not necessary	Comment by Bernd: Agreed to remove the word "ordered"

[bookmark: _Toc308514551]Figure : <<enumeration>> notation
5.14.5.3 [bookmark: _Toc303068608]5.2.5.3	Name style
For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see 5.3.25.2.2).
Enumeration literal is composed of one or more words of upper case characters.  Words are separated by the underscore character.
5.15 [bookmark: _Toc303068609][bookmark: _Toc308541007]5.3	Others
5.15.1 [bookmark: _Toc303068610][bookmark: _Toc308541008]5.3.1	Association class
5.15.1.1 5.3.1.1	Description
Editor’s Note: Use of Association classes needs further discussion.  Can cardinality be used? Can it be replaced by already-existing relation classes?
An association class is an association that also has class properties (or a class that has association properties). 
Even though it is drawn as an association and a class, it is really just a single model element.
See 7.3.4 AssociationClass of [21].
Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other «InformationObjectClass»e's and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an object.  A Binding «IOC» can be modelled as an Association Class that provides the binding semantics to the relationship between a name and some other «InformationObjectClass».  This is depicted in the following figure.
5.15.1.2 [bookmark: _Toc303068611]5.3.1.2	Example

[bookmark: _Toc308514552]Figure : Association class notation
5.15.1.3 [bookmark: _Toc303068612]5.3.1.3	Name style
TBD
5.15.2 [bookmark: _Toc303068613][bookmark: _Toc308541009]Abstract class
5.15.2.1 [bookmark: _Toc303068614]5.3.2.1	Description
It specifies a special kind of <<InformationObjectClass>> as the general model element involved in a generalization relationship (see 5.1.55.1.4).    An abstract class can not be instantiated.
5.15.2.2 [bookmark: _Toc303068615]5.3.2.2	Example
This shows that TP_ is an abstract class.  It is the base class for SpecializedTP.	Comment by Bernd: Not allowed.

[bookmark: _Toc308514553]Figure : Abstract class notation
5.15.2.3 [bookmark: _Toc303068616]5.3.2.3	Name style
For abstract class name, use the same style as <<InformationObjectClass>> (see 5.3.25.2.2) and its last character shall be an underscore.  Furthermore, the name shall be in italics.
5.15.3 [bookmark: _Toc303068617][bookmark: _Ref305596399][bookmark: _Ref305670221][bookmark: _Ref305671419][bookmark: _Ref305747632][bookmark: _Toc308541010]5.3.3	Predefined data types	Comment by Bernd: Replace this with the contribution from Ericsson: 182
5.15.3.1 [bookmark: _Toc303068618]5.3.3.1	Description
[bookmark: _Toc303068619]It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by this specification and not by the user (e.g. specification authors).
This repertoire uses two kinds of data types: predefined data types and user-defined data types.  The latter are defined in 5.3.4 <<dataType>>and 5.3.5 <<enumeration>>.
The following table lists the UML data types selected for use as predefined data type. 
[bookmark: _Toc308537899]Table 1: UML defined data types
	Name
	Description and reference

	Boolean
	See 7.3.43 of [2].

	Integer
	See 7.3.43 of [2].

	String
	See 7.3.43 of [2].



The following table lists data types that are defined by this repertoire.
[bookmark: _Toc308537900]Table 2: Non-UML defined data types
	Name
	Description and reference

	DateTime
	Check if we can use ITU-T M.3020 Annex E GeneralizedTime for this.

	ObjectName
	Check if we can use ITU-T M.3020 Annex E definition of same name.

	Real
	Check if we can use ITU-T M.3020 Annex E definition of same name and use it to replace/accommodate NGCOR’s Float, Double.



5.15.3.2 5.3.3.2	Examples
· [bookmark: _Toc303068620]
· 
· 
· 
· 
TBD
5.15.3.3 5.3.3.3	Name style
[bookmark: _Toc303068621]It shall use the UCC style.
6 [bookmark: _Toc308541011]6.	Qualifier
Editor’s Note: Qualifier Invariant (TMF-definition) will be added.  Stereotypes/model elements for these qualifiers will be added.  Need for CO is for further study.
This sub-clause defines the qualifiers applicable for one specific model elements specified in this document, i.e.g., the class attribute. The class attribute must be qualified with M, O, CM or CO, with regards to their Read and Write capabilities.	Comment by Bernd: What's about object classes, association ends, (interfaces, operations, operation parameters and notifications)?	Comment by Bernd_110830: Agreed to further discuss how these kind of qualifiers can be added to object classes and association ends.
The Read and Write capabilities are defined as follows. 
· The model elements are made visible across an interface, separating the client from server.  The Read capability means that a client can read the qualified class attribute information.  The Write capability means that a client can modify the qualified class attribute information.
Definition of qualifier M (Mandatory): 
· The capability (e.g. Write capability) shall be supported.
Definition of qualifier O (Optional): 
· The capability may or may not be supported.
Definition of qualifier CM (Conditional-Mandatory):
· The capability shall be supported under certain conditions, specifically:
· The class attribute qualified as CM shall have a corresponding constraint defined in the specification.  If the specified constraint is met then the capability shall be supported.

Definition of qualifier CO (Conditional-Optional): 
· The capability shall be may be supported under certain conditions, specifically:
· The class attribute qualified as CO shall have a corresponding constraint defined in the specification.  If the specified constraint is met then the capability may be supported.


7 [bookmark: _Toc308541012]Design patterns
7.1 [bookmark: _Toc308541013]Use of association class
7.2 [bookmark: _Toc308541014]Use of “intervening class”
7.3 [bookmark: _Toc308541015]Use of “ExternalXyz class”



[bookmark: _Ref305669500][bookmark: _Toc308541016]
Annex A (informative):
Examples of using <<ProxyClass>> to model Link related IOCs

A.1 [bookmark: _Toc303068622][bookmark: _Toc308541017]A.1	First Example
This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under the UML diagram.  All the listed IOCs, in the context of this example, inherit from ManagedFunction IOC.  
The use of <<ProxyClass>> eliminates the need to draw multiple UML <<InformationObjectClass>> boxes, i.e. those whose names are listed in the Note, in the UML diagram.

[bookmark: _Toc308514554]Figure : <<ProxyClass>> Notation Example A.1
Note: The YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, BgFunction etc.

A.2 [bookmark: _Toc303068623][bookmark: _Toc308541018]
A.2	Second Example
This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note right under the UML diagram.  All the listed IOCs, in the context of this example, have link (internal and external) relations.  
The actual names of the IOC represented by InternalYyyFunction <<ProxyClass>> and by the ExternalYyyFunction <<ProxyClass>> are listed under the subsection of X.Y of the associated YyyFunction.  For example, under X.Y.1 for AsFunction, two paragraphs are added to list all peer internal entities and external entities that are linked with AsFunction.  See example in quotation below that is using AsFunction as an example for YyyFunction.
The actual names of the IOC represented by Link_a_z <<ProxyClass>> and by ExternalLink_a_z <<ProxyClass>> are listed under the subsection of X.Y of the associated YyyFunction.  For example, under X.Y.1 for AsFunction, two paragraphs are added to list the names of the IOCs represented by Link_a_z and by ExternalLink_a_z.  See the quoted text below that is using AsFunction as a example for YyyFunction.  
“
X.Y.1	AsFunction
X.Y.1.1	Definition
This IOC represents As functionality. For more information about the As, see 3GPP TS 23.002 [4].
The linked InternalYyyFunction <<ProxyClass>> represents SlsFunction, CscfFunction, HlrFunction ... 
The linked ExternalYyyFunction <<ProxyClass>> represents …
The Link_a_z <<ProxyClass>> represents Link_As_Scscf, Link_Bgcf_Scscf …
The ExternalLink_a_z <<ProxyClass>> represents …
“

[bookmark: _Toc308514555]Figure : <<ProxyClass>> Notation Example A.2
NOTE:	The ‘Yyy’ of YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, etc.


3GPP
image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf
ManagedElement

<<InformationObjectClass>>

MscFunction

<<InformationObjectClass>>

*

0..*

label4

*

0..*


image12.emf

image13.emf
AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

lowerUpper6

+theBClass+theAClass


image14.emf

image15.emf

image16.emf
AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

lowerUpper6

+theAClass+theBClass


image17.emf
BClass

<<InformationObjectClass>>

AClass

<<InformationObjectClass>>

+theBClass

aClassPointsToBClass


image18.emf

image19.emf

image20.emf
IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>


image21.emf
AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>


image22.emf
Function

<<InformationObjectClass>>

This Function class is conceptually 

the same as ManagedFunction class 

(in the context of 3GPP NRM IRP).


image23.emf
Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

*

1

*

1


image24.emf

image25.emf

image26.emf
Company

<<InformationObjectClass>>

Person

<<InformationObjectClass>>

1

1

+theCompany

1

1

personRelatedToCompany


image27.emf
Person

<<InformationObjectClass>>

Corporation

<<InformationObjectClass>>

Account

<<InformationObjectClass>>

{xor}


image28.emf
MonitoredEntity

<<ProxyClass>>

It represents all 

NRM IOCs that 

can have alarms.


image29.emf
RncFunction

<<InformationObjectClass>>


image30.emf
MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

0..*

1

0..*

1

<<names>>


image31.emf
MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

0..*

1

<<names>>

1

0..*


image32.emf
PLMN_Id

mCC : String

mNC : String

<< dataType>>

Xyz

attribute1 : String

attribute2 : Integer

attribute3 : PLMN_Id

<< dataType>>


image33.emf
ZClass

<< dataType>> attribute1 : PLMN_Id

attribute2 : Integer

attribute3 : String

<< dataType>> attribute4 : DataType74

<<InformationObjectClass>>


image34.emf
Account

cashAccount

studentAccount

seniorAccount

premiumAccount

<<enumeration>>


image35.emf
Day

SUNDAY

MONDAY

TUESDAY

WEDNESDAY

THURSDAY

FRIDAY

SATURDAY

<<enumeration>>


image36.wmf
Namespace

<<InformationObjectClass>>

Binding

<<InformationObjectClass>>

0..*

0..*

Name

Object

<<InformationObjectClass>>

1

1

1

1


image37.emf
TP_

<<InformationObjectClass>>

SpecialisedTP

<<InformationObjectClass>>


image38.emf
ManagedFunction

(from TS 32.622)

<<InformationObjectClass>>

YyyFunction

<<ProxyClass>>


image39.emf
ExternalYyyFuntion

<<ProxyClass>>

ExternalLink_a_z

<<ProxyClass>>

InternalYyyFunction

<<ProxyClass>>

YyyFunction

<<ProxyClass>>

Link_a_z

<<ProxyClass>>


image2.emf

image3.emf

image4.emf

