	[image: image1.png](
	[image: image2.png]

Fixed Mobile Convergence (FMC)
Model Repertoire
Model Repertoire V5.3 draft
Source: Joint 3GPP/TM Forum Model Alignment project

Editor: Edwin Tse (Ericsson)
Table of Contents

71
Scope

72
References

83
Definitions and abbreviations

83.1
Definitions

83.2
Abbreviations

94
Requirements

105
Information Model Elements and Notations

105.1
General

105.2
Basic model elements

105.2.1
Attribute

125.2.2
Association relationship

135.2.3
Aggregation association relationship

145.2.4
Composite aggregation association relationship

145.2.5
Generalization relationship

155.2.6
Dependency relationship

155.2.7
Comment

165.2.8
Multiplicity, a.k.a. cardinality in relationships

175.2.9
Role

185.2.10
Xor constraint

185.3
Stereotype

195.3.1
<<ProxyClass>>

195.3.2
<<InformationObjectClass>>

205.3.3
<<names>>

215.3.4
<<dataType>>

225.3.5
<<enumeration>>

225.3.6
<<choice>>

245.4
Others

245.4.1
Association class

255.4.2
Abstract class

255.4.3

25Predefined data types

276
Operations Model Elements and Notations

276.1
General

276.2
Basic model elements

286.2.1
Interface

296.2.2
Operation

326.2.3
Parameter

347
Qualifiers

358
UML Diagram Requirements

36Annex A (informative): Examples of using <<ProxyClass>>

36A.1
First Example

37A.2
Second Example

38Annex B (normative): Attribute properties

39Annex C (normative): Design patterns

39C.1
Intervening Class and Association Class

39C.1.1
Concept and Definition

42C.1.2
Usage in the non-transport domain

42C.1.3
Usage in the transport domain

43C.2
Use of “ExternalXyz” class

44Annex D (informative): Stereotypes for naming purposes

46Annex E (informative): Operations Model Elements under discussion

Figures

12Figure 1: Attribute notation

12Figure 2: Bidirectional association relationship notation

13Figure 3: Unidirectional association relationship notation

13Figure 4: Non-navigable association relationship notation

13Figure 5: Aggregation association relationship notation

14Figure 6: Composite aggregation association relationship notation

14Figure 7: Generalization relationship notation

15Figure 8: Dependency relationship notation

16Figure 9: Comment notation

16Figure 10: Cardinality notation

18Figure 11: Role notation

18Figure 12: {xor} notation

19Figure 13: <<ProxyClass>> notation

20Figure 14: <<InformationObjectClass>> notation

21Figure 15: <<names>> notation

21Figure 16: <<dataType>> notations

21Figure 17: Usage example of <<dataType>>

22Figure 18: <<enumeration>> notation

23Figure 19: Information model element example using «choice» notation

23Figure 20: Operations model element example using «choice» notation

23Figure 21: Sink/source/bidirectional termination points example using «choice» notation

24Figure 22: Association class notation

25Figure 23: Abstract class notation

26Figure 24: Predefined data types usage

28Figure 25: «Interface» notation

31Figure 26: Operations within an interface

33Figure 27: Parameters within Operations

36Figure 28: <<ProxyClass>> Notation Example A.1

37Figure 29: <<ProxyClass>> Notation Example A.2

39Figure 30: Various association forms

40Figure 31: Instance view of "intervening class"

41Figure 32: SNC intervening in TP-TP relationship

41Figure 33: Complex relationship interrelationships

42Figure 34: Highlighting the boundary between transport and non-transport domains

45Figure 35: Various forms of naming stereotypes

Tables

11Table 1: Attribute properties

16Table 2: Multiplicity-string definitions

17Table 3: Multiplicity-string examples

20Table 4: <<InformationObjectClass>> properties

25Table 5: UML defined data types

25Table 6: Non-UML defined data types

28Table 7: «Interface» properties

29Table 8: Operation properties

31Table 9: Mandatory pre-defined Exceptions

31Table 10: Optional pre-defined Exceptions

32Table 11: Parameter properties

46Table 12: Operation properties

46Table 13: Pre-defined Exceptions

47Table 14: Parameter properties

1 Scope
The JWG on Model Alignment work has chosen UML to capture behaviour of systems/entities under management.

UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations and model elements is not necessary for the purpose of JWG Model Alignment work. This paper documents the necessary and sufficient set of UML notations and model elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by JWG Model Alignment work. Collectively, this set of notations and model elements is called the FMC (developed by the Converged Management of Fixed/Mobile Networks project) Model Repertoire.

JWG Model Alignment specifications shall employ the UML notation and model elements of this repertoire. In the course of the JWG Model Alignment work, JWG Model Alignment group may modify (add, delete, modify) UML notation and model elements of this repertoire when necessary.
2 References

[1] OMG Unified Modelling Language (OMG UML), Infrastructure, Version 2.4.
[2] OMG Unified Modelling Language (OMG UML), Superstructure, Version 2.4.
[3] 3GPP TS 32.300: “3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Telecommunication management; Configuration Management (CM); Name convention for Managed Objects”.
[4] 3GPP TS 23.002: “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network architecture”.

[5] 3GPP TS 32.107: “Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM)”.
[6] 3GPP TS 28.620: “Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) Umbrella Information Model (UIM)”.
[7] ITU-T X.680, OSI networking and system aspects – Abstract Syntax Notation One (ASN.1)
[8] ITU-T X.501, Information technology – Open Systems Interconnection – The Directory: Models
3 Definitions and abbreviations
For the purposes of this document, the following definitions and abbreviations apply. For definitions and abbreviations not found here, see also Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) [5], Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) Umbrella Information Model [6].
3.1 Definitions

Distinguished Name: See 3GPP TS 32.300 [3].

Naming attribute: It is a class attribute that holds the class instance identifier. See attribute id of Top_ [6]. See examples of naming attribute in 3GPP TS 32.300 [3].
Lower Camel Case: It is the practice of writing compound words in which the words are joined without spaces. Initial letter of all except the first word shall be capitalized. Examples: ‘managedNodeIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor details” respectively.

Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised. Examples: ‘ManagedNodeIdentity’ and ‘MinorDetails’ are the UCC for “managed node identity” and “minor details” respectively.

Well Known Abbreviation: An abbreviation can be used as the modelled element name or as a component of a modelled element name. The abbreviation, when used in such manner, must be documented in the same document where the modelled element is defined.

3.2 Abbreviations

CM

Conditional Mandatory

CO

Conditional Optional

DN

Distinguished Name

FMC

Fixed Mobile Convergence

FNIM

Federated Network Information Model

IOC

Information Object Class

IRP

Integration Reference Point
JWG

(3GPP/TM Forum) Joint Working Group

LCC

Lower Camel Case

M

Mandatory

NA

Not Applicable

NRM

Network Resource Model
O

Optional

OMG

Object Management Group
UCC

Upper Camel Case

UIM

Umbrella Information Model

UML

Unified Modelling Language (OMG)
WKA

Well Known Abbreviation

4 Requirements

The UML notations and model elements captured in this repertoire shall be used to model behaviours of the systems/entities specified by the JWG Resource Model Alignment work such as the Umbrella Information Model (UIM) [6] of the FNIM discussed in Converged Management of Fixed/Mobile Network project.

5 Information Model Elements and Notations

5.1 General
Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.

The examples used in this document are for illustration purposes only and may or may not exist in specifications.

UML properties not described in this document shall not be used in specifications based on this repertoire.

5.2 Basic model elements

UML has defined a number of basic model elements. This sub-clause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].
For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:
1. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations" and "Additional compartments may be supplied to show other details". This repertoire only allows the use of the name (top) compartment and attribute (middle) compartment. The operation (bottom) compartment may be present but is always empty, as shown in the figure below.
[image: image3.emf]
2. Classes may or may not have attributes. The graphical notation of a class may show an empty attribute (middle) compartment even if the class has attributes, as shown in figure below.
[image: image4.emf]
3. The visibility symbol shall not appear along with the class attribute, as shown below.
[image: image5.emf]
4. The use of the decoration, i.e. the symbol in the name (top) compartment, is optional.
5.2.1 Attribute
5.2.1.1 Description

It is a typed element representing a property of a class. See 10.2.5 Property of [1].
An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [1] for more information on type.
See 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an element.

The following table captures the properties of this modelled element.

Table 1: Attribute properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	isOrdered
	For a multi-valued multiplicity; this specifies if the values of this attribute instance are sequentially ordered. See section 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no duplicate attribute values). See section 7.3.44 and its Table 7.1 of [2].
	True (default), False

	isReadable
	Specifies that this attribute can be read by the manager.
	True (default), False

	isWritable
	Specifies that this attribute can be written by the manager under the conditions specified in Annex B.
	True, False (default)

	type
	Refers to a predefined (see section 5.4.3) or user defined data type (see section 5.3.4. See also section 7.3.44 of [2], inherited from StructuralFeature.
	NA

	isInvariant
	Attribute value is set at object creation time and cannot be changed under the conditions specified in Annex B.
	True, False (default)

	allowedValues
	Identifies the values the attribute can have.
	Dependent on type

	isNotifyable
	Identifies if a notification shall be sent in case of a value change.1,2
	True (default), False

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
	No value (default) or a value that is dependent on allowedValues

	multiplicity
	Defines the number of values the attribute can simultaneously have. See section 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	isNullable
	Identifies if an attribute can carry no information. The implied meaning of carrying “no information” is context sensitive and is not defined in this Model Repertoire.
	True, False (default)

	supportQualifier
	Identifies the required support of the attribute. See also section 7.
	M, O (default), CM, CO, C

Note 1: Whether a client/manager can receive the notification depends on a) if the client/manager has subscribed or registered for reception of such notification and b) if a notification mechanism is supported.

Note 2: If the attribute is a role-attribute and its property passedById is ‘False’, then changes in the navigable association target end instance alone shall not trigger a notification.

5.2.1.2 Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second) compartment of the class Xyz.

[image: image6.emf]
Figure 1: Attribute notation

5.2.1.3 Name style
An attribute name shall use the LCC style.

Well Known Abbreviation (WKA) is treated as a word if used in a name. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its first letter must be in lower case.

5.2.2 Association relationship

5.2.2.1 Description

It shows a relationship between two classes and describes the reasons for the relationship and the rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a relationship performs. Each end of a relationship has properties that specify the role (see 5.2.9), multiplicity (see 5.2.8), visibility and navigability (see the arrow symbol used in Figure 3: Unidirectional association relationship notation) and may have constraints. Note that visibility shall not be used in models based on this Repertoire (see bullet 3 of 5.1).

See 7.3.3 Association of [2].
Three examples below show a binary association between two model elements. The association can include the possibility of relating a model element to itself.
The first example (Figure 2) shows a bi-directional navigable association in that each model element has a pointer to the other. The second example (Figure 3) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer to the target model element and not vice-versa. The third example (Figure 4) shows a bi-directional non-navigable association in that each model element does not have a pointer to the other; i.e., such associations are just for illustration purposes.

5.2.2.2 Example

An association shall have an indication of cardinality (see 5.2.8).

It shall, except the case of non-navigable association, have an indication of the role name (see 5.2.9). The model element involved in an association is said to be “playing a role” in that association. The role has a name such as +aClass in the first example below. Note that the "+" character in front of the role name, indicating the visibility, is ignored.

[image: image7.emf]
Figure 2: Bidirectional association relationship notation
[image: image8.emf]
Figure 3: Unidirectional association relationship notation
[image: image9.emf]
Figure 4: Non-navigable association relationship notation
Note that some tools do not use arrows in the UML graphical representation for bidirectional associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a non-navigable association.

5.2.2.3 Name style
An Association can have a name. Use of Association name is optional. Its name style is LCC style.

A role name shall use the LCC style.

5.2.3 Aggregation association relationship
5.2.3.1 Description

It shows a class as a part of or subordinate to another class.

An aggregation is a special type of association in which objects are assembled or configured together to create a more complex object. Aggregation protects the integrity of an assembly of objects by defining a single point of control called aggregate, in the object that represents the assembly.

See 7.3.2 AggregationKind (from Kernel) of [2].
5.2.3.2 Example

A hollow diamond attached to the end of a relationship is used to indicate an aggregation. The diamond is attached to the class that is the aggregate. The aggregation association shall have an indication of cardinality at each end of the relationship (see 5.2.8).
[image: image10.emf]
Figure 5: Aggregation association relationship notation

5.2.3.3 Name style
An Association can have a name. Use of Association name is optional. Its name style is LCC.

5.2.4 Composite aggregation association relationship

5.2.4.1 Description

A composite aggregation association is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [2].
5.2.4.2 Example

A filled diamond attached to the end of a relationship is used to indicate a composite aggregation. The diamond is attached to the class that is the composite. The composition association shall have an indication of cardinality at each end of the relationship (see 5.2.8).
[image: image11.emf]
Figure 6: Composite aggregation association relationship notation

5.2.4.3 Name style
An Association can have a name. Use of Association name is optional. Its name style is LCC.
5.2.5 Generalization relationship
5.2.5.1 Description

It indicates a relationship in which one class (the child) inherits from another class (the parent).
See 7.3.20 Generalization of [2].
5.2.5.2 Example

This example shows a generalization relationship between a more general model element (the IRPAgent) and a more specific model element (the IRPAgentVendorA) that is fully consistent with the first element and that adds additional information.

[image: image12.emf]
Figure 7: Generalization relationship notation
5.2.5.3 Name style
It has no name so there is no name style.

5.2.6 Dependency relationship

5.2.6.1 Description

 “A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their specification or implementation. This means that the complete semantics of the depending elements is either semantically or structurally dependent on the definition of the supplier element(s)...“, an extract from 7.3.12 Dependency of [2].
5.2.6.2 Example

This example shows that the BClass instances have a semantic relationship with the AClass instances. It indicates a situation in which a change to the target element (the AClass in the example) will require a change to the source element (the BClass in the example) in the dependency.

[image: image13.jpg]
Figure 8: Dependency relationship notation
5.2.6.3 Name style
An Association can have a name. Use of Association name is optional. Its name style is LCC.

5.2.7 Comment
5.2.7.1 Description

A comment is a textual annotation that can be attached to a set of elements.

See 7.3.9 Comment (from Kernel) from [2].
5.2.7.2 Example

This example shows a comment, as a rectangle with a "bent corner" in the upper right corner. It contains text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image14.jpg]
Figure 9: Comment notation
5.2.7.3 Name style
It has no name so there is no name style.

5.2.8 Multiplicity, a.k.a. cardinality in relationships

5.2.8.1 Description

 “A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable cardinalities for an instantiation of this element…“, an extract from 7.3.32 MultiplicityElement of [2].
Table 2: Multiplicity-string definitions

	Multiplicity
	Explanation

	1
	Attribute has one attribute value.

	m
	Attribute has m attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	m..n
	Attribute has at least m but no more than n attribute values.

The use of "0..n" is not recommended although it has the same meaning as “0..*” and “*”.

The use of a standalone symbol zero (0) is not allowed.

5.2.8.2 Example

This example shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is one to many. One Network instance is associated with zero, one or more SubNetwork instances. Other valid examples can show the “many to many” relationship.

[image: image15.jpg]
Figure 10: Cardinality notation
The cardinality zero is not used to indicate the IOC’s so-called “transient state” characteristic. For example, it is not used to indicate that the instance is not yet created but it is in the process of being created. The cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs. All IOCs defined are considered to have such inherent “transient state” characteristics.
Note that the use of “0..*”, "0..n" or ‘*’ means “zero to many”. The use of “0..*” is recommended. The following table shows some valid examples of multiplicity.

Table 3: Multiplicity-string examples

	Multiplicity
	Explanation

	1
	Attribute has exactly one attribute value.

	5
	Attribute has exactly 5 attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	4..12
	Attribute has at least 4 but no more than 12 attribute values.

5.2.8.3 Name style

It has no name so there is no name style.

5.2.9 Role

5.2.9.1 Description

It indicates navigation, from one class to another class, involved in an association relationship. A role is named. The direction of navigation is to the class attached to the end of the association relationship with (or near) the role name.

The use of role name in the graphical representation is mandatory for bidirectional and unidirectional association relationship notations (see Figure 2: Bidirectional association relationship notation and Figure 3: Unidirectional association relationship notation). Role name shall not be used in non-navigable association relationship notation (see Figure 4: Non-navigable association relationship notation).
A role at the navigable end of a relationship becomes (or is mapped into) an attribute (called role-attribute) in the source class of the relationship. Therefore roles have the same behaviour (or properties) as attributes. See Table 1: Attribute properties.
The role-attribute shall have all properties defined for attributes in section 5.2.1 Attribute and in addition the following property:
Table 3A: passedById property

	Property name
	Description
	Legal values

	passedById
	If True, the role-attribute (navigable association source end) contains a DN of the navigable association target end instance.

If False, the role-attribute contains (a copy of) the whole target end instance (e.g. X). If X has a role-attribute whose “passedById==False”, then the subject role-attribute contains (a copy of) X’s target end instance as well.

The above rule is applied repeatedly for all occurrences of “passedById==False”. This application can result in a collection of instances where no ordering can be implied and no instances are duplicated.

Use of “passedById==False” supports the efficient access of target end instances from a source end instance. The mechanism by which such access is achieved is operation model design specific (e.g. not related to resource model design).

	True (default), False

5.2.9.2 Example

This example shows that a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.theCompany would hold the DN, i.e. "Company=XYZ".
[image: image16.jpg]
Figure 11: Role notation
5.2.9.3 Name style
A role has a name. Use noun for the name. The name style follows the attribute name style; see section 5.2.1.3.

5.2.10 Xor constraint
5.2.10.1 Description

 “A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those elements required to evaluate the constraint specification…“, an extract from 7.3.10 Constraint (from Kernel) of [2].
For a constraint that applies to two elements such as two associations, the constraint shall be shown as a dashed line between the elements labeled by the constraint string (in braces). The constraint string, in this case, is xor.

5.2.10.2 Example

The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of a class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or ClinetObjectCLass_Alternative3.
[image: image17.emf]
Figure 12: {xor} notation
5.2.10.3 Name style
It has no name so there is no name style.
5.3 Stereotype

Sub-clause 5.1 listed the UML defined basic model elements. UML defined a stereotype concept allowing the specification of simple or complex user-defined model elements.

This sub-clause lists all allowable stereotypes for this repertoire.

For each stereotype model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

5.3.1 <<ProxyClass>>
5.3.1.1 Description

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> is present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.
5.3.1.2 Example
This shows a <<ProxyClass>> named MonitoredEntity. It represents (or its constraints is that it represents) all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions. It is mandatory to use a Note to capture the constraint.
[image: image18.emf]
Figure 13: <<ProxyClass>> notation
See Annex A for more examples that use <<ProxyClass>>.

5.3.1.3 Name style
For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).
5.3.2 <<InformationObjectClass>>
5.3.2.1 Description

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.
A UML class represents a capability or concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.

This class can inherit from zero, one or multiple classes (multiple inheritances).

See more on UML class in 10.2.1 of [1].
5.3.2.2 Example
This example shows an AbcFunction <<InformationObjectClass>>.

[image: image19.emf]
Figure 14: <<InformationObjectClass>> notation
The following table captures the properties of this modelled element.

Table 4: <<InformationObjectClass>> properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of this modelled element.
Should refer (to enable traceability) to a specific requirement.
	Any

	isAbstract
	Indicates if the class can be instantiated or is just used for inheritance.
	True, False (default)

	isNotifyable
	Identifies the list of the supported notifications.
	List of names of notification

	supportQualifier
	Identifies the required support of the class. See also section 7.
	M, O (default), CM, CO, C

5.3.2.3 Name style
The name shall use UCC style. The name shall end with an underscore if it is an abstract class in the UIM. The name must not end with an underscore if it is a concrete class.

WKA is treated as a word if used in a name. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of the name; and if so, its first letter must be in upper case.

Embedded underscore is not allowed except the name is for an Association class (see 5.4.1.)
5.3.3 <<names>>
5.3.3.1 Description

The <<names>> is modelled by a composition association where both ends are non-navigable. The source class is the composition and the target class is the component. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target class and among other targeted instances of other classes that have the same <<names>> composition with the source.
The source class and target class shall each has its own naming attribute.

The composition aggregation association relationship is used as the act of name containment providing a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name. From the management perspective access to the part is through the whole. Multiplicity shall be indicated at both ends of the relationship.

A target instance can not have multiple <<names>> with multiple sources, i.e. a target instance can not participate in or belong to multiple namespaces.
5.3.3.2 Example
This shows that all instances of Class4 are uniquely identifiable within a Class3 instance's namespace.
[image: image20.jpg]
Figure 15: <<names>> notation
5.3.3.3 Name style
It has no name so there is no name style.

5.3.4 <<dataType>>

5.3.4.1 Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in sub‑clause 5.4.3. The latter is defined by the specifications authors using this <<dataType>> model element.

The user-defined data types support the modelling of structured data types (see <<dataType>> notations in 5.3.4.2). When user-defined or predefined data type is used to apply type information to a class attribute (see 5.2.1), the data type name is shown along with the class attribute. See user example of <<dataType>> in 5.3.4.2.

5.3.4.2 Example

The following examples are two user-defined data types. The left-most is named PlmnId that consists of Mobile Country Code (MCC) and Mobile Network Code (MNC), whose types are the predefined data types in 5.4.3. The right-most is named Xyz that consists of two predefined data types (i.e., String, Integer and one user-defined data type PlmnId.
[image: image21.emf]
Figure 16: <<dataType>> notations
The following example shows a ZClass using two user-defined data types and two predefined data types.

[image: image22.emf]
Figure 17: Usage example of <<dataType>>
5.3.4.3 Name style
For <<dataType>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

For <<dataType>> attribute, use the same style as Attribute (see 5.2.1).

5.3.5 <<enumeration>>
5.3.5.1 Description

An enumeration is a data type. It contains sets of named literals that represent the values of the enumeration. An enumeration has a name.

See 10.3.2 Enumeration of [1].

5.3.5.2 Example

This example shows an enumeration model element whose name is Account and it has four enumeration literals. The upper compartment contains the keyword <<enumeration>> and the name of the enumeration. The lower compartment contains a list of enumeration literals.

Note that the symbol to the right of <<enumeration>> Account in the figure below is a feature specific to a particular modelling tool. It is recommended that modelling tool features should be used when appropriate.
[image: image23.emf]
Figure 18: <<enumeration>> notation
5.3.5.3 Name style

For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

For <<enumeration>> attribute (the enumeration literal), use the following rules:

· Enumeration literal is composed of one or more words of upper case characters. Words are separated by the underscore character.

5.3.6
<<choice>>
· 5.3.6.1
Description

The «choice» stereotype represents one of a set of classes (when used as an information model element) or one of a set of data types (when used as an operations model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor} constraint (see 5.2.10).

5.3.6.2
Example
Sometimes the specific kind of class cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «choice, InformationObjectClass» named SubstituteObjectClass. This scenario indicates that only one of the three «InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass, Alternative3ObjectClass shall be realised.

The «choice» stereotype represents one of a set of classes when used as an information model element.
[image: image24.emf]
Figure 19: Information model element example using «choice» notation
Sometimes the specific kind of data type cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «choice» named ProbableCause. This scenario indicates that only one of the two «dataType» named IntegerProbableCause, StringProbableCause shall be realised.

The «choice» stereotype represents one of a set of data types when used as an operations model element.

[image: image25.emf]
Figure 20: Operations model element example using «choice» notation
Sometimes models distinguish between sink/source/bidirectional termination points. A generic class which comprises these three specific classes can be modelled using the «choice» stereotype.

[image: image26.emf]
Figure 21: Sink/source/bidirectional termination points example using «choice» notation
5.3.6.3
Name style
For <<choice>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).
5.4 Others

5.4.1 Association class
5.4.1.1 Description

An association class is an association that also has class properties (or a class that has association properties).
Even though it is drawn as an association and a class, it is really just a single model element.
See 7.3.4 AssociationClass of [2].
Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other instances of «InformationObjectClass» and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an identifier. A NameBinding «InformationObjectClass» can be modelled as an Association Class that provides the binding semantics to the relationship between an identifier and some other «InformationObjectClass» such as Object in the figure. This is depicted in the following figure.

5.4.1.2 Example
[image: image27.jpg]
Figure 22: Association class notation
5.4.1.3 Name style
The name shall use the same style as in <<InformationObjectClass>> (see 5.3.2.3).
5.4.2 Abstract class
5.4.2.1 Description

It specifies a special kind of <<InformationObjectClass>> as the general model element involved in a generalization relationship (see 5.2.5). An abstract class cannot be instantiated.
This modelled element has the same properties as class. See 5.3.2.
5.4.2.2 Example

This shows that Class5_ is an abstract class. It is the base class for SpecialisedClass5.
[image: image29.jpg]
Figure 23: Abstract class notation
5.4.2.3 Name style

For abstract class name, use the same style as <<InformationObjectClass>> (see 5.3.2). The name shall be in italics.

In the UIM and UOM its last character shall be an underscore.
5.4.3

Predefined data types

5.4.2.4 Description
It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by this specification and not by the user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The latter are defined in 5.3.4 <<dataType>> and 5.3.5 <<enumeration>>.

The following table lists the UML data types selected for use as predefined data type.

Table 5: UML defined data types
	Name
	Description and reference

	Boolean
	See Boolean type of [7].

	Integer
	See Integer type of [7].

	String
	See PrintableString type of [7].

The following table lists data types that are defined by this repertoire.

Table 6: Non-UML defined data types
	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of clause 3 and clause G.2.5 of [7].

	DateTime
	This data type is defined by GeneralizedTime of [7].

	DN
	This data type defines the DN (see Distinguished Name of [8]) of an object contains a sequence of one or more name components. Each initial sub-sequence (note 1) of the object name is also the name of an object. The sequence of objects so identified, starting with the one identified by only the first name component and ending with the object being named, is such that each is the immediate superior (note 2) of that which follows it in the sequence.
Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” is composed of the 1st, 2nd and 3rd components.

Note 2: Suppose object A is name-contained (see 5.3.3) by object B, object B is said to be the immediate superior of object A.

	External
	This data type is defined by another organization.

	OperationStatusAtomic
	This enumeration defines the status values of an atomic operation.
· SUCCESSFUL: The operation has been successfully completed as a whole;
· NOT_SUCCESSFUL: The operation has not been successfully completed as a whole; i.e. the states of the involved object instances are the same as before the operation (roll back is necessary).

	OperationStatusBestEffort
	This enumeration defines the status values of a best effort operation.
· SUCCESSFUL: The operation has been completed successfully as a whole;
· PARTIALLY_SUCCESSFUL: The operation has been completed partially successfully. Further definition what this means for a specific operation is to be specified by the interface specification author;
· NOT_SUCCESSFULThe operation has not been completed at all, i.e. the state of the involved object instances is unchanged.

	Real
	This data type is defined by Real type of [7].

	
	

5.4.2.5 Example
[image: image30.jpg]
Figure 24: Predefined data types usage

Note: Use of this is optional. Uses of other means, to specify Predefined data types, are allowed.

5.4.2.6 Name style
It shall use the UCC style.

6 Operations Model Elements and Notations
6.1
General

Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.

The examples used in this document are for illustration purposes only and may or may not exist in specifications.

UML properties not described in this document shall not be used in specifications based on this repertoire.

6.2
Basic model elements

UML has defined a number of basic model elements. This sub-clause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].

For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:

1. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations”. This repertoire only allows the use of the name (top) compartment and operations (third) compartment. The attribute (middle) compartment may be present as shown in the figure below.

[image: image31.emf]
2. Interfaces are identified by the stereotype «interface».

3. The use of the decoration, i.e. the symbol in the name (top) compartment ([image: image32.png]), is optional.

4. Each Interface must have at least one operation.
5. Section 13.3.24 Signal [2] “A signal is a specification of send request instances communicated between objects. The receiving object handles the received request instances as specified by its receptions. The data carried by a send request (which was passed to it by the send invocation occurrence that caused that request) are represented as attributes of the signal. A signal is defined independently of the classifiers handling the signal occurrence.”
A signal triggers a reaction in the receiver in an asynchronous way and without a reply. The sender of a signal will not block waiting for a reply but continue execution immediately. A signal is depicted by a classifier symbol with the keyword «signal».
[image: image33.emf]
A class can be shown with four compartments. The fourth compartment holds a list of signals (send requests).
[image: image34.emf]
6.2.1
Interface

6.2.1.1
Description

“An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An interface specifies a contract; any instance of a classifier that realizes the interface must fulfil that contract. The obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.

Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to the interface specification. Note that a given classifier may implement more than one interface and that an interface may be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 89).” - see section 7.3.24 “Interface” of [2].
The following table captures the properties of an interface:

Table 7: «Interface» properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the Interface.
Should refer (to enable traceability) to a specific requirement.
	Any

	isAbstract
	Indicates if the Interface can be instantiated or is just used for inheritance.
	True, False (default)

	supportQualifier
	Identifies the required support of the Interface including a condition – if applicable. See also section 7.
	M, O (default), CM, CO, C

6.2.1.2
Example

This example shows a Xyz «Interface».
Editor note: Use lower case ‘I’ in diagram and everywhere <<interface>>

[image: image35.emf]
Figure 25: «Interface» notation

6.2.1.3
Name style

The name shall use UCC style.

6.2.2
Operation

6.2.2.1
Description

“An operation is a behavioural feature of a classifier that specifies the name, type, parameters, and constraints for invoking an associated behaviour.” - see section 7.3.37 “Operation” of [2].
Operations are grouped in interface classes.
These operation properties apply for synchronous and asynchronous mode of operations.
Operations return either an exception or return output parameters including a status. The “status” output parameter is used to inform about the outcome of an operation that does not have an exception.
The following table captures the properties of an operation:

Table 8: Operation properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the operation.
Should refer (to enable traceability) to the specific requirement.
	Any

	isAtomic
	This property identifies if the operation is best effort or is successful / not successful as a whole.
If true, then:
· Successful: The operation has been successfully completed as a whole;
· Not successful: The operation has not been successfully completed as a whole, i.e. the states of the involved object instances are the same as before the operation (roll back is necessary).
If false, then:
· Successful: The operation has been completed successfully as a whole;
· Partially successful: The operation has been completed partially successfully. Further definition what this means for a specific operation is to be specified by the interface specification author;
· Not successful: The operation has not been completed at all, i.e. the state of the involved object instances is unchanged.
	True, False (default)

	precondition(s)
	This property defines the conditions that have to be true before the operation can be started (i.e. if not true, the operation will not be started at all and a general “precondition not met” error will be returned).
	Any

	postcondition(s)
	This property defines the state of the system after the operation has been executed (if successful, or if not successful, or if partially successful).
Note that partially successful postcondition(s) can only be defined in case of non-atomic operations.
Note that when an exception is raised, it should not be assumed that the postcondition(s) are satisfied.
	Any

	bulkTransferPattern
	This property allows the selection of the bulk data transfer implementation style. This is applicable when at least one of the parameter's isBulkPotential property is set to true.
Possible values:
· NONE (default): The operation does not require any bulk transfer pattern.
· FILE: The operation uses a file transfer pattern for bulk attributes.
· ITERATOR: The operation uses an iterator transfer pattern for bulk attributes.
	NONE (default),
ITERATOR,
FILE
(Further clarification needed for these patterns

	emitsEvents
	This property indicates the capability of the server to emit event notifications about the progress of the operation. If true, the server can emit progress events. The events that can be emitted are listed under the emittedEvents property.
	True, False (default)

	emittedEvents
	This property is only applicable if emitsEvents is true.
This property lists the events that can be emitted by the operation. It is a list of event names, separated by commas. The named events have to be valid events already defined in the model.
	List of events defined in the model.

	isOneWay
	This property indicates that the operation has no output parameter.

	True, False (default)

	operationExceptions
	This property identifies the allowed exceptions together with a failure reason.

	See section 6.2.2.4 for exceptions

	supportQualifier
	This property identifies the required support of the operation. See also section 7.
	M, O (default), CM, CO, C

6.2.2.2
Example

This example shows three operations, i.e. a, b and c, listed in the operation (third) compartment of the interface Xyz.

[image: image36.emf]
Figure 26: Operations within an interface
Graphic symbols are optional.
6.2.2.3
Name style

An operation name shall use the LCC style.
6.2.2.4
Exceptions

This Repertoire defines a list of pre-defined exceptions. To increase interoperability, the specifications authors must use these exceptions whenever possible. Additional exceptions are only allowed if none of these pre-defined exceptions fit. Any additional exceptions are preferably formed by inheritance of pre-defined exception(s).
These pre-defined exceptions may be appended by a string which describes the failure reason.

The following table lists the pre-defined exceptions that must be supported by an operation:

Table 9: Mandatory pre-defined Exceptions

	Exception
	Description

	CommunicationLoss
	This exception shall be raised if the server is unable to communicate with its supporting process or the NE for the handling of the request.

	Failure
	This exception shall be raised due to a failure not covered by the other mandatory pre-defined Exceptions.

In case of an atomic operation it shall be used to indicate a failure of at least one of its sub-parts.

The failure reason should provide some indications of the reason and location of the failure.

	InternalError
	This exception shall be raised if the request has resulted in a server internal error.

	InvalidInput
	This exception shall be raised if the operation contains an input parameter that is invalid (e.g. syntactically incorrect, or identifies an object of the wrong type, or is out of range).

	NotImplemented
	This exception shall be raised if the server does not support this operation.

	UnableToComply
	This exception shall be raised if the server cannot satisfy the request.

The following table lists the pre-defined exceptions that may be supported by an operation:

Table 10: Optional pre-defined Exceptions

	Exception
	Description

	AccessDenied
	This exception shall be raised if the client is not permitted to perform the operation.

	
	

	CapacityExceeded
	This exception shall be raised if the request will result in resources (e.g. Termination Points or Measurement Jobs) being created or activated beyond the capacity supported by the NE or server.

	FilterNotSupported
	This exception shall be raised if a filter definition is not supported by the server. The failure reason shall indicate the more precise reason.

	NotInValidState
	This exception shall be raised if the state of the identified object is such that the server cannot perform the operation.

	ObjectExisting
	This exception shall be raised if an object instance cannot be created because an object with the same identity/name already exists.

	ObjectInUse
	This exception shall be raised if the object identified in the request is currently in use.

	ObjectNotExisting
	This exception shall be raised if the object identified in the request does not exist.

	UnableToNotify
	This exception shall be raised if the server is unable to connect to the Notification Service.

6.2.3
Parameter

6.2.3.1
Description

“A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioural feature.” - see section 7.3.42 “Parameter” of [2].
The following table captures the properties of a parameter:

Table 11: Parameter properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the parameter.
Should refer (to enable traceability) to the specific requirement.
	Any

	Type
	Refers to a predefined (see section 5.4.3) or user defined data type (see section 5.3.4).

	Refers to section 5.4.3) and 5.3.4).

	isOrdered
	For a multi-valued multiplicity; this specifies if the values of this parameter instance are sequentially ordered. See section 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this parameter instance are unique (i.e. no duplicate attribute values). See section 7.3.44 and its Table 7.1 of [2].
	True (default), False

	allowedValues
	This property identifies the values the parameter can have.
	Dependent on type

	defaultValue
	This property identifies a value at specification time that is to be used for the input parameter if no value is provided at run-time.

	No value (default) or a value that is dependent on allowedValues

	multiplicity
	This property defines the number of values the parameter can simultaneously have.
	See section 5.2.8. Default is 1.

	isBulkPotential
	This property indicates that this parameter can potentially carry a very large amount of data which will require a bulk data transfer pattern implementation. The selection of the bulk data transfer is defined using the operation’s bulkTransferPattern property.

If true, the bulk transfer pattern must be selected.
	True, False (default)

	direction
	This property defines the direction of the parameter.
	In, InOut, Out

	supportQualifier
	This property identifies the required support of the parameter. See also section 7.
	M, O (default), CM, CO, C

6.2.3.2
Example

This example shows three operations and their related parameters.

[image: image37.emf]
Figure 27: Parameters within Operations
Graphic symbols are optional.
6.2.3.3
Name style

A parameter name shall use the LCC style.

7 Qualifiers

This clause defines the qualifiers applicable for model elements specified in this document, e.g. the IOC (see 5.3.2), the Attribute (see 5.2.1). The qualifications are M, O, CM, CO, C and ‘SS’. Their meanings are specified in this section. This type of qualifier is called Support Qualifier (see supportQualifier of IOC in Table 3 and supportQualifier of attribute in Table 1 of 5.2.1).

This clause also defines the qualifiers applicable to various properties of a model element, e.g. see the IOC properties excepting ‘supportQualifier’ in Table 3 and attributes properties excepting supportQualifier in Table 1 of 5.2.1. The qualifications are M, O, CM, CO, C and ‘-‘. Their meanings are specified in this section. This type of qualifier is simply called Qualifier.

Definition of M (Mandatory) qualification:

· The capability (e.g. the Attribute named abc of an IOC named Xyz; the write property of Attribute named abc of an IOC named Xyz; the IOC named Xyz) shall be supported.

Definition of O (Optional) qualification:

· The capability may or may not be supported.

Definition of CM (Conditional-Mandatory) qualification:

· The capability shall be supported under certain conditions, specifically:
· When qualified as CM, the capability shall have a corresponding constraint defined in the specification. If the specified constraint is met then the capability shall be supported.
Definition of CO (Conditional-Optional) qualification:

· The capability may be supported under certain conditions, specifically:
· When qualified as CO, the capability shall have a corresponding constraint defined in the specification. If the specified constraint is met then the capability may be supported.
Definition of C (Conditional) qualification:

· Used for items that has multiple constraints. Each constraint is worded as a condition for one kind of support such as mandatory support, optional support or "no support". All constraints must be related to the same kind of support. Specifically:

· Each item with C qualification shall have the corresponding multiple constraints defined in the specification. If all specified constraints are met and are related to mandatory, then the item shall be supported. If all the specified constraints are met and are related to optional, then the item may be supported. If all the specified constraints are met and are related to "no support", then the item shall not be supported.

· Note: This qualifier should only be used when absolutely necessary, as it is more complex to implement.

Definition of SS (SS Conditional) qualification:

· The capability shall be supported by at least one but not all solutions.

Definition of ‘-‘ (no support) qualification:

· The capability shall not be supported.

8 UML Diagram Requirements
Classes and their relationships shall be presented in class diagrams.

It is recommended to create:

· An overview class diagram containing all classes related to a specific management area (Class Diagram).

· The class name compartment should contain the location of the class definition (e.g. "Qualified Name")

· The class attributes should show the "Signature". (see section 7.3.45 of [2] for the signature definition);

· A separate inheritance class diagram in case the overview diagram would be overloaded when showing the inheritance structure (Inheritance Class Diagram);

· A class diagram containing the user defined data types (Type Definitions Diagram);

· Additional class diagrams to show specific parts of the specification in detail;

· State diagrams for complex state attributes.

Annex A (informative):
Examples of using <<ProxyClass>>
A.1
First Example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under the UML diagram. All the listed IOCs, in the context of this example, inherit from ManagedFunction IOC.

The use of <<ProxyClass>> eliminates the need to draw multiple UML <<InformationObjectClass>> boxes, i.e. those whose names are listed in the Note, in the UML diagram.

[image: image38.jpg]
Figure 28: <<ProxyClass>> Notation Example A.1
A.2
Second Example
This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the attached (or associated) Note. All the listed IOCs, in the context of this example, have link (internal and external) relations.

This shows a <<ProxyClass>> InternalYyyFunction. It represents all IOCs listed in the attached (or associated) Note.

This shows a <<ProxyClass>> Link_a_z and ExternalLink_a_z. They represent all IOCs listed in the attached (or associated) Note.

[image: image39.jpg]
Figure 29: <<ProxyClass>> Notation Example A.2
Annex B (normative): Attribute properties

	isInvariant

	write
	defaultValue
	manager must provide a value when manager requests object creation
	Meaning

	(
	(
	(
	(
	Not valid.

	(
	(
	(
	
	May be set by the manager only during object creation time; if no value is provided by the manager, the default value is used.

	(
	(
	
	(
	Must be set by the manager during object creation time.

	(
	(
	
	
	May be set by the manager only during object creation time; if no value is provided by the manager, the agent must provide a value.

	(
	
	(
	(
	Not valid.

	(
	
	(
	
	Valid but not useful.

	(
	
	
	(
	Not valid.

	(
	
	
	
	Must be set by the agent during object creation time.

	
	(
	(
	(
	Not valid.

	
	(
	(
	
	May be set by the manager anytime; if no value is provided by the manager at object creation time, it is set to the default value.

	
	(
	
	(
	Must be set by the manager at object creation time and may be changed anytime.

	
	(
	
	
	May be set by the manager at object creation time and may be changed anytime.

	
	
	(
	(
	Not valid.

	
	
	(
	
	Must be set by the agent to the default value at object creation time;
may be changed by the agent anytime.

	
	
	
	(
	Not valid.

	
	
	
	
	May be set by the agent at object creation time and may be changed by the agent anytime.

Annex C (normative):
Design patterns

C.1
Intervening Class and Association Class
C.1.1
Concept and Definition

Classes may be related via simple direct associations or via associations with related association classes.

However, in situations where the relationships between a number of classes is complex and especially where the relationships between instances of those classes are themselves interrelated there may be a need to encapsulate the complexity of the relationships within a class that sits between the classes that are to be related. The term “intervening class” is used here to name the pattern that describes this approach. The name “intervening class” is used as the additional class “intervenes” in the relationships between other classes.

The “intervening class” differs from the association class as the intervening class does break the association between the classes where as the association class does not but instead sits to one side. This can be seen in the following figure. A direct association between class A and C appears the same at A and C regardless of the presence or absence of an association class where as in the case of the “intervening class” there are associations between A and the “intervening class” B and C and the “intervening class” B.

[image: image40.emf]Basic associationNote class A points a C and C at AAssociation ClassAssociation where there is a need to represent: the associations own features (i.e. that do not belong to any of the connected classes):•Some behavior and state•Some additional data related to the associationNote that class A points a C and C at A“Intervening” classWhere there is a complex assembly of state/data bound to a number of associations.Note that Class A and C point to B and potentially B points to C and A.

Figure 30: Various association forms
The “intervening class” is essentially no different to any other class in that it may encapsulate attributes, complex behaviour etc.

The following figure shows an instance view of both an association class form and an “intervening class” form for a complex interrelationship

[image: image41.emf]Association ClassMany instances of association class, one per association instance.“Intervening” classOne instance of intervening class that captures complex association and intertwining between Classes.Also captures behaviour interaction such as protection switching and state (e.gwhere class A and C are TPs and class B is an SNC.

Figure 31: Instance view of "intervening class"
The case depicted above does not show interrelationships between the relationships. A practical case from modeling of the relationships between Termination Points in a fixed network does show this relationship interrelationship challenge. In this case the complexity of relationship is between instances of the same class, the Termination Point (TP). The complexity is encapsulated in a SubNetworkConnection (SNC) class.

[image: image42.emf]“Intervening class” instance viewOne instance of intervening class that captures complex association and intertwining between Classes.Also captures behaviour interaction such as protection switching and state.Simplified SNC and TP caseAn SNC can not exist without at least 2 TPs being related. Some simplifications: In this case the TP and SNC model is assumed to be bidirectional only. The TPs have roles with respect to the SNC but these are ignored here. There are many other attributes and properties related to protection that are ignored here.

Figure 32: SNC intervening in TP-TP relationship
The SNC also encapsulates the complex behaviour of switching and path selection as depicted below.

[image: image43.emf]Association ClassWith protection switching rule and state.There is complex creation transaction interrelationship etc.

Figure 33: Complex relationship interrelationships
C.1.2
Usage in the non-transport domain

The choice of association class pattern or intervening class pattern is on a case-by-case basis.

The transport domain boundary is highlighted in the following figure.

[image: image44.emf]Function

e.g.

eNodeB

function

Network ElementLink entity (connectivity e.g. X2)Topological Link3GPP Managed Function Association/relationshipOptical fiber

NE with wireless accessWire-line NENE with

wireless

access

Management

Environment

Based on Connection Termination Point conceptBased on Physical Termination Point conceptConnection Termination PointPhysical Termination Point

“transport domain”“non-transport domain”

Boundary between transport and non-transport domains

Figure 34: Highlighting the boundary between transport and non-transport domains
C.1.3
Usage in the transport domain

The following guidelines must be applied to the models of the “transport domain”.

When considering interrelationships between classes the following guidelines should be applied:

· If considering all current and recognised potential future cases it is expected that the relationship between two specific classes will be 0..1:0..1 then a simple association should be used
· This may benefit from an association class to convey rules and parameters about the association behaviour in complex cases.
· If there is recognised potential for cases currently or in future where there is a 0..*:0..* between two specific classes then intervening classes should be used to encapsulate the groupings etc. so as to convert it to 0..1:n..*.

· Note that the 0..1:n..* association may benefit from an association class to convey rules and parameters about the association behaviour in complex cases but in the instance form this can probably be ignored or folded into the intervening class

· In general it seems appropriate to use an association class when the properties on the relationship instance cannot be obviously or reasonably folded into one of the classes at either end of the association and when there is no interdependency between association instances between a set of instances of the classes.
An example of usage of intervening class is the case of the TP-TP (TerminationPoint) relationship (0..*:0..*) where the SNC (SubNetworkConnection) is added as the intervening class between multiple TPs, i.e. TP-SNC. Note that TP-SNC actually becomes 0..2:n..* due to directionality encapsulation.

Considering the case of the adjacency relationship between PTPs it is known that although the current common cases are 1:1 there are some current and many potential future case of 0..*:0..* and hence a model that has an intervening class, i.e. the TopologicalLink, should be used.

For a degenerate instance cases of 0..*:0..* that happens to be 0..1:0..1 the intervening class pattern should still be used:
· Using the 0..1:0..1 direct association in this degenerate case brings unnecessary variety to the model and hence to the behaviour of the application (the 0..1:n..* model covers the 0..1:0..1 case with one single code form clearly)
· An instance of the 0..1:0..1 model may need to be migrated to 0..1:n..* as a result of some change in the network forcing an unnecessary administrative action to transition the model form where as in the 0..1:n..* form requires no essential change.

C.2
Use of “ExternalXyz” class
This section will be completed for the next release.
Annex D (informative): Stereotypes for naming purposes

The following diagram illustrates the various stereotypes for naming purposes.

The <<names>> with solid-diamond (see 5.3.3) identifies:

· The naming class (close to the solid diamond) and a named class;

· The naming scheme is DN;

· The container (close to the solid diamond) and the content.

The <<names>> with other types of associations (and excluding those labelled “Not Allowed”) identifies:

· The naming class (close to the hollow diamond or the source with regard to arrow direction) and a named class (the target);

· The naming scheme is DN.

The <<namedBy>> with dependency (dotted arrowed line) identifies:

· The naming class (target with regard to arrow direction) and a named class (the source);

· The naming scheme is DN.

Referring to the figure, RMA Phase 1 allows the form Class7<<names>>Class8.

The forms “in red” are not allowed.

The rest of the forms are “under investigation in Phase 2” since they all require an agreed standard mechanism on handling (named) instances whose related naming instance have been destroyed. They also lack use case support, thus far.

[image: image45.emf]
Figure 35: Various forms of naming stereotypes

Annex E (informative): Operations Model Elements under discussion
This Annex lists model element definitions subject to further discussions and agreement.
Item #1

Description

“An operation is a behavioural feature of a classifier that specifies the name, type, parameters, and constraints for invoking an associated behaviour.” - see section 7.3.37 “Operation” of [2].
Operations are grouped in interface classes.

The following table captures the properties of an operation:

Table 12: Operation properties

	Property name
	Description
	Legal values

	isIdempotent
	This property defines if the operation is idempotent or not; i.e. the operation can be repeated providing the same result every time (assuming that the state of the underlying network does not change).
	True, False (default)

Item #2

Exceptions

This Repertoire defines a list of pre-defined exceptions. To increase interoperability, the specifications authors must use these exceptions whenever possible. Additional exceptions are only allowed if none of these pre-defined exceptions fit. Any additional exceptions are preferably formed by inheritance of pre-defined exception(s).The following table lists the pre-defined exceptions:

Table 13: Pre-defined Exceptions

	Exception
	Description

	AlreadyInPostCondition
	This exception can be used by operations which are not defined as idempotent. It is used to indicate that the server is already in the post-condition

	InventoryOutOfSync
	This exception shall be raised when the operation fails because the inventory data bases from the target and client are out of sync

Item #3

Parameter

Description

“A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioural feature.” - see section 7.3.42 “Parameter” of [2].
The following table captures the properties of a parameter:

Table 14: Parameter properties

	Property name
	Description
	Legal values

	passedById
	This property is only applicable when the type of the parameter is an class.

It identifies whether the parameter contains a pointer to the object instance (passedById = true) or contains the entire information of the object instance (passedById = false).
	True, False (default)

(3GPP is a trade mark of ETSI

27 of 45

Association Class

Many instances of association class, one per association instance.

“Intervening” class

One instance of intervening class that captures complex association and intertwining between Classes.

Also captures behaviour interaction such as protection switching and state (e.g where class A and C are TPs and class B is an SNC.

image1.png

image2.png

Association Class

With protection switching rule and state.

There is complex creation transaction interrelationship etc.

image1.png

Function e.g.

eNodeB

function

Network Element

Link entity (connectivity e.g. X2)

Topological Link

3GPP Managed Function

Association/relationship

Optical fiber

NE with wireless access

Wire-line NE

NE with

wireless

access

Management

Environment

Based on Connection Termination Point concept

Based on Physical Termination Point concept

Connection Termination Point

Physical Termination Point

“transport domain”

“non-transport domain”

Boundary between transport and non-transport domains

“Intervening class” instance view

One instance of intervening class that captures complex association and intertwining between Classes.

Also captures behaviour interaction such as protection switching and state.

Simplified SNC and TP case

An SNC can not exist without at least 2 TPs being related.

Some simplifications: In this case the TP and SNC model is assumed to be bidirectional only. The TPs have roles with respect to the SNC but these are ignored here. There are many other attributes and properties related to protection that are ignored here.

image1.png

image2.png

Basic association

Note class A points a C and C at A

Association Class

Association where there is a need to represent: the associations own features (i.e. that do not belong to any of the connected classes):

Some behavior and state

Some additional data related to the association

Note that class A points a C and C at A

“Intervening” class

Where there is a complex assembly of state/data bound to a number of associations.

Note that Class A and C point to B and potentially B points to C and A.

image1.png

image2.png

image3.png

image4.png

