
Multi-SDO Project on Converged Management Model Alignment (Phase 2)
Document number:
S5eMA20033
Source:
Bernd Zeuner, Deutsche Telekom / Convener
Title:
Input for an Operations Model Repertoire - Updated Frankfurt F2F
Meeting date/time:
Tuesday, November 27th, 10:00-18:00 CET
Content
11.
Objective

2.
References
1
3.
Definitions and abbreviations
2
3.1
Definitions
2
3.2
Abbreviations
2
4.
Requirements
2
5.
Model Elements and Notations
3
5.1.
General
3
5.2.
Basic model elements
3
5.2.1.
Interface
3
5.2.1.1.
Description
3
5.2.1.2.
Example
4
5.2.1.3.
Name style
4
5.2.2.
Operation
4
5.2.2.1.
Description
4
5.2.2.2.
Example
5
5.2.2.3.
Name style
5
5.2.2.4.
Exceptions
5
5.2.3.
Parameter
6
5.2.3.1.
Description
6
5.2.3.2.
Example
7
5.2.3.3.
Name style
7

1. Objective

This document provides initial information for an Operations Model Repertoire. The content is based on the NGCOR modelling and tooling requirements defined in [3].
2. References

[1] OMG Unified Modelling Language (OMG UML), Infrastructure, Version 2.4.

[2]
OMG Unified Modelling Language (OMG UML), Superstructure, Version 2.4.

[3]
NGCOR Next Generation Converged Operations Requirements; Version 1.3

[4] Fixed Mobile Convergence (FMC) Model Repertoire; Version 3.0

[5]
3GPP TS 32.300: “3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Telecommunication management; Configuration Management (CM); Name convention for Managed Objects”.

[6] 3GPP TS 23.002: “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network architecture”.

[7]
ITU-T X.680, OSI networking and system aspects – Abstract Syntax Notation One (ASN.1)

[8]
ITU-T X.501, Information technology – Open Systems Interconnection – The Directory: Models
3. Definitions and abbreviations

For the purposes of this document, the following definitions and abbreviations apply. For definitions and abbreviations not found here, see also …
3.1 Definitions

Distinguished Name: See 3GPP TS 32.300 [5].

Naming attribute: It is a class attribute that holds the class instance identifier.

Lower Camel Case: It is the practice of writing compound words in which the words are joined without spaces. Initial letter of all except the first word shall be capitalized. Examples: ‘managedNodeIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor details” respectively.

Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised. Examples: ‘ManagedNodeIdentity’ and ‘MinorDetails’ are the UCC for “managed node identity” and “minor details” respectively.

Well Known Abbreviation: An abbreviation can be used as the modelled element name or as a component of a modelled element name. The abbreviation, when used in such manner, must be documented in the same document where the modelled element is defined.

3.2 Abbreviations

CM
Conditional Mandatory

CO
Conditional Optional

DN
Distinguished Name

FMC
Fixed Mobile Convergence

FNOM
Federated Network Operations Model

IOC
Information Object Class

IRP
Integration Reference Point

JWG
Joint Working Group

LCC
Lower Camel Case

M
Mandatory

NA
Not Applicable

NRM
Network Resource Model

O
Optional

OMG
Object Management Group

UCC
Upper Camel Case

UOM

Umbrella Operations Model

UML

Unified Modelling Language (OMG)

WKA

Well Known Abbreviation

4. Requirements

The UML notations and model elements captured in this repertoire shall be used to model behaviours of the systems/entities specified by the JWG Resource Model Alignment work such as the Umbrella Operations Model (UOM) of the FNOM discussed in Converged Management of Fixed/Mobile Network project.

5. Model Elements and Notations

5.1. General

Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.

The examples used in this document are for illustration purposes only and may or may not exist in specifications.

UML properties not described in this document shall not be used in specifications based on this repertoire.

5.2. Basic model elements

UML has defined a number of basic model elements. This sub-clause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].

For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:

1. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations". This repertoire only allows the use of the name (top) compartment and operations (third) compartment. The attribute (middle) compartment may be present but is always empty [to be investigated], as shown in the figure below.

[image: image1.emf]
2. Interfaces are identified by the stereotype «interface».
3. The use of the decoration, i.e. the symbol in the name (top) compartment ([image: image2.png]

), is optional.

4. Each Interface must have at least one operation.
· TBD if signal compartment can be used for notifications
5.2.1. Interface
5.2.1.1. Description

An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An interface specifies a contract; any instance of a classifier that realizes the interface must fulfil that contract. The obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface. See section 7.3.24 Interface of [2].
· add 2nd para as well

· add “xxx” when quoting directly
The following table captures the properties of an interface:
Table 1: «Interface» properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the Interface.
Should refer (to enable traceability) to a specific requirement.
	Any

	isAbstract
	Indicates if the Interface can be instantiated or is just used for inheritance.
	True, False (default)

	supportQualifier
	Identifies the required support of the Interface including a condition – if applicable. See also section 6.
	M, O (default), CM, CO, C

5.2.1.2. Example

This example shows a Xyz «Interface».

[image: image3.emf]
Figure 1: «Interface» notation

5.2.1.3. Name style

The name shall use UCC style.

5.2.2. Operation

5.2.2.1. Description

“An operation is a behavioural feature of a classifier that specifies the name, type, parameters, and constraints for invoking an associated behaviour.” - see section 7.3.37 “Operation” of [2].

Operations are grouped in interface object classes.

The following table captures the properties of an operation:
Table 2: Operation properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the operation.
Should refer (to enable traceability) to the specific requirement.
	any

	isAtomicCommitt
	Identifies if the operation is best effort or is successful / not successful as a whole.
If true,

· Successful:

· Not successful:

If false,

· Successful:

· Not successful:
	True, False (default)

	pre-condition(s)
	Lists the conditions unambiguously that have to be true before the operation can be started (i.e., if not true, the operation will not be started at all and a general “pre-condition not met” error will be returned).

	any

	post-condition(s)
	Describes unambiguously the state of the system after the operation has been successfully executed.

	any

	isIdempotent
	Defines if the operation is idempotent or not.
	True, False (default)

	bulkTransferPattern
	The Bulk Transfer Pattern identifies, the sequencing and the cardinality of the messagesexchanged.
	BATCH_PULL_ITERATOR_PATTERN (default), BATCH_PUSH_EVENT_PATTERN, FILE_TRANSFER_PATTERN, STREAMING_PATTERN
(detailed definition & clarification needed

	emitsEvents
	Identifies the operation as a process status event with / or without associated data.
Needs further clarification
	NA (default)

	isOneWay
	The operation is one way, when it has only input parameters or only output parameters.
Needs further clarification (operations vs notification?; one-way as request w/o response?)
	True, False (default)

	operationExceptions
	Identifies the allowed exceptions together with a failure reason.
Improve definition for “failure reason”
Use UML Return for “exceptions together with a failure reason”
	See section 5.2.2.4 for exceptions

	supportQualifier
	Identifies the required support of the operation. See also [4] section 6.
	M, O (default), CM, CO, C

5.2.2.2. Example

This example shows three operations, i.e., a, b and c, listed in the operation (third) compartment of the interface Xyz.

[image: image4.emf]
Figure 2: Operations within an interface
Graphic symbols are optional
5.2.2.3. Name style

An operation name shall use the LCC style.

5.2.2.4. Exceptions

This Repertoire defines a list of pre-defined exceptions. To increase interoperability, the specifications authors must use these exceptions whenever possible. Additional exceptions are only allowed if none of these pre-defined exceptions fit.

The following table lists the pre-defined exceptions:

Table 3: Pre-defined Exceptions

	Exception
	Description

	AccessDenied
	This exception shall be raised when the requesting OS is not permitted to perform the operation

	AlreadyInPostCondition
	This exception can be used by operations which are not defined as idempotent. It is used to indicate that the target OS is already in the post-condition

	AtomicTransactionFailure
	This exception shall be raised when an atomic operation is not successful due to a failure of one of its sub-parts. The failure reason shall indicate which object/ part failed

	CapacityExceeded
	This exception shall be raised when the request will result in resources being created or activated beyond the capacity supported by the NE or target OS

	CommunicationLoss
	This exception shall be raised when the target OS is unable to communicate with the subordinate OS

	Duplicate
	This exception shall be raised if an object instance cannot be created because an object with the same identifier/name already exists

	EntityNotFound
	This exception shall be raised when the specified object does not exist

	FilterNotSupported
	This exception shall be raised when a filter definition is not supported by the implemented filter. The failure reason shall indicate the more precise reason

	InternalError
	This exception shall be raised when the request has resulted in an OS internal error

	InvalidInput
	This exception shall be raised when the operation contains an input parameter that is syntactically incorrect or identifies an object of the wrong type or is out of range

	InventoryOutOfSync
	This exception shall be raised when the operation fails because the inventory data bases from the target and requesting OS are out of sync

	NotImplemented
	This exception shall be raised when the target OS does not support this operation

	NotInValidState
	This exception shall be raised when the state of the specified object is such that the target OS cannot perform the operation

	ObjectInUse
	This exception shall be raised when the object identified in the request is currently in use

	UnableToComply
	This exception shall be raised when the target OS cannot respond to the request

	UnableToNotify
	This exception shall be raised when the target OS is unable to connect to the Notification Service

Note: The yellow marked exceptions have to be supported by all operations.
What exceptions are Mandatory is to be discussed.
Detailed reviewed of the exceptions still open.
OS/target OS to be replaced by client/server or requestor/xxx.
5.2.3. Parameter

5.2.3.1. Description

“A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioural feature.” - see section 7.3.42 “Parameter” of [2].

The following table captures the properties of a parameter:

Table 4: Operation properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the parameter.
Should refer (to enable traceability) to the specific requirement.
	Any

	type
	Refers to a predefined (see section 5.4.3) or user defined data type (see section 5.3.4).

	NA

	allowedValues
	Identifies the values the parameter can have. (applicable to Output parameter ??)
	Dependent on type

	defaultValue
	Identifies a value at specification time that is used for the parameter when no value is provided. (applicable to Output parameter ??)
	Dependent on type

	multiplicity
	Defines the number of values the parameter can simultaneously have.
	See [4] section 5.2.8; default is 1.

	isBulkPotential
	Indicates that this parameter can potentially carry a very large amount of data which will require a bulk data transfer pattern.
If true, the bulk transfer pattern must be selected.
	True, False (default)

	direction
	Defines the direction of the parameter.
	In, InOut, Out

	passedById
	Identifies whether the parameter contains a pointer to the information (passedById = true) or contains the entire information (passedById = false).
	True, False (default)

	supportQualifier
	Identifies the required support of the parameter. See also section 6.
	M, O (default), CM, CO, C

Consider adding isOrdered & isUnique
5.2.3.2. Example

This example shows three operations and their related parameters.
[image: image5.emf]
Figure 3: Parameters within Operations
Graphic symbols are optional
Class diagram symbol for operations these display details (e.g. a,b,c) are optional
5.2.3.3. Name style

A parameter name shall use the LCC style.

mSDO JWG

