
3GPP TSG-SA4 Meeting #99
S4-180779
Roma, Italy, 09-13 July 2018

	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.850
	CR
	xxx
	rev
	x
	Current version:
	1.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	pCR Solution for customized block-wise transfer using CoAP

	
	

	Source to WG:
	Expway

	Source to TSG:
	S4

	
	

	Work item code:
	FS_MBMS_IoT
	
	Date:
	2018-07-03

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	The present document provides the solution for customized block-wise tranfer using CoAP to reduce energy consumption in IoT device. The present document also includes the evaluation of file repair solutions.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	First Change

7.3
Solutions for File Repair using CoAP

7.3.0
General

3GPP TS 26.346 clause 9.3 describes two file repair procedures for MBMS User Services: the symbol-based procedure and the byte-range-based procedure. In byte-range-based message format, the MBMS UE uses the conventional HTTP/1.1 GET or partial GET requests as defined in RFC 2616 to request all or a subset of source symbols of the referenced resource, respectively. Low-end IoT device category may not equipped with HTTP stack to keep a small code size. This clause describes the solutions for File Repair based on CoAP. It comprises two categories of file repair mechanisms which are similar in the use of a generic CoAP server that is AL-FEC unaware, as the file repair server. From that standpoint (i.e., AL-FEC unawareness of the CoAP file repair server), both categories, as described below in sub-clauses 7.3.1 and 7.3.2, could be considered as representing byte-ranged based file repair mechanisms according to the semantics in TS 26.346, since the requests for repair data from the CoAP client are devoid of FEC symbol semantics. They differ in the way the MBMS receiver/CoAP client performs the CoAP requests for repair data:

1) Requests for byte ranges, whereby the CoAP client specifies a byte range of the original file stored on the CoAP server to be returned by the server;

2) Requests for CoAP Blocks, whereby the CoAP client specifies one or more blocks of data, in the manner of block-wise transfer in CoAP as defined in RFC 7959 [13].

7.3.1
Byte-Range Request based File Repair

The CoAP base protocol [7] does not define the option that has an equivalent functionality as Range in HTTP header. This solution provides two alternative options to address the byte-range request based file repair.

The byte-range request based solutions comprise the following two options:

-
The option 1 provides a solution using the existing Uri-Query option defined in CoAP. It can be done without any changes in the CoAP IETF standard.

-
The option 2 defines a new CoAP option Range. This solution requires a change in the CoAP IETF standard.
7.3.1.1
Option 1: use Uri-Query option in CoAP

This alternative relies on the use of Uri-Query option in CoAP to send a byte-range request message. This solution uses the special defined keywords "bytefrom" and "byteto" inside Uri-Query option to indicate the byte-range.

NOTE 1:
The special defined keywords could be different than "bytefrom" and "byteto" if this option is adopted.

As an example, the FLUTE receiver partially receives the transport object with file name "firmware.bin" having the "File-Etag" attribute set to "df69d20220cb1ff4" in the FDT instance. It issues a repair request to the host server to fetch the missing bytes. The request message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 5683

Uri-Host = "mbmsrepair1.example.com"

Etag = "df69d20220cb1ff4"

Uri-Path = "path"

Uri-Path = "repair_script"

Uri-Query = "bytefrom=500;byteto=627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/?bytefrom=500;byteto=627

NOTE 2:
The Etag option does not appear in the CoAP URI but in the CoAP payload.

Upon reception of the GET request message, the CoAP server parses the special keywords "bytefrom", "byteto" to extract the byte-range the CoAP client wants to fetch. Figure 7.3.1.1-1 shows the request and response CoAP messages.

[image: image1.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.1-1: Request and response CoAP messages using Uri-Query option

NOTE 3:
MID is the message ID in CoAP header.

In 3GPP TS 26.346, multiple byte-ranges or multiple symbols in different block number can be put in a single HTTP based file repair request message. However, there is no benefits to combining multiple requests in a single request message in CoAP since transfer of each block is acknowledged [13]. If the missing data in a response message is large, or if the CoAP server wants to use multiple small data payloads in response messages, the block-wise transfer is used. Table 7.3.1.1-1 shows different cases for byte-range request:

Table 7.3.1.1-1: Different cases for CoAP byte-range request message

	Single byte-range
	Single response CoAP message for file repair if possible

Otherwise use block-wise transfer

	Multiple byte-ranges
	Split into multiple of single byte-range requests

Figure 7.3.1.1-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes.

[image: image2.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.1-2: Request response CoAP messages using block-wise

NOTE 4:
 MID is the message ID in CoAP header.
7.3.1.2
Option 2: define a new CoAP option Range

A new CoAP option "Range" with a new allocated number 21 is defined in this solution. Table 7.3.1.2-1 shows an example where the "Range" option resides in the ordered options in CoAP.

Table 7.3.1.2-1: New defined "Range" option within CoAP options
	No.
	C
	U
	N
	R
	Name
	Format
	Length
	Default

	1
	x
	
	
	x
	If-Match
	opaque
	0-8
	(none)

	3
	x
	x
	-
	
	Uri-Host
	string
	1-255
	(see below)

	4
	
	
	
	x
	ETag
	opaque
	1-8
	(none)

	5
	x
	
	
	
	If-None-Match
	empty
	0
	(none)

	7
	x
	x
	-
	
	Uri-Port
	unit
	0-2
	(see below)

	8
	
	
	
	x
	Location-Path
	string
	0-255
	(none)

	11
	x
	x
	-
	x
	Uri-Path
	string
	0-255
	(none)

	12
	
	
	
	
	Content-Format
	unit
	0-2
	(none)

	14
	
	x
	-
	
	Max-Age
	unit
	0-4
	60

	15
	x
	x
	-
	x
	Uri-Query
	string
	0-255
	(none)

	17
	x
	
	
	
	Accept
	unit
	0-2
	(none)

	20
	
	
	
	x
	Location-Query
	string
	0-255
	(none)

	21
	
	x
	
	x
	Range
	string
	0-255
	(none)

	35
	x
	x
	-
	
	Proxy-Uri
	string
	1-1034
	(none)

	39
	x
	x
	-
	
	Proxy-Scheme
	string
	1-255
	(none)

	60
	
	
	x
	
	Size1
	unit
	0-4
	(none)

	C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

NOTE 1:
This solution uses the option number 21 to demonstrate the feasibility of the solution. If this solution using "Range" option is adopted as an extension of CoAP protocol, the allocated number could be different.

With the new defined CoAP option, the query message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 61616

Uri-Host = "mbmsrepair1.example.com"

Etag = "df69d20220cb1ff4"

Uri-Path = "path"

Uri-Path = "repair_script"

Range = "bytes=500-627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/

NOTE 2:
The Etag and Range options do not appear in the CoAP URI but in the CoAP payload since these options are not in the process of the clause 6.5 of RFC 7252.

Figure 7.3.1.2-1 shows the request response CoAP messages using the new defined "Range" option.

[image: image3.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.2-1: Request and response CoAP messages using defined "Range" option

Similarly, Figure 7.3.1.2-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes.

[image: image4.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.2-2: Request and response CoAP messages using defined "Range" option and block-wise
7.3.1.3
Customized block-wise transfer using CoAP
In block-wise transfer, the transfer of each block is acknowledged, enabling individual retransmission if required. This principle ensures the integrity and reliability of data transferred using block-wise. For File Repair procedure, this principle implies that the CoAP client (i.e. IoT UE) needs to transmit the same number of messages as the number of blocks. This increases the energy consumption in IoT UE. Table 7.1.7.4-1 in 3GPP TR 45.820 shows that the energy consumption is much higher in uplink direction when the UE transmits the data to the network than the downlink direction.

This section proposes a customized block-wise transfer that aims at reducing the number of messages transmitted by the IoT UEs to reduce the energy consumption. The CoAP client does not need to send the request for each block until the end of data transfer. When there are more data to deliver, the CoAP server continues to send non-confirmable messages with the same token ID as indicated in the request message. The CoAP client is responsible for verifying the reliability. Any lost CoAP block messages are detected by the CoAP client at the end of the transmission. The CoAP client sends a request message with single (or multiple) byte-range for the missing blocks until all blocks are acknowledged.

The left part of Figure 7.3.1.3-1 shows an example of standard block-wise transfer in RFC 7959 that requires 4 messages transmitted by the IoT UE while the customized block-wise transfer requires only one message transmitted by the IoT UE (right part of Figure 7.3.1.3-1).

The IoT UE (i.e. CoAP client) can use Block2 option in the request message to indicate the preferred block size. This could avoid further request messages sent by the IoT UE due to message size negotiation between the CoAP client and server.

[image: image5.png]CoAP Client

(loT UE)

CON [MID=1234] GET, /path/repair_script

CoAP Server

(File repsir server)

Etag ="cf63d20220cb1f4”
Uri-Query = "bytefrom=500 byteto=755"

ACK [MID=1234], 2.05 Content, 2:0/1/64

q

CON [MID=1235] GET, /path/repair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/1/64

CON [MID=1236] GET, /path/repair_script, 2:2/0/64

ACK [MID=1236], 2.05 Content, 2:2/1/64

CON [MID=1237] GET, /path/repair_script, 2:3/0/64

ACK [MID=1237], 2.05 Content, 2:3/1/64

CoAP Server

(File repair server)

>

CoAP Client
(loT UE)
CON [MID=1234] GET, /path/repair_script
Etag ="df69d20220cb1ff4"
Token = 0x20
Uri-Query = "bytefrom=500 byteto=755"
e ACK [MID=1234]
€ NON-CON [MID=1235], 2.05 Content, 2:0/1/64
Token = 0x20
NON-CON[MID=1236], 2.05 Content, 2:1/1/64
¢ Token = 0x20
NON-CON[MID=1237], 2.05 Content, 2:2/1/64
< Token = 0x20
NON-CON[MID=1238], 2.05 Content, 2:3/0/64
< Token = 0x20

Figure 7.3.1.3-1: Block-wise in RFC 7959 (left) and customized block-wise (right)

Figure 7.3.1.3-2 shows an example when the second message is lost, the CoAP client may request the missing data at the end of block-wise transfer.

[image: image6.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

ACK [MID=1234]

>

NON-CON [MID=1235], 2 05 Content, 2:0/1/64

Toen= 020

NON-CON [MID=1236], 2.05 Content, 2:1/1/64

Token=0:20

NON-CON [MID=1237], 2 05 Content, 2:2/1/64

Toen= 020

NON-CON [MID=1238], 2 05 Content, 2:3/0/64

Toen= 020

CON [MID=1239] GET, /pathirepair_script

Eisg = arREB 20 e
U Quary = bysfrom=504 byteto=a2T

CON [MID=1239], 2.05 Content

Payioad: Tonentofbyterange 564627

Figure 7.3.1.3-2: Customized block-wise with a single lost message

In case of consecutive lost messages, the CoAP client and server may apply the same customized block-wise transfer with narrower range than the range in the original request message as shown in Figure 7.3.1.3-3.

[image: image7.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

ACK [MID=1234]

>

NON-CON [MID=1235], 2 05 Content, 2:0/1/64

Toen= 020

NON-CON [MID=1236], 2.05 Content, 2:1/1/64

Token=0:20

NON-CON [MID=1237], 2.05 Content, 2:2/1/64

Token=0:20

NON-CON [MID=1238], 2 05 Content, 2:3/0/64

Toen= 020

CON [MID=1239] GET, /pathirepair_script

i = areB 20 e
Token =021
U Query = bysfrom=o4 yteto=a3T"

ACK [MID=1239]

NON-CON [MID=1240], 2 05 Content, 2:0/1/64

Tokan= 02t

NON-CON [MID=1236], 2 05 Content, 2:1/0/64

Tokan= 02t

Figure 7.3.1.3-3: Customized block-wise with consecutive lost messages

With customized block-wise transfer, the CoAP client can send a single request for multiple byte-ranges as opposed to Table 7.3.1.1 that indicates to split into multiple of single range requests. Figure 7.3.1.3-4 shows an example where the CoAP client sends a single request message to ask for non-contiguous loss messages.

[image: image8.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

ACK [MID=1234]

>

NON-CON [MID=1235], 2 05 Content, 2:0/1/64

Toen= 020

NON-CON [MID=1236], 2.05 Content, 2:1/1/64

Token=0:20

NON-CON [MID=1237], 2 05 Content, 2:2/1/64

Toen= 020

NON-CON [MID=1238], 205 Content, 2:3/1/64

Token= 0220

NON-CON [MID=1239], 205 Content, 2:4/1/64

Token=0x20

NON-CON [MID=1240], 2 05 Content, 2:5/0/64

Token= 020

CON [MID=1241] GET, /pathirepair_script

UrkQuery =yt om =584 yleto=827 ek om=E91 byte=815"

ACK [MID=1241]

NON-CON [MID=1242], 2 05 Content, 2:0/1/64

Tokan= 02t

NON-CON [MID=1243], 2 05 Content, 2:1/1/64

Tokan= 02t

NON-CON [MID=1244], 2 05 Content, 2:2/0/64

Token= 02t

Figure 7.3.1.3-4: Customized block-wise with contiguous and non-contiguous lost messages
7.3.2
Block Request based File Repair

Two alternatives for block request based file repair via CoAP are described in this contribution. They are motivated by and modeled after similar options in byte-range based file repair, as described in 3GPP TS 26.346, clause 9.3.6.2. Specifically, they are based on the two options available to the BM-SC for delivering FEC encoding symbols using the download delivery method:

· Sending of source symbols followed by repair symbols, and

· Sending of repair symbols exclusively.

For the sake simplicity in the following examples, it is assumed that sub-blocking is not used in the broadcast transmission of FEC symbols. Also, it is assumed that the original file object is stored on a standard CoAP server that supports file repair, and which is FEC-unaware.

7.3.2.1
Option 3: Block request for repair data after broadcast transmission of source and repair symbols
In the example as shown below in Figure 7.3.2.1-1, broadcast delivery of the file object comprises sending of the source symbols followed by repair symbols. It is assumed that the file object for broadcast delivery to MBMS-capable IoT devices is a firmware update file whose size is 6.7 Kbytes. The BM-SC will apply AL-FEC in the transmission of the file object, encoded as source symbols, along with the repair symbols generated from the file, as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image9.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 13

Legend:

Source symbols

Repair symbols

Padding bytes

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Source

Symbol 0

Source

Symbol 15

reception loss

reception loss

Blk_4

Repair

Symbol 35

Figure 7.3.2.1-1 – MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of source + repair symbols

In FLUTE delivery of the file, an integer number of FEC encoding symbols are contained in the 1024-byte packet payload – in this example, four 256-byte FEC symbols are carried in each FLUTE packet. Loss in reception of any FLUTE packet, due to for example transmission errors, would result in a loss of four symbols (for packets not containing padding bytes). The UE will track the number of symbols it has successfully acquired, and determine the specific additional symbols needed for successful FEC decoding. As shown in the above example, FEC symbols which map logically to Blocks 1, 5 and 6 of the source file (along with some repair symbols) were not received, corresponding to the loss of source symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-26. Suppose that in this example, eleven additional symbols are needed to enable full file recovery. The MBMS client will determine that source symbols with ESIs 4-7, 20-23, and 24-26, corresponding to Blocks 1 and 5, and a portion of Block 6, will need to be acquired via unicast file repair. Subsequently, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer from the server of those symbols, as shown in Figure 2.

[image: image10.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 1/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 1/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 5/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 5/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 6/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 6/0/6}

Figure 7.3.2.1-2 – Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 1 and 5 at repair server

Note that in the example message flow in Fig. 7.3.2.1-2, and according to the semantics in RFC 7959 [13], the third line of the request indicates, by ‘B2’, the use of the ‘Block2’ option in the request, and whereby the notation ‘1/0/6’ correspond to the triplet [NUM/M/SZX]. The NUM field represents the block number of the payload requested for return in the response (‘1’, ‘5’ and ‘6’ in this example), the M bit has no meaning and must be set to zero, and SZX = 6 is a variable for use in computing the actual block size for use in block-wise transfer, as given by 2(SZX + 4), or 1024 bytes. Due to the use of the Confirmable (CON) message in the request with message ID as shown inside the bracket [], reliability is ensured for the associated UDP transport by the returned ACK message, with the same Message ID, in which the requested resource is piggybacked.

7.3.2.2
Option 4: Block request for repair data after broadcast transmission of only repair symbols
In the example as shown below in Figure 7.3.2.2-1, only repair symbols are sent in the broadcast delivery of the file object. As in the previous case, a 6.7 Kbyte file is broadcast to (IoT) UEs, the BM-SC applies AL-FEC in the transmission of the file object, and the encoded repair symbols are sent as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image11.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 14

Legend:

Repair symbols

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Repair

Symbol 0

Repair

Symbol 15

reception loss

reception loss

Blk_4

Blk_8

Figure 7.3.2.2-1 – MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of repair symbols only

In this example, it can be seen that FEC symbols which map logically to Blocks 1, 5, 6 and 7 were not received, resulting in the loss of repair symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-31. Similar to the previous example, it is assumed that eleven additional symbols are needed to enable full file recovery, but since only repair symbols were transmitted/received, file recovery can be achieved at the UE by acquiring any eleven source symbols, ensured to be distinct from the already-received repair symbols. In this case, it would the simplest for the MBMS client, acting as the CoAP client, to request the first eleven source symbols, i.e., the initial 2048 bytes of the file stored in the repair server. In other words, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer by the server of the first three 1024-byte blocks (Blocks 0, 1 and 2), from the repair server, as shown in Figure 7.3.2.2-2.

[image: image12.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 0/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 0/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 1/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 1/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 2/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 2/1/6}

Figure 7.3.2.2-2 – Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 0, 1 and 2 at repair server
7.3.2.3
Comparison of Block Request based File Repair Options
The Option 3 vs. Option 4 methods for block request based file repair, as described in Sections 7.3.2.1 and 7.3.2.2, bear resemblance to the broadcast delivery of source and repair symbols vs. repair symbols only methodologies, respectively, and associated unicast procedures for byte-range based file repair as specified in 3GPP TS 26.346. Broadcast transmission of source and repair symbols is shown below in Fig. 7.3.2.3-1, and broadcast transmission of only the repair symbols is shown in Fig. 7.3.2.3-2.

[image: image13]
Figure 7.3.2.3-1 – Broadcast delivery of source and repair symbols

[image: image14.png]Broadcastrepairsymbols only

nternet I:.:.] I

Received broadcast symbols

Red = received broadcast repair symbols
Whi nissed or lost broadcast symbols

Figure 7.3.2.3-2 – Broadcast delivery of repair symbols only

The Block options (‘Block1’ and ‘Block2’ as defined in RFC 7959 [3][13]) enable the repair server to be stateless, i.e. it does not maintain state on what the client has previously retrieved, nor is it aware of the status of the file repair process – e.g., when the client has finished, whether the client has decided to abort the file repair procedure (for example, due to change in the ETag value of the file resource), etc. Complexity of server operation in support of file repair requests from the UE is the same, regardless of whether the client is retrieving contiguous or non-contiguous blocks, or the relative position of the requested repair data within the source file stored at the server (for example, at the beginning or near the end of the file, or somewhere in between). The reason being that the server is handling the request/response for one block at a time, and it maintains no state information on prior transactions.

On the other hand, broadcast transmission of only repair symbols makes the MBMS client’s processing task a little easier, as it need not track which source symbols are missing in generating request for that specific set, which would be required if source symbols were broadcast. However, the client still has to make two separate CoAP requests, as done in Optoin 3. Another potential advantage of repair-only broadcast, as compared to broadcast of source symbols, is the expected better caching efficiency (higher “hit ratio’) in case that proxy caches are employed in the unicast network, since every client that performs file repair can be designed to request repair data (as contiguous symbols) starting with the very first CoAP Block of the source file.

7.3.3
Solution evaluation
The following points are observed from the solutions described in sections 7.3.1 and 7.3.2

· The Option 1 requires that the CoAP server (i.e. File Repair server) understands the request range using defined keywords included in the Uri-query from the CoAP client (i.e. IoT UE). This option allows a flexible implementation choice between the CoAP client and server.

· The Option 2 is similar to the Option 1. In addition, this option requires the registration with IANA for the new CoAP option Range.

· The Options 3 and 4 avoid the need for file repair servers with an understanding of defined keyworks included in the Uri-query as with the Options 1 and 2. The Options 3 and 4 work with the requested byte-range having 2(SZX + 4) discrete values and the maximum requested range is 1024 octets since the SZX field occupies three-bit unsigned integer and the value 7 for SZX is reserved. On the other hand, the Options 1 and 2 work with any arbitrary range.
· In the Options 1 and 2, the file repair servers send only the source symbols. In the Option 3, the file repair servers could send source or repair symbols. On the other hand, only repair symbols are sent by the file repair servers.
· The Options 1 and 2 can benefit from the customized block-wise transfer solution described in section 7.3.1.3. This solution reduces the number of request messages sent by the CoAP client to reduce the energy consumption for IoT devices. This solution enables the benefits of sending a single request for both contiguous and non-contiguous byte range.
	End of document

Page: 1/12

Page: 12/12

[image: image15.png]

