Page 1

3GPP TSG-SA4 Meeting #99
S4-180769
Rome, Italy, 9. – 13. July, 2018
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	26.939
	CR
	0001
	rev
	-
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Corrections of fMP4 instantiation description

	
	

	Source to WG:
	Ericsson LM

	Source to TSG:
	S4

	
	

	Work item code:
	FLUS
	
	Date:
	2010-07-03

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** First Change ****

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 26.238: "Uplink streaming".
[3]
ISO 14496-12: "Information technology – Coding of audio-visual objects – Part 12: ISO base media file format".
[4]
ISO 23000-19: "Information technology – Coding of audio-visual objects – Part 19: Common media application format (CMAF) for segmented media".
[5]
3GPP TS 23.401: "General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access".
[6]
3GPP TS 23.501: "System Architecture for the 5G System".
[7]
ISO 14496-12: "Information technology – Coding of audio-visual objects – Part 12: ISO base media file format".
[8]
ISO 23008-1:"Information technology – High efficiency coding and media delivery in heterogeneous environments – Part 1: MPEG media transport (MMT)".
[9]
ISO 23008-1: 2nd Edition AMD2, "Enhancements for Mobile Environments".

[10]
IETF RFC 6455: "The WebSocket Protocol".
[11]
IETF RFC 5234 (2008): "Augmented BNF for Syntax Specifications: ABNF", D. Crocker, P. Overell.
[12]
IETF RFC 6817: "Low Extra Delay Background Transport (LEDBAT)".
[13]
ISO 23000-19: “Common Media Application Format for Segmented Media (CMAF)”
[14]
IETF RFC 7230: “Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing”
[15]
IETF RFC 7540: “Hypertext Transfer Protocol Version 2 (HTTP/2)”
**** Next Change ****
7.1.4
fMP4-based Instantiation with HTTP Delivery.

7.1.4.1
General Description

This clause describes a FLUS Media Plane instantiation using a continuous sequence of CMAF Chunks [13] with HTTP Delivery, e.g. HTTP 1.1 [14] Chunked Delivery or HTTP 2.0 [15] Delivery.

This instantiation is identified in the F-C configuration by the following urn: "org:3gpp:flus:2018:instantiations:fmp4". An additional F-C configuration option determines, whether HTTP 1.1 with Chunked Transfer Encoding, HTTP2.0 with TCP or HTTP 2.0 with other transport protocols such as QUIC should be used for the continuous upload of CMAF Chunks. Note, the HTTP version and the transport protocol may also be negotiated at connection setup. When using QUIC as transport protocol, the FLUS Source can fall back to TCP, when the QUIC session setup fails.
The CMAF Track used for this instantiation starts with the CMAF Header, followed by a sequence of CMAF Chunks.

The CMAF Header contains information around the number of tracks, the used codec, codec configuration and optionally static metadata for the upstreamed movie file.

When the FLUS session contains multiple media components, each component is formatted as a CMAF Track and upstreamed separately. A common presentation timeline is used across the different media components.

It is assumed that the FLUS Source provides only a single quality per media components to the FLUS Sink. It is assumed that this single quality is the highest quality and the FLUS Sink could create additional quality representations using a transcoder. However, it is in principle also possible that the FLUS Source provides multiple quality representations per media components.

The CMAF Chunks of the CMAF Track are continuously appended to a larger resource. The FLUS source is generally not adding 'styp' boxes, except if the immediately succeeding CMAF Chunk contains a service access point.
[image: image1.emf]otherboxesotherboxesInitialization‘moov’Movie Fragment(‘moof’ + ‘mdat’)HTTP ResourceMovie Fragment(‘moof’ + ‘mdat’)Movie Fragment(‘moof’ + ‘mdat’)Profile ‘Continuous’HTTP ChunkHTTP ChunkHTTP ChunkHTTP ChunkCMAF ChunkCMAF Header

Figure 1: Illustration of Continuous Chunk Profiles (with mapping to HTTP 1.1 resources)

When a single FLUS Source streams multiple CMAF Tracks, a common media time line (i.e. decoding and composition timestamps) should be used across all CMAF Tracks. The FLUS source may insert wall clock timestamps using the Producer Reference Time Box ('pfrt'box) into the CMAF Chunk stream. This may be beneficial, when streams from multiple FLUS Sources should be jointly post processed. The FLUS Source should be properly time-synchronized with the network, e.g. using EPS time synchronization derived from SIB16 (See TS 36.331) or NTP or other appropriate mechanisms.

This FLUS media instantiation focuses on the usage of the HTTP 1.1 and HTTP 2 protocol for uplink. Usage of secure connections is possible using existing HTTP technologies.

The FLUS sink offers a simple HTTP PUT or POST interface for upload. The actual uplink stream is provided in the HTTP request body.

The FLUS sink exposes the Push URL element, which provides the base URL for the ingestion. All FLUS source appended sub-paths to the base URL belong to the same FLUS session.

Example, the FLUS sink offers the Push URL "http://sink.operator.com/sessionxyz/" via F-C. This allows the FLUS source to ingest sessions with multiple media components. Each media component is identified by a unique URL. The FLUS source appends additional path parts to complete the URL for the media. For example, the FLUS source sends audio to http://sink.operator.com/sessionxyz/audio-180130.mp4 and video to http://sink.operator.com/sessionxyz/video-180130.mp4.

When the FLUS source starts the media session, the FLUS source streams first the CMAF Header information for the movie file. After that, the FLUS source streams FLUS Chunks as the FLUS chunks become available.

In case of HTTP 1.1, the FLUS source uses HTTP chunked transfer encoding. Usage of HTTP chunked transfer encoding is indicated in the HTTP request header for the upload. The FLUS source finalizes the HTTP resource by sending a zero-size HTTP Chunk. HTTP 1.1 does not allow multiplexing of multiple simultaneous HTTP resources (aka media components), so, when multiple media components are streamed uplink, a separate TCP connection is needed for each media component.

In case of HTTP2, the FLUS source is simply omitting the Content-Length header. The FLUS source finalizes the HTTP resource by closing the HTTP2 stream using the END_STREAM flag in a frame. HTTP 2.0 allows multiplexing of multiple HTTP resources on the same transport connection (such as TCP).

When using TCP as transport, the usage of a persistent TCP connection for HTTP resource up streaming is recommended. The TCP buffer level is controlled by means of the TCP_NOTSENT_LOWAT socket option that is available in multiple operating systems.

An example of a recommended congestion control is LEDBAT [12], other congestion control schemes, which strive for a low network queue delay, are currently under development in IETF.

7.1.4.2
Rate Adaptation

The FLUS source could adapt the media bitrate to fit to the currently available link bitrate. The rate adaptation algorithms of the underlying transport protocol realization (such as TCP) are re-used. When the codec configuration parameters (e.g. picture parameter set) are not changed, the FLUS Source can change the encoding bitrate without interrupting the encoding process. A media streaming solution is preferably rate adaptive in order to cope with changing network conditions. A FLUS source, creating an fMP4 stream, can also change the bitrate as needed. In order to allow for rate adaptation, the FLUS sink offers a reception buffer (Cf. Figure 2), which delays the stream for a configurable duration. The reception buffer can be used to compensate link bitrate variations without the need of changing the media quality. The FLUS Source starts rate adaptation when the reception buffer on the FLUS Sink cannot compensate the link bitrate variations anymore. The reception buffer depth could be configurable via F-C.

The FLUS sink uses this reception queue (see figure below) to recover the encoder frame rate, i.e. to compensate network jitter. The FLUS source needs to know or needs to provision the FLUS sink delay in order to apply rate adaptation techniques for example to provide the best possible quality at minimal frame losses (i.e. due to late FLUS Sink arrival). Such a configuration is provided with the Pipeline Description element.

[image: image2.emf]EncoderTXFrameQueueTransmission Progress MonitorBitrateChangesRaw InputEncoded Frames @ framerateUpstreamedFramesTXReception BufferRecovered FramerateFLUS SinkFLUS Source3GPP NetworkStoragePPOptional

Figure 2: Rate Adaptation
A FLUS source can monitor the upstreaming progress or could listen to notifications / rate recommendations from the network. Either as an alternative and/or additional facility, the network could provide a dedicated assistance capability to boost the reception of upstream media, in case transient network throughput restrictions have caused a too high backlog at the FLUS Source. This model is particularly appropriate for approaches whereby the FLUS source expects the network to be able to upstream a particular pre-determined format or bitrate version of the media asset that is being sourced.

Existing transport protocols such as TCP employ a rate adaptation algorithm, which adjusts the TCP throughput to the available link bitrate. A rate adaptation logic can measure the bitrate at which the TCP sender is draining the frame queue. Further, the FLUS source can monitor, how quickly a frame is upstreaming (first byte of the frame until the last byte of the frame).

Any quality changes of the FLUS Source due to rate adaptation is noticeable to the audience. In some situations, it may be better to configure a larger Transmission Buffer (i.e. operate at a higher delay) to ensure a higher and sustainable quality. There is no need to standardize the detailed rate adaptation algorithm. However, the FLUS sink should support a reception queue and recovery of the encoder frame rate.

Other transport protocols such as QUIC may also be used to re-use rate control and retransmission schemes.
7.1.5
fMP4-based Instantiation using multiple segments per track

7.1.5.1
General Description

This section contains a similar description to clause 7.1.2 with the difference, that the CMAF track is subdivided into individual CMAF Segments. Depending on the FLUS Sink implementation, every CMAF Segment is identified by a unique URL or the FLUS sink derives the segment sequence from the segments itself. In the first case, all CMAF Segments belonging to the same CMAF Track are identified by the same base URL. In the latter case, that same URL is used for all CMAF Segment of the same CMAF Track.
This instantiation is identified in the F-C configuration by the following urn: "org:3gpp:flus:2018:instantiations:fmp4". An additional F-C configuration option determines, whether HTTP 1.1 (with Chunked Transfer Encoding), HTTP2.0 with TCP or HTTP 2.0 with other transport protocols such as QUIC should be used. Note, the HTTP version and the transport protocol may also be negotiated at connection setup. When using QUIC as transport protocol, the FLUS Source can fall back to TCP, when the QUIC session setup fails.
A FLUS session may contain one or more media components. When the FLUS session contains multiple media components, each component is formatted as a CMAF Track and upstreamed separately. A common presentation timeline is used across the different media components.
The CMAF Header contains information around the number of tracks, the used codec, codec configuration and optionally static metadata for the upstreamed movie file.
Every CMAF Track starts with the CMAF Header, followed by a sequence of CMAF Segments. Every CMAF Segment may contain one or more CMAF Chunks.
Every CMAF Segment starts with an ‘styp’ box.
An additional F-C configuration option allows the selection of the “Segmented” Profile. When selecting the “Segmented” Profile, some additional configuration parameters are needed. For every CMAF Track, an URL for the CMAF Header and an URL Template for CMAF segments is configured.
[image: image3.emf]HTTP ResourceotherboxesInitialization‘moov’Movie Fragment(‘moof’ + ‘mdat’)HTTP ResourceMovie Fragment(‘moof’ + ‘mdat’)HTTP ResourceProfile ‘Segmented’‘styp’otherboxesMovie Fragment(‘moof’ + ‘mdat’)HTTP Resource‘styp’CMAF ChunkCMAF Header

Figure 3: Illustration of Segmented Profiles (with mapping to HTTP resources)

The FLUS sink offers a simple HTTP PUT or POST interface for upload. The actual uplink stream is provided in the HTTP request body. The HTTP request header contains an URL, either corresponding to the CMAF header or is formatted according to the CMAF Segment URL template.
