Page 1

3GPP TSG-SA4 Meeting #98
S4-180505
Kista, Sweden, 9. – 13. April 2018
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	26.939
	CR
	CRNum
	rev
	-
	Current version:
	x.y.z
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	fMP4 based F-U Instantiation

	
	

	Source to WG:
	Ericsson LM

	Source to TSG:
	

	
	

	Work item code:
	FLUS
	
	Date:
	yyyy-MM-dd

	
	
	
	
	

	Category:
	
	
	Release:
	Rel-

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

7
FLUS User Plane Instantiations

7.1
Non-IMS-based User Plane Instantiations
7.1.1
Introduction

This clause describes a set of instantiations for the generic FLUS User Plane that is not based on IMS.

7.1.2
fMP4-based Instantiations

7.1.2.1
Introduction

All instantiations of this clause are based on the fragmented ISOBMFF [3] format which is profiled by CMAF [4]. The following description summarisies the used media format used in this technical report:

1. Each media component is formatted as a CMAF Track.

2. Each CMAF Track starts with a CMAF Header followed by one ore more CMAF Fragments. A CMAF Fragment contains one or more CMAF Chunks. Note that CMAF requires that only the first CMAF chunk of a CMAF fragment is constrained to be an adaptive switching point. All subsequent CMAF Chunks do not need to contain any service access point.

3. When CMAF Fragments contain more than one CMAF chunk, it is beneficial that the first CMAF Chunk of the CMAF Fragment is preceded by a SegmentTypeBox that includes the compatible_brands 'cmfl', 'cmff'.
Note that the technical report only considers the CMAF file format specific features.

7.1.2
fMP4-based Instantiation with HTTP Delivery.

7.1.2.1
General Description

This clause describes an FLUS Media Plane instantiation using a continuous sequence of CMAF Chunks with HTTP Delivery, e.g. HTTP 1.1 Chunked Delivery or HTTP 2.0 Delivery.
This instantiation is identified in the F-C configuration by the following urn: “org:3gpp:flus:2018:instantiations:fmp4”. An additional F-C configuration option determines, whether HTTP 1.1 with Chunked Transfer Encoding, HTTP2.0 with TCP or HTTP 2.0 with other transport protocols such as QUIC should be used. Note, the HTTP version and the transport protocol may also be negotiated at connecton setup. When using QUIC as transport protocol, the FLUS Source can fall back to TCP, when the QUIC session setup fails.
The CMAF Track used for this instantiation starts with the CMAF Header, followed by a sequence of CMAF Chunks.
The CMAF Header contains information around the number of tracks, the used codec, codec configuration and optionally static metadata for the upstreamed movie file.
When the FLUS session contains multiple media components, each compotent is formatted as a CMAF Track and upstreamed separately. A common presentation timeline is used across the different media components.
It is assumed that the FLUS Source provides only a single quality per media components to the FLUS Sink. It is assumed that this single quality is the highest quality and the FLUS Sink could create additional quality representations using a transcoder. However, it is in principle also possible that the FLUS Source provides multiple quality representations per media components.
The CMAF Chunks of the CMAF Track are continuously appended to a larger resource. The FLUS source is generally not adding ‘styp’ boxes, except the immediately succeeding CMAF Chunk contains a service access point.
[image: image1.emf]other

boxes

other

boxes

Initialization

‘moov’

Movie Fragment

(‘moof’ + ‘mdat’)

HTTP Resource

Movie Fragment

(‘moof’ + ‘mdat’)

Movie Fragment

(‘moof’ + ‘mdat’)

Profile ‘Continuous’

HTTP Chunk HTTP Chunk HTTP Chunk

HTTP Chunk

CMAF Chunk

CMAF Header

Figure X-1: Illustration of Continuous Chunk Profiles (with mapping to HTTP 1.1 resources).

When a single FLUS Source streams multiple CMAF Tracks, a common media time line (i.e. decoding and composition timestamps) should be used across all CMAF Tracks.
The FLUS source may insert wallclock timestamps using the Producer Reference Time Box (‘pfrt’ box) into the CMAF Chunk stream. This may be beneficial, when streams from multiple FLUS Sources should be jointly post processed. The FLUS Source should be properly timesynchronized with the network, e.g. using EPS time synchronization derived from SIB16 (See TS 36.331) or NTP or other appropriate mechanisms.
This FLUS media instantiation focuses on the usage of the HTTP 1.1 and HTTP 2 protocol for uplink. Usage of secure connections is possible using existing HTTP technologies.

The FLUS sink offers a simple HTTP PUT or POST interface for upload. The actual uplink stream is provided in the HTTP request body.
The FLUS sink exposes the Push URL element, which provides the base URL for the ingestion. All FLUS source appended sub-paths to the base URL belong to the same FLUS session.

Example, the FLUS sink offers the Push URL “http://sink.operator.com/sessionxyz/” via F-C. This allows the FLUS source to ingest sessions with multiple media components. Each media component is identified by a unique URL. The FLUS source appends additional path parts to complete the URL for the media. For example, the FLUS source sends audio to http://sink.operator.com/sessionxyz/audio-180130.mp4 and video to http://sink.operator.com/sessionxyz/video-180130.mp4.

When the FLUS source starts the media session, the FLUS source streams first the CMAF Header information for the movie file. After that, the FLUS source streams FLUS Chunks as the FLUS chunks become available.

In case of HTTP 1.1, the FLUS source uses HTTP chunked transfer encoding. Usage of HTTP chunked transfer encoding is indicated in the HTTP request header for the upload. The FLUS source finalizes the HTTP resource by sending a zero-size HTTP Chunk. HTTP 1.1 does not allow multiplexing of multiple simultaneous HTTP resources (aka media components), so, when multiple media components are streamed uplink, a separate TCP connection is needed for each media component.
In case of HTTP2, the FLUS source is simply omitting the Content-Length header. The FLUS source finalizes the HTTP resource by closing the HTTP2 stream using the END_STREAM flag in a frame. HTTP 2.0 allows multiplexing of multiple HTTP resources on the same transport connection (such as TCP).
When using TCP as transport, the usage of a persistent TCP connection for HTTP resource up streaming is recommended. The TCP buffer level is controlled by means of the TCP_NOTSENT_LOWAT socket option that is available in multiple operating systems.
An example of a recommended congestion control is LEDBAT [RFC6817], other congestion control schemes, which strive for a low network queue delay, are currently under development in IETF.
7.1.2.2
Rate Adaptation

The FLUS source could adapt the media bitrate to fit to the currently available link bitrate. The rate adaptation algorithms of the underlying transport protocol realization (such as TCP) are re-used. When the codec configuration parameters (e.g. picture parameter set) are not changed, the FLUS Source can change the encoding bitrate without interrupting the encoding process.
A media streaming solution is preferably rate adaptive in order to cope with changing network conditions. A FLUS source, creating an fMP4 stream, can also change the bitrate as needed.
In order to allow for rate adaptation, the FLUS sink offers a reception buffer (Cf. Figure X), which delays the stream for a configurable duration. The reception buffer can be used to compensate link bitrate variations without the need of changing the media quality. The FLUS Source starts rate adaptation when the reception buffer on the FLUS Sink cannot compensate the link bitrate variations anymore. The reception buffer depth could be configurable via F-C.
The FLUS sink uses this reception queue (see figure below) to recover the encoder frame rate, i.e. to compensate network jitter. The FLUS source needs to know or needs to provision this FLUS sink delay in order to apply rate adaptation techniques for example to provide the best possible quality at minimal frame losses (i.e. due to late FLUS Sink arrival). Such a configuration is provided with the Pipeline Description element.

[image: image2.emf]Encoder

TX

Frame

Queue

Transmission Progress

Monitor

Bitrate

Changes

Raw

Input

Encoded

Frames @

framerate

Upstreamed

Frames

TX

Reception

Buffer

Recovered

Framerate

FLUS Sink

FLUS Source

3GPP

Network

Storage

PP

Optional

Figure 1: Rate Adaptation
A FLUS source can monitor the upstreaming progress or could listen to notifications / rate recommendations from the network. Either as an alternative and/or additional facility, the network could provide a dedicated assistance capability to boost the reception of upstream media, in case transient network throughput restrictions have caused a too high backlog at the FLUS Source. This model is particularly appropriate for approaches whereby the FLUS source expects the network to be able to upstream a particular pre-determined format or bitrate version of the media asset that is being sourced.

Existing transport protocols such as TCP employ a rate adaptation algorithm, which adjusts the TCP throughput to the available link bitrate. A rate adaptation logic can measure the bitrate at which the TCP sender is draining the frame queue. Further, the FLUS source can monitor, how quickly a frame is upstreaming (first byte of the frame until the last byte of the frame).
Any quality changes of the FLUS Source due to rate adapation is noticeable to the audience. In some situations, it may be better to configure a larger Reception Buffer (i.e. operate at a higher delay) to ensure a higher and sustainable quality.
There is no need to standardize the detailed rate adaptation algorithm. However, the FLUS sink should support a reception queue and recovery of the encoder frame rate.

Other transport protocols such as QUIC may also be used to re-use rate control and retransmission schemes.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.

7.1.3
fMP4-based Instantiation using multiple segments per track
7.1.3.1
General Description
This section contains a similar description to 7.1.2 with the difference, that the CMAF track is subdivided into individual CMAF Segments. Depending on the FLUS Sink implementation, every CMAF Segment is identified by a unique URL or the FLUS sink derives the segment sequence from the segments itself. In the first case, all CMAF Segments belonging to the same CMAF Track are identified by the same base URL. In the latter case, that same URL is used for all CMAF Segment of the same CMAF Track.
[image: image4.emf]HTTP Resource

other

boxes

Initialization

‘moov’

Movie Fragment

(‘moof’ + ‘mdat’)

HTTP Resource

Movie Fragment

(‘moof’ + ‘mdat’)

HTTP Resource

Profile ‘Segmented’

‘styp’

other

boxes

Movie Fragment

(‘moof’ + ‘mdat’)

HTTP Resource

‘styp’

CMAF Chunk CMAF Header

Figure X-2: Illustration of Segmented Profiles (with mapping to HTTP resources)

8
Example FLUS Workflows
8.1
Example Call Flow for fragmented MP4 with HTTP Delivery
Assumptions:

The FLUS session is created from the same device as the FLUS media plane is provided.

The FLUS Source selects a FLUS Sink, which supports the required Media Codecs and post processing capabilities.

The FLUS Sink provides a single HTTP Push URL so that the FLUS Source can establish one or more HTTP Sessions to the FLUS Sink. The Push URL here is http://sink.operator.com/sessionxyz/.

The FLUS Source uses the received Ingest URL and appends suffixes, so that any media component (CMAF Track) is identified by a unique URL. The FLUS Source here desires to upstream a video and an audio component.

[image: image5.wmf]S

o

u

r

c

e

F

-

C

F

-

U

A

u

d

i

o

S

o

u

r

c

e

F

-

U

V

i

d

e

o

S

o

u

r

c

e

S

i

n

k

F

-

C

F

-

U

A

u

d

i

o

S

i

n

k

F

-

U

V

i

d

e

o

S

i

n

k

F

L

U

S

S

e

s

s

i

o

n

p

r

o

v

i

s

i

o

n

i

n

g

1

:

L

o

g

i

n

/

A

u

t

h

o

r

i

z

a

t

i

o

n

2

:

C

r

e

a

t

e

F

L

U

S

S

e

s

s

i

o

n

O

K

3

:

G

e

t

F

L

U

S

S

e

s

s

i

o

n

P

r

o

p

e

r

t

i

e

s

4

:

O

K

J

S

O

N

w

i

t

h

S

e

s

s

i

o

n

P

r

o

p

e

r

t

i

e

s

5

:

U

p

d

a

t

e

F

L

U

S

S

e

s

s

i

o

n

O

K

6

:

G

e

t

F

L

U

S

S

e

s

s

i

o

n

P

r

o

p

e

r

t

i

e

s

7

:

O

K

J

S

O

N

w

i

t

h

S

e

s

s

i

o

n

P

r

o

p

e

r

t

i

e

s

8

:

T

h

e

F

L

U

S

S

e

s

s

i

o

n

i

s

c

r

e

a

t

e

d

a

n

d

c

o

n

f

i

g

u

r

e

d

F

L

U

S

M

e

d

i

a

E

s

t

a

b

l

i

s

h

m

e

n

t

(

T

w

o

m

e

d

i

a

c

o

m

p

o

n

e

n

t

s

a

r

e

u

p

s

t

r

e

a

m

e

d

t

o

t

h

e

F

L

U

S

S

i

n

k

)

9

:

P

U

T

/

s

e

s

s

i

o

n

x

y

z

/

a

u

d

i

o

-

1

8

0

1

3

0

.

m

p

4

1

0

:

P

U

T

/

s

e

s

s

i

o

n

x

y

z

/

v

i

d

e

o

-

1

8

0

1

3

0

.

m

p

4

1

1

:

C

h

u

n

k

0

:

C

M

A

F

H

e

a

d

e

r

f

o

r

a

u

d

i

o

1

2

:

C

h

u

n

k

1

:

C

M

A

F

H

e

a

d

e

r

f

o

r

v

i

d

e

o

1

3

:

S

e

n

d

C

M

A

F

C

h

u

n

k

s

F

L

U

S

M

e

d

i

a

T

e

r

m

i

n

a

t

i

o

n

1

4

:

2

0

x

1

5

:

2

0

x

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

4

.

6

.

2

FLUS Session Provisioning using F-C

16. The User of the system (FLUS Source Control) logins into the FLUS system, e.g. using user-name and password.

17. The user creates a FLUS session using F-C. The FLUS Sink provides a unique session id to be used in subsequent transactions

18. For FLUS Session provisioning, the FLUS source first fetches the FLUS session parameters.

19. The FLUS Sink provides the FLUS session parameters with the rersponse.

20. The FLUS Source does the needed FLUS Session modifications and applies the changes.

21. The FLUS source fetches the updated FLUS session parameters (The FLUS Sink may have done updates due to configurations).

22. The FLUS Sink provides the FLUS session parameters with the rersponse. The FLUS Session parameters contains a Push base URL (here. http://sink.operator.com/sessionxyz/)

23. The FLUS Session is now fully provisioned and the FLUS Source has all needed information.

Note:
The FLUS source function may be separated over different devices. A user can do the FLUS Session Configuration much earlier and potentially using a different device. When the FLUS Source re-connects to an already established, but not active session, the FLUS Source needs to authenticate towards the FLUS Sink (repetition of Step 1).

When time is due to establish the FLUS media session, the FLUS Source should establish here two HTTP Sessions for media components (each formatted as CMAF Track).

24. The FLUS Source establishes a transport connection (e.g. TCP) and sends an HTTP 1.1 Command. Here, the FLUS Source Sends an HTTP PUT command to establish the audio HTTP session.

25. The FLUS Source establishes a transport connection (e.g. TCP) and sends an HTTP 1.1 Command. Here, the FLUS Source Sends an HTTP PUT command to establish the video HTTP session.

26. The FLUS Source sends the CMAF Header file for the audio component. The FLUS sink finds detailed condect configuration information.

27. The FLUS Source sends the CMAF Header file for the video component. The FLUS sink finds detailed condect configuration information.

28. The FLUS Source starts appending CMAF Chunks to the established HTTP Sessions (according to the type),

When the FLUS Source is pausing the live uplink streaming session, the FLUS source may stop sending CMAF Chunk and keep the HTTP session open. When the FLUS session is continued, the FLUS Source may continue appending CMAF chunks to the session.

When time is due to terminate the FLUS media session, the FLUS Source sends a zero size HTTP Chunk.

29. Upon reception of the zero size HTTP Chunk, the FLUS Sink sends the HTTP response, indicating the creation of the audio track.

30. Upon reception of the zero size HTTP Chunk, the FLUS Sink sends the HTTP response, indicating the creation of the video track.

7.1.2.3
CMAF Format Example
An example from a wireshark capture is depicted below. The FLUS source uses here HTTP PUT together with HTTP chunked transfer encoding to an Apache2 server. The Apache2 server was configured with a webdav server module.

The first HTTP Chunk contains the ‘ftyp’ box and the initialization information. The first HTTP chunk is of size ‘27d’. The first FLUS chunk (containing here only ‘moof’ and ‘mdat’ boxes) is set afterwards as single HTTP chunk. The size of the second HTTP chunk is 2beb.

PUT /webdav/dbg-DirCam-20180119-092131.mp4 HTTP/1.1
Transfer-Encoding: chunked
Content-Type: video/mp4
User-Agent: FLUS_HTTP_User_Agent
Host: 192.168.1.141
Connection: Keep-Alive
Accept-Encoding: gzip
Scheme: http
27d
....ftypisom....isomavc1...emoov...lmvhd......[
..[
..@...................................trak...\tkhd......[
..[
..@..............emdia... mdhd......[
..[
........U......%hdlr........vide............Tlos.....minf....vmhd...............$dinf....dref............urlstbl....stsd...........|avc1.............................H...H...&avcC.B.(....gB.(..@x.
...E8...h.C.....stts............stsc............stsz................stco...........(mvex... trex........................
2beb
...Pmoof....mfhd...........8traf....tfhd...8.......d..+....@....trun...........X..+.mdat..+.e...@...&(....}.....O.. 3..;.}.......]..}........}..}.....?.G.W.Q......'..x....>
<cut>

..Dns.@#.v'......8..L#.....{..G......?."8@F.....4F...B.B.'....7.#.C..8.<p.....8...D.0G...a.LG.#.x..>.>...X`C.^...?8....?.P....
..<. mN#.......O?V..%..:.,#....q.z...V..b....U....7.%hK.xpC...".....x....|Gb;..7
..ui..@.0Gb..#t!..w....Y..;.z..@!a..]Z...8LF.
0
HTTP/1.1 201 Created
Date: Fri, 19 Jan 2018 08:21:42 GMT
Server: KnownServer/2.4.18
Location: http://192.168.1.141/webdav/dbg-DirCam-20180119-092131.mp4
Access-Control-Allow-Origin: *
Content-Length: 291
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=ISO-8859-1
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>201 Created</title>
</head><body>
<h1>Created</h1>
<p>Resource /webdav/dbg-DirCam-20180119-092131.mp4 has been created.</p>
<hr />
<address>KnownServer/2.4.18 Server at 192.168.1.141 Port 80</address>
</body></html>
When the FLUS source terminates the HTTP Request body using a zero size HTTP chunk, the HTTP server provides the HTTP response.

_1582384456.bin

