Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting #97
S4-180245
Fukuoka, Japan, 5-9 February 2018
	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.843
	CR
	xxx
	rev
	x
	Current version:
	0.0.3
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Pseudo CR to TR 26.843

	
	

	Source to WG:
	Intel, Fraunhofer IIS,

	Source to TSG:
	S4

	
	

	Work item code:
	FS_EVS_FCNBE
	
	Date:
	2018-01-30

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Provide more detail on decoder test as well as additional results.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

***** CHANGE 1 *****
5.2.5 Analysis Flow and Reporting
The three metrics are computed in a specific order, as shown in figure x2. Once a frame passes a metrics, the process is stopped and the next frame is analysed. The SNR metrics is computed on the frames failing the RMS error criteria. Similarly the Spectral Distortion metrics is computed on the frames failing the SNR criteria.

[image: image2.emf]For All frames

RMS < Trms

Compute RMS error

Frame pass

Yes

Compute SNR No

SNR > Tsnr

Yes

Compute SD

SD < Tsd

No

Yes

Frame Fail

No

Figure x2: Flow chart for decoder tool
In a file one or two frames could slightly be above the threshold. To avoid to relax the threshold, a criteria could be to add a constraint on the number of frames failing per file.

if number_of_frames_failing =< THRESH_GOOD_FRAMES_TO_PASS * number_of_frame_in file, the test signal will be considered equivalent to the reference signal.

[Editor’s note]: This allowance of couple of failing frames allowance per file raised concern that it will not be able to catch short error burst. 0% threshold or another criteria on failing frame could be investigated as a way forward.
All the test vectors need to pass for the implementation to be conformant.
In addition to the number of fail/pass test vectors, the statistics from the three methods should be displayed. Table x2 shows an example of reporting.

Table x2: Template for result presentation

	
	RMS
	WSNR
	Spectral Distortion

	Number of frames tested
	
	
	

	Number of frames passing
	
	
	

	Number of frames failing
	
	
	

	Ratio of frames passing
	
	
	

	Ratio of frames failing
	
	
	

As part of conformance criteria, thresholds could be set for the ratio of frames passing with RMS and SNR tests (Ratio_RMSframespassing_and RatioWSNRframespassing respectively).
To illustrate the need for the RMS criterion the following histogram (Figure Y) shows SNR values for frames passing the RMS criterion for a platform considered conformant (GCC, O3). The total ratio of RMS frames passing is around 48%. As can be seen, the majority of those frames show a very low SNR value (e.g. <5dB), not useful for a secure classification of the frame.

The second plot shows the correlation of the SNR values to the actual signal power. As one can see, a low signal power corresponds to a low SNR value, indicating that in order to use the SNR criterion in a reliable way, a certain amount of signal power is required. It would therefore be good if the RMS criterion be able to capture at least all low-power frames. To ensure that these low-power frames would not be handled by the by SNR criterion in an uncertain way, a dedicated number of frames shall pass the RMS criterion based on all the files tested.
[image: image3.emf]

Figure Y: Plot of SNR passing the RMS criterion
***** CHANGE 2 *****
5.2.6 List of Thresholds
The list of the thresholds used in decoder test are summarized in table x3 with example values.

 Table x3: List of thresholds

	Thresholds
	Description
	Example value

	SNRHEADROOM
	Headroom compare to the Tsnr threshold
	3 dB

	CDSNRMAX
	Limit of SNR for the spectral distortion test
	0 dB

	CDSNRHEADROOM
	Headroom compare to Tsnr threshold for the spectral distortion test
	10 dB

	Tsd
	Threshold for the spectral distance
	6.6

	THRESH_GOOD_FRAMES_TO_PASS
	Factor for number of failing frame per file
	0.005

	Ratio_RMSframespassing
	Minimal percentage for frames passing RMS error test
	47%

	RatioWSNRframespassing
	Minimal percentage for frames passing WSNR test
	95%

***** CHANGE 3 *****

6.4 Experiment C
6.3.1 Compiler Options

Three compilers/platforms have been used for this study. In both cases the code from 26.443 (Version C80) has been compiled with various optimization levels to evaluate the sensitivity of the conformance tools.
6.3.1.1 Icc Compiler on Atom Platform

This configuration is the same that was used to report result with MOS-LQO presented in clause 6.1. Three levels of optimization were used:

Opt_None: the code was compiled without any optimization.

Opt_Quality: the code was compiled with various optimization level depending on the file and functions to provide best computational performance while insuring quality.

Opt_Agg: the code was compiled with a very aggressive setting (-o3, -fast2) for computation performance, without checking on the possible consequences on quality
The Atom platform used was 32 bits.

6.3.1.2 Gcc compiler on Xeon platform

In this configuration, three level of optimization were used.

O0: the code was compiled without any optimization.

O2: the code was compiled with normal optimization level for speed and memory

O2+avx2: the code was compiled to take advantage of vector extensions math routine and can lead to variation in the arithmetic results. The avx2 option in gcc is –march=avx2
The Xeon platform is a 64bits platform.

6.3.1.3 Gcc compiler on ARM platform

In this configuration, two level of optimization were used with GCC compiler (version 6.3.0).
O3: the code was compiled with –o3 option only

O3-fast-math: the code was compiled with –o3 and –fast-math option
In this experiment a raspberry Pi board (model B generation 1) has been used to test a floating-point implementation using ARMv6.
6.3.2 Decoder Test Results

For this test, the EVS and AMR_WB_IO test vectors from 26.444 are used, representing 2675 test vectors.
The decoder test described in 5.2 was used to assess the different platform/compiler options. The various thresholds have been set to the examples values presented in clause 5.2.6, table x3

Tables 4 and 5 and 6 show the number of failed files in each cases for the three systems under test:

Table 4: Result for icc and Atom system

	
	
	
	

	
	
	
	

	
	
	Opt_None
	Opt_Quality
	Opt_Agg

	
	Frames tested
	2349831
	2349831
	2349831

	RMS
	Frames passing
	2227191
	1118136
	1072142

	
	Frames failing
	122640
	1231695
	1277689

	
	% passing
	94.8
	47.6
	45.6

	
	% failing
	5.2
	52.4
	54.4

	SNR
	Frames passing
	121642
	1230563
	1160530

	
	Frames failing
	998
	1132
	117159

	
	% passing
	99.2
	99.9
	90.8

	
	% failing
	0.8
	0.1
	9.1

	Spectral Distortion
	Frames passing
	923
	864
	25075

	
	Frames failing
	75
	268
	92084

	
	% passing
	92.5
	76.3
	21.5

	
	% failing
	7.5
	23.7
	78.5

	Overall % frames passing
	99.997
	99.989
	96.081

	Overall % frames failing
	0.003
	0.011
	3.92

	Number of files failing
	2
	1
	650

	Number of files passing
	2673
	2674
	2025

The 2 files failing the opt_none (T16_6600_16kHz.b10.OUT, T16_dtx_6600_16kHz.b10.OUT) are the same condition with error impairment. These 2 files, as well as the reference test vectors from 26.444 are attached to this contribution.

For the Opt_quality, the file failing is due to time shifting of the signal and contributes 186 of the total failing frames(T06_dtx_12650_16kHz.dly_error_profile_5.dat.netsimoutput.OUT). This file is a JBM test case in the AMRWB_IO set of test vector.

The results from Table 4 are in correlation with the results reported in clause 6.2. Both approaches flag the Opt_Agg as a non-conformant floating-point implementation.

Table 5: Result for gcc and Xeon system

	
	
	-o0
	-o2
	-o2-avx2

	
	Frames tested
	2349831
	2349831
	2349831

	RMS
	Frames passing
	1131386
	1131464
	1157459

	
	Frames failing
	1218445
	1218367
	1192372

	
	% passing
	48.1
	48.1
	49.2

	
	% failing
	51.9
	51.9
	50.8

	SNR
	Frames passing
	1218443
	1218298
	1152506

	
	Frames failing
	2
	69
	39866

	
	% passing
	100
	100
	96.7

	
	% failing
	0
	0
	3.3

	Spectral Distortion
	Frames passing
	1
	64
	37678

	
	Frames failing
	1
	5
	2188

	
	% passing
	50
	92.7
	94.5

	
	% failing
	50
	7.3
	5.5

	Overall % frames passing
	100.000
	100.000
	99.907

	Overall % frames failing
	0.00
	0.00
	0.09

	Number of files failing
	0
	0
	83

	Number of files passing
	2675
	2675
	2592

The number of passing files is 100%, even if not all the frames are passing for the –o0 and –o2 option as the thresholds used (Table 5.2.6) allows 0.5% failing frames per file.

The results of Table 5 show similar result as Table2 in the sense that changes in the arithmetic precision or execution will be flagged. A detailed analysis of the 83 failed vectors, shows that the majority of the failed vectors are 32 kHz and 48 kHz noisy speech files test vectors.

Table 6: Results for gcc on ARM platform

	
	
	-o3
	-o3-fast-math

	
	Frames tested
	2349830
	2349829

	RMS
	Frames passing
	1131118
	87625

	
	Frames failing
	1218712
	2262204

	
	% passing
	48.1
	3.73

	
	% failing
	51.9
	96.27

	SNR
	Frames passing
	1218712
	301747

	
	Frames failing
	0
	1960457

	
	% passing
	100
	13.34

	
	% failing
	0
	86.66

	Spectral Distortion
	Frames passing
	0
	261677

	
	Frames failing
	0
	1698780

	
	% passing
	--
	13.35

	
	% failing
	--
	86.65

	Overall % frames passing
	100
	27.7

	Overall % frames failing
	0
	72.3

	Number of files failing
	0
	2547

	Number of files passing
	2675
	128

It can be seen that with the more aggressive compiler settings (-fast-math), the number of frames and files failing increases significantly compared to the more conservative compiler setting (-o3). Based on the proposed method and example thresholds, this implementation would not be conformant with TS 26.443 [2].

It should be noted that the higher number of frames failing, compare to other results reported in Clause 6.3 of TR 26.843, seems to be due to unexpected sample delay introduced in several of the decoded files for the –o3-fast-math compiler setting. This sample delay could be the root cause of the difference in the number of frame tested.
***** CHANGE 4 *****

6.4 Experiment D

6.4.1 Delta-MOS-LQO Behaviour for Mixed-Music Signals
A 10-second long mixed-music input was processed through the FL reference (REF) implementation and an FL test implementation. The FL test implementation TEST(Clip2.deg2.32k) includes e.g., certain optimizations related to parameter quantization, over the FL reference implementation REF (Clip2.deg1.32k), which introduced a clear, audible artifact as shown in Figure 6.13.

	Spectrogram of REF (Clip2.deg1.32k)
	Spectrogram of TEST (Clip2.deg2.32k)

	[image: image4.png]

	[image: image5.png]

Below are the MOS-LQO scores for the two outputs using POLQA version 2.4.

	
	REF (Clip2.deg1.32k)
	TEST (Clip2.deg2.32k)
	Delta-MOS-LQO

	MOS-LQO Score
	4.2622
	4.2662
	0.004

Although this is a serious artifact and is clearly audible, Delta-MOS-LQO between these two samples is not noticeable at all, with a value of 0.004. Note that the nature of modification of source code in “Clip1.deg2.32k” is not relevant here. Rather the more important and relevant fact here is that POLQA tool only shows a negligible difference in the scores for two vastly different mixed-music signals.

6.4.2 Clean Speech Input Example

We present a clean speech input example below with relevant POLQA MOS LQO scores. 8 seconds long Super-Wideband clean speech input was bandpass filtered to match the required frequency range of POLQA (50 Hz to 14 kHz) and was processed through FL reference (REF) implementation and an FL test implementation. The FL test implementation TEST (Clip1.deg2.32k) includes certain optimizations related to parameter quantization, over the FL reference implementation REF (Clip1.deg1.32k)

	Spectrogram of REF Clip1.deg1.32k
	Spectrogram of TEST Clip1.deg2.32k

	[image: image6.png]

	[image: image7.png]"
8¢
e
3
12
e

-0k

Below are the MOS-LQO scores for the two outputs using POLQA version 2.4.
	
	REF Clip1.deg1.32k
	TEST Clip1.deg2.32k
	Delta-MOS-LQO

	MOS-LQO Score
	4.3888
	4.3752
	0.0136

Clip1.deg2.32k output has an annoying high-pitched chirp/whistle type artifact that is clearly audible, and it is shown in the spectrogram above. However, the Delta-MOS-LQO between the two cases is infinitesimal, at 0.0136.

Note that the nature of modification of source code in “Clip1.deg2.32k” here is not relevant. Rather the more important and relevant fact here is that POLQA tool only shows a negligible “Delta-MOS-LQO” score for two vastly different “clean speech” signals, which is the main category of signals intended to be used with POLQA.
Statistics from extending experiment D to a larger database of around 8.5 minutes of clean speech and the delta-POLQA are included in Table xx.

From the Table xx, it is clear that the delta-POLQA values are quite low while the subjective quality degradation is quite serious as shown in the spectrograms above.

Table xx. Experiment D: Delta-POLQA values between the Reference and Test signals
	
	
	Clean speech (database including about 64 sentence pairs)

	Delta-POLQA values
	Average
	0.05425

	
	Std. dev
	0.04548

	
	Max. value
	0.0832

	
	95 percentile
	0.04293

6.4.3 MOS LQO evaluation

The code change has been implemented using floating-point version C90 and tested using Linux.

Figure 5.2 shows the CDF of MOS-LQO difference for all conditions and use cases, and Table 5.2 reports the statistics of the MOS-LQO difference for the 2 codes (C90 and C90+AHEVS429_D code change).

Table 5.2: Summary of MOS-LQO differences for all conditions

	Case
	Min
	Max
	Mean
	StdDev
	Quantile_95
	Quantile_99

	A-B
	-0.1138
	0.0819
	0.0006
	0.0195
	0.0359
	0.0612

	A-C
	-0.0538
	0.0630
	0.0011
	0.0103
	0.0198
	0.0362

	A-D
	-0.0928
	0.0829
	0.0009
	0.0195
	0.0373
	0.0637

	A-B AHEVS-429_D
	-0.1138
	0.1277
	0.0106
	0.0289
	0.0668
	0.0950

	A-C AHEVS-429_D
	-0.0538
	0.1331
	0.0109
	0.0252
	0.0631
	0.0904

	A-D AHEVS-429_D
	-0.0928
	0.0829
	0.0009
	0.0195
	0.0373
	0.0637

[image: image8.png]CDF of P.OLQA differences - all conditions

1.00 - -':r-""”'
075- —
w— A_C
— A_D
=== A-B AHEVS-429 D
0.504 === A-C AHEVS-429_D
== A-D AHEVS-429_D
= c90
0.25- = = c90 + AHEVS-429_D
0.00 ==

0.00 0.05 0.10 015
MOS-LQO difference

Figure 5.2: CDF of MOS-LQO differences for all conditions.
It can be seen that even if the code changes affects only SWB and FB the degradation in the CDF and statistic for the A-B and A-C case is noticeable. As the code change is only for decoder, the encoder case A-D is not affected. For example the Mean MOS-LQO difference is increased by a factor close to 20 for the A-B condition (testing both encoder and decoder float implementation)

As the code change only impacts higher bandwidth, the CDF and statistic for only the SWB conditions are reported in Figure 5.3 and Table 5.3.

[image: image9.png]CDF of P.OLQA differences - SWB

1.00- e
,"1' S
- ’-5 -
‘ ll‘-
a®
L)
0.75-
S
0.50-
0.25-
0.00—
0.00 0.05 0.10

MOS-LQO difference

e oS AErETETaTaTE

=== A-B AHEVS-429 D
=== A-C AHEVS-429 D
=== A-D AHEVS-429 D

= c90
= = c90 + AHEVS-429 D

Figure 5.3: CDF plot of MOS-LQO difference for SWB condition
Table 5.3: Summary of MOS-LQO differences for SWB conditions

	Case
	Min
	Max
	Mean
	StdDev
	Quantile_95
	Quantile_99

	A-B
	-0.0528
	0.0706
	-0.0013
	0.0196
	0.0351
	0.0475

	A-C
	-0.0319
	0.0365
	0.0019
	0.0097
	0.0224
	0.0311

	A-D
	-0.0568
	0.0758
	-0.0026
	0.0200
	0.0340
	0.0595

	A-B AHEVS-429_D
	-0.0444
	0.1277
	0.0264
	0.0319
	0.0865
	0.0972

	A-C AHEVS-429_D
	-0.0127
	0.1318
	0.0298
	0.0315
	0.0812
	0.1272

	A-D AHEVS-429_D
	-0.0568
	0.0758
	-0.0026
	0.0200
	0.0340
	0.0595

When the CDFs are computed for only the SWB the effect of the code change is even more noticeable. All the statistics for A-B and A-C used case show significant degradation.

Similar results are obtained in case of FB condition only.

***** CHANGE 5 *****
6.5.1 Delta-POLQA Limitations with Noisy Speech and Frame Erasures

In this clause, more examples are presented where source code modifications of the Reference EVS Floating Point implementation result in serious quality artifacts but show only negligible delta-POLQA values between the Reference and Test implementations. Figure 1 below shows example spectrograms that depict the signal artifacts and Table 1 provides the delta-POLQA analysis.

	Spectrogram of Reference signal
	Spectrogram of Test signal

	[image: image10.png]

	[image: image11.png]

Figure 1 Example spectrograms that depict the artifacts

From the Table 1, it is clear that the delta-POLQA values are quite low while the subjective quality degradation is quite serious.

Table 1. Experiment E: Delta POLQA values between the Reference and Test signals
	
	
	Noisy speech
	FER 6%

	Delta-POLQA values
	Average
	0.00180
	0.02734

	
	Std. dev
	0.01014
	0.03610

	
	Max. Value
	0.04231
	0.0713

	
	95 percentile
	0.01589
	0.04741

***** CHANGE 6 *****

8
Interoperability

8.1
Introduction

8.2 Interoperability Testing
Clauses 5.2 and 5.3 in TR 26.843 describe signal-based methods and perceptual-based methods for a conformance procedure for evaluating various EVS floating-point implementations.

· In Clause 5.2, the decoder implementation on any given compiler is tested against the test vectors from 26.444 (corresponding to e.g., floating point 32-bit MSVC implementation). The decoder conformance procedure is depicted as in Fig.1.

· In Clause 5.3, the encoder-decoder chain is proposed to be evaluated based on a delta P.OLQA measure using the ITU-T P.863.1 tool. The encoder-decoder conformance procedure is depicted in Fig. 2.

[image: image12.emf]EVS encoder

(bitstream)

Reference

FloatDecoder

Float decoder

(compiler 1)

Float decoder

(compiler 2)

Float decoder

(compiler N)

:

Conformance

testing of

Compiler #1

decoder

implementation

:

Figure 1. Decoder conformance, where each of the decoder implementations on different compilers (e.g., N different compilers) verified based on the test vectors from 26.444.

 [image: image13.emf]EVS FX

encoder

EVS FX

decoder

Float encoder

(compiler 1)

:

Conformance

testing of

Compiler #1

implementation

Input

PCM

Decoded

PCM

Float decoder

(compiler 1)

EVS FX

encoder

Float decoder

(compiler 1)

A

B

C

Float encoder

(compiler 1)

EVS FX

decoder

D

[image: image14.emf]EVS FX

encoder

EVS FX

decoder

Float encoder

(compiler 2)

:

Conformance

testing of

Compiler #2

implementation

Input

PCM

Decoded

PCM

Float decoder

(compiler 2)

EVS FX

encoder

Float decoder

(compiler 2)

A

B

C

Float encoder

(compiler 2)

EVS FX

decoder

D

Figure 2. Encoder-decoder conformance, where each of the encoder/decoder implementations on different compilers (e.g., shown here for 2 compilers) verified against the FX implementation.

The conformance procedure shown in Fig. 1 evaluates the decoder only FL implementations. The procedure is similar to what is typically followed in MPEG standards for evaluating decoder conformance, that serves the streaming or playback type of applications (or decoder-only FL implementations in conversational applications).

For end-to-end conversational application, the conformance procedure shown in Fig. 2 evaluates Encoder/Decoder chain for the three combinations, i.e., 1) FL_Enc <-> FL_Dec, 2) FX_Enc <-> FL_Dec, and 3) FL_Enc <-> FX_dec against FX_Enc <-> FX_Dec. For example, compiler #1 float implementation is evaluated independently against FX Reference, and, compiler #2 float implementation is evaluated independently against FX Reference.

Based on the conformance tests, how the FL compiler 1 implementation is interoperable with FL compiler 2 implementation (as shown in Fig. 3) needs to be clarified.

An interoperability issue could arise when a packet from FL compiler #1 implementation is decoded by compiler #2 implementation and there is a strong artefact observed at the UE #2, is it the issue with FL Encoder at compiler #1 or the issue with FL Decoder at compiler #2? Such inter-compiler compatibility needs to be resolved for any FL conformance methodology to be robust and reliable.
[image: image15.emf]FX

performance

(Enc, Dec)

FL

Compiler #2

(Enc, Dec)

FL

Compiler #1

(Enc, Dec)

FL

Compiler #N

(Enc, Dec)

?

?

?

e.g., Fig. 2

e.g., Fig. 2

Figure 3. FL Interoperability testing scenarios.

[Editor’s Note: Interoperability relevant code parts including all bit-stream operations, were included as fixed-point code into 26.443. TBD whether this addresses aforementioned issues.]
***** CHANGE 7 *****
A.3. Concerns over the Suitability of Perceptually Based Methods

The POLQA algorithm, which is standardized as Recommendation ITU-T P.863 [1], has been developed as an objective method to predict the scores of subjective ACR MOS tests for speech signals. The listening quality scores produced by POLQA, and similar objective algorithms, are denoted as MOS-LQO whereas those derived from human subjective assessment are denoted MOS-LQS.

ACR MOS-LQS scores are not precise single values but have an associated variance determined from the spread of individual votes cast by the subjects taking part in the ACR MOS test. The POLQA algorithm has been trained on many of the mean subjective test scores in order to derive its MOS-LQO scores but these are assumed to be point-values. From [1] it is claimed and can be seen that the MOS-LQO scores from Recommendation ITU-T P.863 provide good correlation but not perfect prediction of MOS-LQS scores from real tests involving clean speech signals.

Appendix I of [1] provides information about the prediction accuracy of POLQA for NB, WB and SWB when compared to actual scores from ACR tests after appropriate mapping of the results. Examining figures I.2, I.4 & I.5, it can be seen that, for a given MOS-LQO score from the POLQA algorithm after appropriate mapping and averaged over all appropriate samples in the test, the actual MOS-LQS score range in the very best cases would be in the region of between 0.5 MOS-LQS to 0.8 MOS-LQS. Examining figures 1.3, 1.5 & 1.7 from Appendix I of [1], it can be seen that in the worst case these errors increase to 1.6 MOS-LQS.

The points highlighted above raise concerns whether POLQA or delta-POLQA can be relied upon solely to detect different signal qualities and therefore non-conformant implementations of EVS.
- 18/18 -

For All frames
RMS < Trms
Compute RMS error
Frame pass
Yes
Compute WSNR
No
WSNR < Tsnr.Pref
Yes
Compute SD
SD < Tsd
No
Yes
Frame Fail
No

For All frames
RMS < Trms
Compute RMS error
Frame pass
Yes
Compute SNR
No
SNR > Tsnr
Yes
Compute SD
SD < Tsd
No
Yes
Frame Fail
No

