
3GPP TSG-SA WG4 Meeting #97
S4-180073
Fukuoka, Japan, 5th – 9th February 2018

Source:
Expway
Title:
Pseudo-CR Binary data formats for MBMS IoT
Spec:
3GPP TR 26.850
Agenda item:
8.10
Document for:
Approval
Contact:
Cedric Thienot cedric.thienot@expway.com
1. Introduction
In SA4#93, SA4 has initiated the FS_MBMS_IoT study item about the MBMS service layer profiles and optimizations to provide application services such as massive software updates for IoT devices which are significantly resource-constrainted (battery power, processing and storage).

2. Reason for Change
The document S4-AHI765 which discusses about the different binary data formats was presented during the telco on January 22nd 2018. This present document updates the S4-AHI765 with the following changes:
· Clarify the encoding rule when ASN.1 is mentioned.

· Add the compactness comparison between XML, ASN.1 PER and EXI with 2 different XML data (360 bytes and 103 bytes).

· Add the tables that shows the memory usage and encoded data length of different binary formats for CAM (Cooperative Awareness Message) and DENM (Decentralized Environmental Notification Message) messages.
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TR 26.850.
* * * First Change * * * *

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 26.346: "Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs".

[3]
IETF RFC 3926 (October 2004): "FLUTE - File Delivery over Unidirectional Transport", T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh

[4]
3GPP TS 36.101: "User Equipment (UE) radio transmission and reception".

[5]
3GPP TS 36.306: "User Equipment (UE) radio access capabilities".

[6]
3GPP TR 22.861: "FS_SMARTER - massive Internet of Things".

[7]
IETF RFC 7252 (June 2014): "The Constrained Application Protocol (CoAP)", Z. Shelby, K. Hartke, C. Bormann.

[8]
IETF RFC 6347 (January 2012): "Datagram Transport Layer Security Version 1.2", E. Rescorla, N. Modadugu.

[9]
OMA-TS-LightweightM2M-V1_0-20170208-A: "Lightweight Machine to Machine Technical Specification".

[10]
IETF RFC 7228 (May 2014): "Terminology for Constrained-Node Networks", C. Bormann, M. Ersue, A. Keranen.

[11]
3GPP TR 45.820: "Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT)"

[12]
IETF RFC 4919 (August 2007): "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", N. Kushalnagar, G. Montenegro, C. Schumacher.

[13]
IETF RFC 7959 (August 2006): "Block-Wise Transfers in the Constrained Application Protocol (CoAP)", C. Bormann, Z. Shelby.

[14]

https://www.w3.org/XML/EXI/
[15]
http://www.xfront.com/EXI/EXI.zip
[16]
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx
[17]
https://thrift.apache.org/
[18]

https://github.com/google/protobuf
[19]

http://www.oss.com/asn1/resources/asn1-made-simple/encoding-rules.html
[20]

N. Gligorić, I. Dejanović and S. Krčo, "Performance evaluation of compact binary XML representation for constrained devices," 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), Barcelona, 2011, pp. 1-5.
[21]
3GPP TS 36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification”.

[22]
S4-171207 Pseudo-Binary FDT for FS_MBMS_IoT (http://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/TSGS4_96/Docs/S4-171207.zip)

[23]
https://www.w3.org/TR/2009/WD-exi-evaluation-20090407/
[24]
https://www.w3.org/WoT/IG/wiki/images/4/44/2016-04_EXI_for_WoT-1.pdf
[25]
Sebastian Bittl, Arturo A. Gonzalez, Michael Spahn, and Wolf A. Heidrich, “Performance Comparison of Data Serialization Schemes for ETSI ITS Car-to-X Communication Systems”, International Journal on Advances in Telecommunications, vol 8 no 1 & 2, 2015.

* * * Next Change * * * *

7.X
Binary data formats

MBMS protocols, codecs and procedures often use XML as a format for exchanging metadata (e.g. FDT, service announcement). However, the use of XML stack can be costly for IoT devices, especially for low-end IoT profile. Binary data formats may be more appropriate for IoT devices to exchange metadata. One can define a paritular binary format for each specific purpose (e.g. FDT, service announcement, reception report). However, it is desirable to have a common binary format for all procedures, formats in the context of MBMS IoT.
7.X.1
Efficient Extensible Interchange or Efficient XML Exchange (EXI)
EXI is a way for one system to send to another system a highly compressed sequence of parse events. The recipient can build data structures directly from the parse events without having to reconstitute a textual representation (such as a JSON file, an XML file, JavaScript, HTML and so forth) [14]. It was developed by W3C’s Efficient Extensible Interchange Working Group. EXI provides multiple benefits as follows (non exhaustive list):

· EXI provides better compression than other XML compression techniques, and can deliver compression ratios of up to 100 to 1 (Figure 7.x.5.2-1) [15];
· Using EXI format reduces the verbosity of XML documents as well as the cost of parsing;
· When using EXI, XML parsers consume EXI directly. XML applications, such as XML Schema validators and XSLT processors, will process the EXI exactly as they've always processed XML, i.e., no changes to the XML applications are required and XML applications are completely unaware that the format of the data is binary, not text (Figure 7.X.1-2);

· EXI format specification does not make particular assumption about the platform architecture;

· EXI was designed to integrate well into the XML stack, neither duplicating nor requiring changes to functionality at other layers in the XML stack.
Figure 7.X.1-1 shows the diagram which uses EXI to exchange data between sender and receiver.

[image: image1.png]
Figure 7.X.1-1: Data exchange using EXI [15]

Figure 7.X.1-2 shows the interaction between EXI, XML parser and XML application. The parser converts the EXI to an XML infoset and XML applications operate on the infoset. Thus, the applications are unaware that EXI is being used.

[image: image2.png]
Figure 7.X.1-2: Interaction between EXI, XML parser and XML application [15]

EXI defines two types of encoding: schema-less and schema-informed. The schema-less encoding is generated directly from the XML data and can be decoded by any EXI entity without any prior knowledge about the data. The schema-informed encoding assumes that the two EXI processors share an XML Schema before actual encoding and decoding can take place. In schema-informed, the available schema information is used to improve compactness and performance.
7.X.2
Well-known binary formats
A number of well-known binary formats for representing data are available such as ASN.1 [16], Thrift [17], Protobuf [18].

The Abstract Syntaxt Notation One (ASN.1) is a well-know binary format used in many applications, especially in telecommunications (3G, LTE). The notation describes data structures for representing, encoding, transmitting, and decoding data. Data structures transfer syntax can be encoded using different encoding rules, providing schema notation even for representing XML in binary form - XER (XML Encoding Rules). The standard ASN.1 encoding rules include:

· Distinguished Encoding Rules (DER)

· Basic Encoding Rules (BER)

· Canonical Encoding Rules (CER)

· XML Encoding Rules (XER)

· Canonical XML Encoding Rules (CXER)

· Extended XML Encoding Rules (E-XER)

· Packed Encoding Rules (PER, unaligned: UPER, canonical: CPER)

· Octet Encoding Rules (OER, canonical: COER)

· JSON Encoding Rules (JER)

· Generic String Encoding Rules (GSER)

Unaligned PER is commonly used in 3GPP cellular technologies such as UMTS (3G) or LTE (4G) for protocols like RANAP, NBAP or RRC [19].

Thrift is an interface definition language and binary communication protocol that is used to define and create services for numerous languages. Thrift is used as a remote procedure call (RPC) framework and was developed at Facebook. Although developed at Facebook, it is now an open source project in the Apache Software Foundation.

The Protocol Buffers (Protobuf) is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. Protobuf were initially developed at Google to address the problem of large number of requests and responses to/from the index server. This protocol uses binary encoding which makes serialized data more compact. The design goals for Protobuf emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.

Table 7.x.2-1 shows the comparison between these binary formats [20].

	
	Binary formats

	
	ASN.1
	Thrift
	Protobuf

	Licence
	Open source
	Open source
	Open source

	Language compatibility
	Java, C++, C, Python...
	C++, Java, Python, PHP
	Java, C++, Python

	Parsing speed
	Fast
	Medium
	Fast

	Memory usage
	Low
	Medium
	Medium

	Debugging complexity
	High
	Low
	Medium

	Implementation
	Medium
	Medium
	Low

	Documentation
	Very good
	Less than good
	Very good

Table 7.X.2-1: Comparison of binary formats
NOTE: The implementation indicates the implementation complexity. ASN.1 demands external (third-party) tool for reading encoded message, and it is more complex to deploy [20]. Protobuf has some built-in features, i.e. toString() method that returns human-readable representation of message.
7.X.3
Ad-hoc binary format
Besides the well-known binary formats presented in section 7.X.2 (ASN.1, Thrift, Protobuf), one can define a customized binary format for a given data structure requirement. Figure 7.x.3-1 shows an example of binary FDT format as presented in S4-171207 [22].

	Bits
	Number of Octets

	7
	6
	5
	4
	3
	2
	1
	0
	

	HET = 194
	1
	Header part

	FLUTE Version = 1
	FDT Instance ID
	1
	

	FDT Instance ID continue
	2
	

	Binary FDT Version = 1
	Expires
	Base-URL-1
	Base-URL-2
	FEC Information bit (NOTE 6)
	1 (NOTE 5)
	Binary FDT descriptor

	Length of FDT descriptor (NOTE 7)
	2
	

	Content-type (NOTE 1)
	1
	

	Length of Expires
	2
	

	Expires
	0-m
	

	Length of Base-URL-1
	2
	

	Base-URL-1
	0-m
	

	Length of Base-URL-2
	2
	

	Base-URL-2
	0-m
	

	FEC-OTI-FEC-Encoding-ID
	1
	

	FEC-OTI-Maximum-Source-Block-Length
	2 or 4

(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length
	2
	

	Length of FEC-OTI-Scheme-Specific-Info
	2
	

	FEC-OTI-Scheme-Specific-Info
	0-m
	

	Number of files (NOTE 3)
	1
	

	Reserved bits for extension of FDT descriptor (NOTE 7)
	0-m
	

	Length of the Nth file (NOTE 4)
	2
	Binary FDT content

	Content Length
	Content Type
	Content MD5
	FEC-OTI-FEC-Encoding-ID
	FEC Information bit (NOTE 6)
	mbms2012:Alternate-Content-Location-1
	mbms2012:Alternate-Content-Location-2
	mbms2012:File-ETag
	1 (NOTE 5)
	

	Transport Object Identifier (TOI) of the Nth file
	2
	

	Length of Content-location of the Nth file
	2
	

	 Content-location of the Nth file
	0-m
	

	Length of Content-Length of the Nth file
	2
	

	Content-Length of the Nth file
	0-m
	

	Content-Type of the Nth file
	1
	

	Length of Content-MD5 of the Nth file
	2
	

	Content-MD5 of the Nth file
	0-m
	

	FEC-OTI-FEC-Encoding-ID of the Nth file
	1
	

	FEC-OTI-Maximum-Source-Block-Length of the Nth file
	2 or 4

(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length of the Nth file
	2
	

	FEC-OTI-Max-Number-of-Encoding-Symbols of the Nth file
	2
	

	Length of FEC-OTI-Scheme-Specific-Info of the Nth file
	2
	

	FEC-OTI-Scheme-Specific-Info of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-1 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-1 of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-2 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-2 of the Nth file
	0-m
	

	Length of mbms2012:File-ETag of the Nth file
	2
	

	mbms2012:File-ETag
	0-m
	

	Reserved bits for extension of the Nth file (NOTE 4)
	0-m
	

Figure 7.X.3-1: Example of binary FDT Instance format

NOTE 1: Content-type of 8 bits could be suffisant for IoT applications.

NOTE 2: 2 octets for FEC Encoding IDs 0, 128, and 130; 4 octets for FEC Encoding ID 129.
NOTE 3: A maximum of 255 files delivered in a single FLUTE session could be suffisant since multiple FLUTE sessions are possible.

NOTE 4: If the length value of the Nth file in the binary FDT is higher than the actual length, the reserved bit for extension are present. The content and values of the extension fields are FFS.

NOTE 5: A list of flags indicates whether the element appears in the FDT or Nth file. The value '0' indicates that the flag is not appeared, the corresponding length and content fields of this flag are not appeared in the binary FDT. The value '1' indicates that the flag is present. The order of the flag content follows the order in the list of flags. For the elements which have a specific length such as FEC related information, there is no length field.

NOTE 6: The FEC Information bit is set to '0' if compact no-code FEC is used. Otherwise, this flag is set to '1', the corresponding fields (FEC-OTI-Maximum-Source-Block-Length, FEC-OTI-Encoding-Symbol-Length, Length of FEC-OTI-Scheme-Specific-Info, FEC-OTI-Scheme-Specific-Info) related to FEC are present.

NOTE 7: If the value of the length of FDT descriptor is higher than the actual length, the reserved bits for extension are present. The content and values of extension fields are FFS.

7.X.4
Key-Length-Value (KLV) format
Section 7.x.3 presents the ad-hoc binary format where each data representation requires a customized binary format. Another possible solution is to use a special Key-Length-Value for all formats and procedures for MBMS IoT. In this KLV format, each data type is associated to a key value while the Length field indicates the actual length of the Value field. For instance, one can define up to 255 keys for MBMS IoT as shown in Table 7.x.4-1.

	Key
	Data type
	Length
	Value

	1
	Content-Location
	2
	

	2
	Content-Type
	1
	

	3
	mbms2012:File-ETag
	2
	

	…
	
	
	

	255
	
	
	

Table 7.x.4-1: Example table for KLV format
This KLV solution can be considered as a subset of ASN.1 solution using BER, PER or OER encoding rules.
7.X.5
Performance comparison of binary data formats
7.X.5.1
General considerations
There are important aspects to consider when comparing different data representation schemes [25]. Some of the most relevant are,
· how are optional fields within messages handled, i.e., how is a field’s presence or absence represented,

· possibility of future backward compatibility when extending a message, i.e., adding of new mandatory or optional data fields,

· byte alignment,

· providing the functionality of data compression, for example variable length representation of integers.

Table 7.x.5.1-1 show the properties of different schemes from the general considerations [25]. The properties of ASN.1 UPER, Protobuf and EXI are extracted from [25].

	
	ASN.1 UPER (NOTE 7)
	Protobuf (NOTE 7)
	EXI (NOTE 7)
	KLV
	Ad-hoc binary format

	Presence of optional fields
	Encoded
	Encoded
	Encoded
	Not encoded
	Encoded (NOTE 4)

	Extendability
	No (NOTE 1)
	Yes
	Yes
	Yes (NOTE 3)
	Yes (NOTE 5)

	Byte alignment (NOTE 6)
	No (NOTE 2)
	Yes
	No
	Yes
	No

	Compression
	Yes
	Yes (byte blocks)
	Yes (byte blocks)
	Yes
	Yes

Table 3.1-1: Overview of basic properties for different binary schemes
NOTE 1: Other ASN.1 encoding rules (e.g. BER) satisfy this property.

NOTE 2: The aligned PER encoding rule satisfies this property.

NOTE 3: The extendability of KLV format is limited to the pre-defined maxinum number of keys (e.g. 255 keys if 8 bits are used).

NOTE 4: Optional fields are presented by a list of flags.

NOTE 5: If reserved bits for extension are used.

NOTE 6: Byte alignment indicates that the fields are aligned to 8-bit octet boundaries by inserting padding bits.

NOTE 7: The assessment of ASN.1 UPER, Protobuf and EXI reflects the view of the authors in [25].
7.X.5.2
Performance comparison
Figure 7.x.5.2-1 shows better compactness of EXI compared to both XML and ASN.1 PER [23]. However, the comparison between EXI and ASN.1 PER in terms of processing efficiency is not shown in the evaluation performed by W3C.

[image: image3.png]
Figure 7.x.5.2-1: EXI compactness compared to ASN.1 PER

NOTE: Whenever a schema is available, EXI uses the schema-informed for the test cases [23].

Table 7.x.5.1-s also confirms the better compactness of EXI compared to ASN.1 PER [24]. In this evaluation, EXI uses schema-informed and no-compression.

	
	JTLM Data (360 bytes)
	Location Data (103 bytes)

	Format
	Size (bytes)
	Ratio
	Size (bytes)
	Ratio

	XML
	360
	100%
	103
	100%

	ASN.1 PER
	105
	29%
	27
	26%

	EXI
	39
	11%
	17
	17%

Table 7.x.5.2-1: Comparison in terms of compactness between XML, ASN.1 PER and EXI

NOTE: The compactness performance of EXI may be different when schema-less is used.

Table 7.x.5-2 shows the processing efficiency for both encoding and decoding [24]. ASN.1 PER shows better processing efficiency with Location Data (103 bytes).

	
	Encode
	Decode

	Format
	TPS
	Ratio
	TPS
	Ratio

	XML
	15858
	1
	9216
	1

	EXI
	185029
	x11.7
	277409
	x30.0

	ASN.1 PER
	310862
	x19.6
	318419
	x34.6

Table 7.x.5.2-2: Comparison in terms of processing efficiency between XML, ASN.1 PER and EXI

NOTE: TPS stands for transactions per second.
The evaluation between Protobuf, EXI and ASN.1 UPER is performed in the context of wireless Car-to-X communication [25]. The performance metrics considered in this evaluation are:

· Computation time

· Memory footprint on computation

· Encoded data length.

Tables 7.x.5.2-3 and 7.x.5.2-4 show the encoding and decoding performance results for CAM (Cooperative Awareness Message) and DENM (Decentralized Environmental Notification Message) messages with Protobuf ASN.1 UPER and EXI.

	
	CAM
	DENM

	Encoding type
	Protobuf
	ASN.1 UPER
	EXI
	Protobuf
	ASN.1 UPER
	EXI

	Heap / Stack
	242 / 1864
	66 / 3112
	62656 / 210
	126 / 1752
	75 / 2792
	61608 / 175

	Encoded length
	165
	41
	64 (opt: 61)
	114
	43
	52 (opt: 51)

Table 7.x.5.2-3: Encoding performance results for CAMs and DENMs [25]

	
	Protobuf
	ASN.1 UPER
	EXI

	CAM: heap / stack
	242 / 1800
	370 / 2968
	3850 / 210

	DENM: heap / stack
	126 / 1624
	816 / 2872
	3630 / 135

Table 7.x.5.2-4: Memory related decoding performance results for CAMs and DENMs [25]

NOTE: Size of encoded messages is one of the key parameters in the evaluation in [25], data optimized schemes are used for EXI.

The following conclusions are drawn from the evaluation in [25]:

· ASN.1 UPER outperforms Protobuf and EXI in terms of required encoding delay and runtime (Figure 7.x.5.2-2).

· EXI showed to be the most expensive in terms of memory footprint (Tables 7.x.5.2-3 and 7.x.5.2-4).

· ASN.1 UPER encoding performs better compared to EXI and Protobuf in terms of encoding length for CAM and DENM messages (Tables 7.x.5.2-3 and 7.x.5.2-4).

· In terms of runtime, binary encoding performs significantly better than ASN.1 UPER in all studied cases (Figure 7.x.5.2-2).

[image: image4.png]
Figure 7.x.5.2-2: Encoding (left) and decoding (right) runtime performance of ETSI ITS CAM, DENM and security envelope encoding on an Intel Core i7 processor [25]

NOTE 1: Sec. 1w/o indicates security profile 1 for CAM message without certificate. Sec. 1w indicates security profile 1 for CAM message with certificate. Sec. 2 indicates security profile 2 for DENM message. Sec. 3 indicate security profile 3 for generic message.

NOTE 2: The binary format is specialized for CAM and DENM messages.
7.X.5.3
Evaluation
The following conclusions are drawn from the performance comparison in section 7.x.5.2:

· Binary data formats (e.g. EXI, ASN.1, Protobuf) significantly outperform the XML data representaion in terms of both compactness, encoding/decoding processing efficiency and memory usage.

· ASN.1 (UPER or PER) is better than EXI in terms of processing efficiency and memory footprint.

· EXI is better than ASN.1 (UPER or PER) in terms of compactness in the evaluation performed by W3C. In the evaluation performed by [25], ASN.1 UPER performs better than EXI for CAM and DENM messages in terms of encoded data length.

· Binary encoding specialized for CAM and DENM messages significantly better than ASN.1 UPER and EXI in terms of run time.

* * * Next Change * * * *

