TSG SA4#96 meeting
Tdoc S4-171175
13-17 November 2017, Albuquerque, New Mexico, USA

Source:
Cadence Design System Inc., VoiceAge Corporation
Title:
Evaluation of merits of an alternative EVS implementation using extended STL2009 Basic Operators
Document for:
Discussion and Agreement
Agenda Item:
8.8
1. Introduction

At the last 3GPP SA4 meeting #94 in Sophia Antipolis, a new Study Item (SI) started to investigate benefits of updating the ITU-T fixed-point basic operators in order to reflect modern DSP architectures [1]. One of the objectives of this SI is to determine whether an additional alternative implementation of EVS using the improved basic operators would be beneficial. The extensions to the basic operators are referred to as STL2017 Basic Operators. In this contribution we report on an alternative EVS implementation that not only leverages the proposed STL2017 Basic Operators but is also friendlier to compilers used in the state-of-the-art DSP architectures. This alternative EVS implementation is expected to tangibly reduce Mega Cycles Per Second (MCPS) of the final implementation thereby increasing the battery life of end products where this codec is used.
2. Benefits of proposal.

EVS is a sophisticated hybrid audio-speech codec with several modes of operation. As such it has a large number of functions. Manually optimizing this large set of functions is prohibitive from an effort (and therefore time) perspective. Implementers will have to rely on computer assisted tools and compiler to get them as close to a final implementation as possible, and spend the last mile in manual optimization to reach the final target performance. It is therefore imperative that the basic operators are defined in such a manner that they lend themselves to better leverage the features and capabilities of modern DSP architectures. Data types need to be mapped to match the processor registers or operand widths of data used in SIMD (Single Instruction Multiple Data) processing; basic operators need to be mapped to processor instructions. A standard reference C code written with these aspects in mind will result in an implementation that leverages SIMD and VLIW (Very Long Instruction Word) [3] features of the processor better and results in an out-of-the-box (OOB) performance that is quite close to the final desired performance. The complier can optimize the code across all the files and functions thereby significantly reducing manual optimization effort. Implementers can go to market faster.

Figure 1 shows the benefits of creating an alternate reference C code for EVS using the updated basic operator.

1) Reduced hand-optimization efforts lead to reduced total engineering effort, and hence improved time to market.

2) Improved MCPS numbers in OOB and final hand-optimized code.

3) Reduced code size. Reduced MCPS and memory reduces overall power used. This should facilitate extended battery life.

Figure 1: Benefits of proposed alternate reference C for EVS

[image: image1.png]
Using the existing standard EVS Reference code version 14.0.0 as a starting point, we have created an alternative C code that leverages the proposed basic operators. During this creation process, step by step, we have monitored several key parameters such as the engineering effort spent expressed as time (days, weeks, months), and corresponding reduction in MCPS.

Figure 2 shows the optimization level achieved versus engineering effort measured in units of time. As the figure shows, the OOB performance of the existing reference C is at 269 MCPS, while the OOB performance of the proposed alternative EVS reference C code is at 162 MCPS. This is a gain of 1.66x achieved in matter of a few days of engineering effort. Next, we spend time restructuring the code and hand optimizing. As of September 27, 2017, we are at 61.9 MCPS compared to 77.5 MCPS for the existing reference implementation. This is a gain of 1.25x.

[image: image2.png]
Figure 2: Impact of alternate reference C at different stages of the implementation process
In table 1, we compare the improvement in weighted million operations per second (WMOPS) of the alternative EVS implementation against the WMOPS of the existing EVS standard reference code using STL2009 basic operators as a baseline. Second row shows the benefit of 1.07x with changing the weights for STL2009 basic operators. Third row shows the total benefit of 1.17x with the use of new STL 2017 basic operators and weight change of the existing STL2009 basic operators.
	EVS Code Base - 14.0.0
	STL_basops complexity weights
	Average WMOPS
	Improvement Over Reference

	
	
	Encoder
	Decoder
	Total
	

	Reference with STL2009
	STL2009 weights as is
	53.3
	24.2
	77.5
	NA

	Reference with STL2009
	With new proposed weights for STL2009
	50.6
	22.1
	72.7
	1.07

	Alternate Reference with STL2017
	With new proposed weights for STL2009 & STL2017
	47.1
	18.9
	66
	1.17

Table1: WMOPS based Comparison of the alternative EVS implementation with existing EVS implementation.
Following test cases were used for WMOPS and MCPS calculation:

· Encoder test case: -rf HI 3 13200 32 stv32n2.INP stv32n2_rfHI3_13200_32kHz.COD

· Decoder test case: 32 stv32c_rfHI3_13200_32kHz.COD stv32c_rfHI3_13200.out

The WMOPS number reported in the Table1 are average WMOPS for this test vector which is the worst case complexity test vector.

In table 2, we compare the improvement in million cycles per seconds (MCPS) of the alternative EVS implementation against the MCPS of the existing EVS standard reference code using STL2009 basic operators as a baseline. We observe a gain of 1.25x.

The gain in final MCPS of 1.25x is significantly more than gain of 1.11x in WMOPS. The explanation is that the existing method of computing WMOPS does not address the cycles gained with VLIW where multiple instructions are executed in parallel. In addition, the current assigned integer weights of 1 or higher for SIMD and VLIW friendly instructions in STL2017 does not account for the inherent parallelism possible of processing multiple operands in a single cycle in modern processors.
	Perf parameter
	REFC with STL2009
	ALT_REFC with STL2017
	Performance improvement

	
	Total (Enc + Dec)
	Total (Enc + Dec)
	

	OOB MCPS
	269.3
	162.5
	1.66x

	Final MCPS
	77.5
	61.9
	1.25x

	Code size – OOB (in K Bytes)
	2117.3
	2036.6
	1.04x

Table2: MCPS based Comparison of the alternative EVS implementation with existing EVS implementation.

3. Conclusion:

As of Nov 06, 2017 we are seeing a 1.17x improvement in WMOPS (1.25x improvement in MCPS) for the alternative EVS implementation using the extended basic operators (STL2017 basic operators) when compared to the existing standard EVS implementation [2]. Given the performance gains observed, we propose tolaunch a standardization of an additional alternative implementation of EVS reference code using the improved basic operators.
We propose to include section 2 of this document in the TR 26.973 Update to fixed-point basic operators [4].
4. References
[1] S4-170670, “Study on Update to fixed-point basic operators”.

[2] 3GPP TS 26.442, “Codec for Enhanced Voice Services (EVS); ANSI C code (fixed point)”.
[3] “Increasing Processor Computational Performance with More Instruction Parallelism” https://ip.cadence.com/uploads/927/TIP_WP_FLIX_FINAL-pdf
 [4] 3GPP TR 26.973 v0.0.1 Update to fixed-point basic operators
Annex A

Example of need for STL2017 basic operators and need to change the REFC code to use the new basic operators:-

As shown in code below, Example1 shows the typical code for a loop where an accumulator is used for MAC operation on two arrays a and b. The SIMD/VLIW friendly code helps to reduce cycles from 4 to 2. However, this needs changes in the REFC code to efficiently use the STL2017 basic ops .

Example1:
Original Reference C Code –

for (i=0: i<N; i++)

{

acc = acc + a[i]*b[i];
/* multiply, truncate, and saturate are happening */

}
/* Regular implementation */

/* Multiply, truncate, and saturate are happening for each element. */

/* Truncate and saturate here imply that order of execution is important. Compiler cannot change this order of execution without violating bit-exactness */

Int_32 acc;

acc = a[0]*b[0]; /* cycle 1 */
acc = acc + a[1]*b[1]; /* cycle 2 */

acc = acc + a[2]*b[2]; /* cycle 3 */

acc = acc + a[3]*b[3]; /* cycle 4 */

/* total cycles = 4: For processing 4 elements of array a and b */

/* For N elements it will take N cycles */

Example2:

Explanation of

· How SIMD/VLIW friendly REFC code helps to reduce cycles.

· Why bit-exactness is violated when VLIW, SIMD features are used.

/* Example2 - A: Implementation in 2 slots VLIW architecture */.

/* Since truncation and saturation is not required , Acc1 and Acc2 executed in 1 cycle in two different slots */

/* Final result in Acc does NOT match acc in regular implementation */

/* This 2-slot implementation is not bit-exact with regular implementation and therefore the need to define alternate set of bit-streams */

/* Therefore the reference code has to be changed to take benefit of 2-way SIMD and 2-slot architecture */

Int_64 Acc1, Acc2, Acc;

Acc1 = a[0]*b[0]; /* slot 0, cycle 1 */

Acc2 = a[1]*b[1]; /* slot 1, cycle 1 */

Acc1 = Acc1 + a[2]*b[2]; /* slot 0, cycle 2 */

Acc2 = Acc2 + a[3]*b[3]; /* slot 1, cycle 2 with VLIW supported */ /* Alternatively, this can be slot 0, cycle 2 if 2-way SIMD is supported */

Acc = Acc1 + Acc2; /* slot 0, cycle 3. This will be done outside the loop, only once */

/* Total cycles for 4 elements = 3 */

/* For N elements it will take (N/2 + 1) cycles */

/* Example2 - B: Implementation in 2 slots VLIW and 2-way SIMD architecture */.

/* Since truncation and saturation is not required, Acc1 and Acc2 executed in 1 cycle in two different slots */

/* In a 2-way SIMD architecture, 2 MAC operations can be done in a single cycle in single slot on two-32bit elements stored in a 64 bit registers */

/* This SIMD/VLIW implementation is not bit-exact with regular implementation and therefore the need to define alternate set of bit-streams */

/* Therefore the reference code has to be changed to take benefit of 2-way SIMD and 2-slot architecture */

Int_64 Acc1, Acc2, Acc;

/* One 64-bit register holds two 32 bit elements a[0] and a[1]. Another 64-bit register holds two 32 bit elements b[0] and b[1]*/

Acc1 = a[0]*b[0] + a[1]*b[1]; /* slot 0, cycle 1 2-way SIMD mac */

Acc2 = a[2]*b[2] + a[3]*b[3]; /* slot 1, cycle 1 2-way SIMD mac*/

Acc = Acc1 + Acc2; /* slot 0, cycle 2. This will be done outside the loop, only once */

/* Total cycles for 4 elements = 2 */

/* For N elements it will take (N/4 + 1) cycles */

In conclusion, for a loop processing N elements,

Example 1 will consume: N Cycles.

Example 2A will consume: (N/2 + 1) cycles.

Example 2B will consume: (N/4 + 1) cycles.

Hence, with 2-way SIMD, 2-slot SIMD architecture, for operations in loop like above, it will provide close to 4X improvement in cycles.

Page: 1/6

Page: 2/6

