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1.
Introduction
3GPP standardized both a fixed point version (26.442 [1]) and floating point version (26.443 [2]) of EVS. In recent years, floating point audio chains has proliferated, raising the profile of floating point codec implementations. 
For floating point conformance testing, bit exact matching criteria cannot be used. A tool is needed to insure that the floating point code is implemented properly without introducing any degradation. Following 3GPP SA4 meeting in Rennes, a group of companies worked on possible conformance criteria for EVS floating point code. After various investigations, it was suggested to use the same methodology presented in [3] & [4] based on POLQA computation [5]. Previously, Intel and Fraunhofer presented results obtained on Windows platforms [7], and Apple presented results obtained on macOS platforms [8]. One common observation in these two reports is the pervasive presence of large POLQA outliers when using aggressive compiler flags and optimization levels with the Intel and clang compilers. These large outliers correspond to cases where the decoded output is entirely broken (infinite/NaN output). This makes the aggressively compiled version a poor reference point for evaluating conformance criteria, as it is very easy to distinguish such obvious failures.   
This document presents the results of the source code level investigation carried out by Apple. In particular, the root cause of the broken outputs is presented. We suggest a simple source code change that eliminates the broken outputs, without otherwise affecting the output. With this fix, the aggressively compiled version produces plausible outputs, making it a more informative reference point for evaluating conformance criteria. 
We also investigate a restricted test that excludes packet loss and JBM conditions, allowing the specification of tighter conformance criteria. Results show that this proposed methodology can properly discriminate between good and poor EVS floating point implementations.
2. Code Implementation Options 

Typical implementations will use the reference code with some optimizations to reduce complexity or code memory footprint. A common approach is to use different compiler optimization options.  This approach was also used here.  The code has been compiled for x86_64 macOS 10.12.4 with various optimization levels to evaluate the sensitivity of the conformance tools. Two levels of optimization were used:

· O2: the code was compiled with the gcc O2 option, which should improve performance without affecting output. 
· Ofast: the code was compiled with gcc Ofast setting for computation performance, without checking on the possible consequences on quality 
Version C80 of the code was used. Note that gcc calls on macOS are mapped to clang, in this case clang 4.2.1. 
We observe approximately 20% speedup on encode and 10% on decode when using the Ofast option, relative to the O2 option. 
3. POLQA verification tool description
The methodology follows the one described in AHEVS-366 [3]. POLQA [5] scores are computed for various combination of encoder and decoder. 
The following four cases are processed:

a) fixed-point encoder and fixed-point decoder (FX/FX), version c90 of the fixed point was used,

b) floating-point encoder and floating-point decoder (FL/FL),

c) fixed-point encoder and floating-point decoder (FX/FL), and

d) floating-point encoder and fixed-point decoder (FL/FX)

For each test point, the individual P.OLQA MOS-LQO scores for the test samples are then averaged and the absolute values of the differences for [a) – b)], [a) – c)] and [a) – d)] compared. 

Table 1: Template for result presentation

	Input signal
	Bandwidth
	Bit rate
	DTX
	Level
	FER/Profile
	[ a) – b) ]
	[ a) – c) ]
	[ a) – d) ]

	clean speech, noisy speech, mixed/music
	NB, WB, SWB, or FB
	e.g. 7,2
	off or on
	-26, -16, or -36 dBov
	No errors, 3%, 6%, or JBM profiles
	MOS-LQO(FX/FX) - MOS-LQO(FL/FL)
	MOS-LQO(FX/FX) - MOS-LQO(FX/FL)
	MOS-LQO(FX/FX) - MOS-LQO(FL/FX)


Each compiler option is verified against the results of the fixed point code. For completeness, we first verified that EVS FX version c90 successfully compiles and passes the FX Conformance Test on macOS 10.12.4 x86_64, using the provided makefile. 
The audio corpus for the tests as well as the scripts were provided by Fraunhofer. It consisted of speech files from P.501, music and mixed material from other 3GPP codec test vectors and noise files. The files have been processed according to EVS-8c (EVS processing plan). 

4. Investigation of outliers under Ofast compilation
Previously, in [8], we observed many unacceptable outlier conditions when compiling with the -Ofast option. Investigating the source of these outliers revealed that many of the segments in these conditions displayed broken outputs (Inf/NaN values), which caused the POLQA scores to reach extremely low values. Tracing the source of the broken outputs, we discovered that they originated in the generate_masking_noise() functions implemented in the fd_cng_dec.c source file. 

The immediate source of the bad values is the sqrt() operations performed around line 965, as shown in Figure 1: 
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Figure 1: Problematic Portion of fd_cng_dec.c
With the Ofast option, the compiler can decide to use faster, but non IEEE 754 compliant, square root instructions or functions, which may be less accurate and/or support only a restricted input range. In this particular case, the square root function was replaced with a faster, lower-accuracy, implementation which operates by first computing the reciprocal square root of the input. This is highlighted in Figures 2 and 3, which show the assembly code produced under O2 and Ofast compilation options, respectively. [image: image2.png]eo0e sl fd_cng_dec.s
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7 Lnps2st

s .paalign 4, 8x90

50 LBB10_18: ## =>This Tnner Loop Header: Depth=1
%0 #ADEBUG_VALUE: generate_masking_noise:length <~ [%RBP+-1336]

%1 #ADEBUC_VALUE: generate_masking noise:ptr_r <- ¥Rl

42 #4DEBUG_VALUE: generate_nasking_noise:ptr_level <- %12

65 #ADEBUC_VALUE: generate_masking_noise:sced < %REX

5% #HDEBUG_VALUE: generate_masking noise:st <~ ¥R13

S5 .loc 4962 9 dsstnt 1 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:

ss movg  %rie, wroi

s movg  rbx, %rsi

S5 cally _xand_gauss

S5 movss  (%r12), Xwnme ## xmd = mem(0], zero, zero, zero

S0 doc 4963 48 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:963:48
571 mulss -1332(%rbp), ¥xmm@  ## 4-byte Folded Reload

572 movss LOPI1e_2(%rip), Sxmml ## xnnl = men(],zero,zero,zero

575 .loc 496353 isstnt®  ## /EVS/EVS/lib_dec/fd_cno_dec.c:963:53
S0 mulss X1, %omo

55 loc 496328 ## [EVS/EVS/1ib_dec/f¢ 63:28
s sartss sam0, sawmo
7 .doc 4963 18 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:963:18
S5 mulss  (%rL4), %om

595 movss om0, (%r14)

S0 .doc 496 9 ds_stnt 1 ## [EVS/EVS/1ib_dec/fd_cng_dec.c:966:9
S lesg  416), %rai

s movg  rbx, %rsi

s cally _xand_gauss

S0 omovss  (%r12), Xwnme ## xmd = mem(0], zero, zero, zero

S5 Ldoc 4967 48 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:967:48
% mulss -1332(%rbp), ¥xm@  ## 4-byte Folded Reload

S8 .loc 4967 53 isstnt @ 4% /EVS/EVS/lib_dec/fd_cno_dec.c:967:53
S mulss  LCPII0 2(xrip), S

S8 .doc 4967 28 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:967:28
9% sartss smd, %xme

s oo 496718 ## [EVS/EVS/1ib_dec/ fd_cng_dec.c:967:18
S99 mulss  4(%le), %ummd

595 movss om0, 4(%r14)

39 Ltmps26:





Figure 2: fd_cng_dec assembly under O2 compilation
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56 Ltnps29:
ss88 .p2align 4, ex98

5569 LBB10_18: ## =>This Tnner Loop Header: Depth=1
8590 ##DEBUG_VALUE: generate_masking_noise:length <- [%RBP+-1336]

8591 #4DEBUG_VALUE: generate_masking_noise:ptr_r <- %14

s ##DEBUG_VALUE: generate_masking_noise:ptr_level <- ¥R12

5593 #4DEBUG_VALUE: generate_nasking_noise:seed <- %RBX
S04 ##DEBUG_VALUE: generate_masking_noise:st <- %R13

595 oo 4962 9 st 1 4 /EVS/EVS/Lib_dec/fd_cng_dec.c:962:9
596 movg

8507 movg

S0 callg

5599 movss ## xmo = men(8), zero, zero, zero

5600 Jloc 4 963 53 ## /EVS/EVS/1ib_dec/fd_cng_dec.c:963:53
5601 mulss  -1332(%rbp), sxnm0 4-byte Folded Reload

602 xorps  soxmml, sexmni
5603

S04

5605

5606 movaps 2, %xnm3

5607 movss  LCPI10_2(%rip), Séxmmd men(6), zero, zero, zero

5608 mulss  Smmé, %xmd

5609 mulss S, %xm2

10 movss  LCPI10_3(%rip), Sxmmi  ## xnmi = mem[0],zero, zero, zero

511 addss. soxmn2.

12 mulss soxmn2.

13 xorps, sixmm.

14 cmpeass. Py

5615 andnps. sixmne.

16 loc 4 963 18 is_stmt @ ## /EVS/EVS/1ib_dec/fd_cng_dec.c:963:18
17 mulss  (%r14), %xmme

18 movss  soamo, (%ris)

19 oo 4 966 9 ds_stmt 1 4 /EVS/EVS/1ib_dec/fd_cng_dec.c:966:9
620 leaq  4(%ri), srdi

621 movg  srbx, %rsi

2 callq _rand_gauss

5623 movss  (xr12), %xmo ## xmo = men(8), zero, zero, zero

62 oo 4967 53 ## /EVS/EVS/1ib_dec/fd_cng_dec.c:967:53
625 mulss  -1332(%rbp), anm0 ## 4-byte Folded Reload

62 xorps  sexmml, sexnni

627 rsqrtss %xmm8, xni

628 movaps 3o, %xnm2

5629 mulss i, %xm2

630 movaps  3em2, %xnm3

5631 mulss  LCPI10_ 2(%rip), Sixmnd

632 mulss i, %xm2

563 addss  LCPI1e_3(xrip), smm2

s34 mulss 3, %xm2

5635 crpeqss LCPI18_S(xrip), sxmmo

636 andnps  sexm2, sexnne

5637 Jloc 4 967 18 is_stmt @ ## /EVS/EVS/1ib_dec/fd_cng_dec.c:

638 mulss  4(%ris), %m0

5639 movss 3o, 4(%ri4)

600 Ltmps30:





Figure 3: fd_cng_dec assembly under Ofast compilation

We observe that when the input drops into denormal range, this fast square root function returns Inf, resulting in a broken output. This sensitivity to denormal inputs is the reason that this issue is specific to the generate_masking_noise() functions, but does not appear in the similar generate_comfort_noise() functions. The source of the denormal inputs is the additional scaling that generate_masking_noise() applies based on the likelihood_noisy_speech state variable at line 938. This state variable is the output of a one-pole smoother, e.g. line 628 in evs_dec.c, as shown in Figure 4:
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Figure 4: One-pole Smoothing of likelihood_noisy_speech State Variable
The input to this one-pole smoother is a binary flag_noisy_speech, output by the noisy_speech_detection() function. The noisy_speech_flag will occasionally flip on for a single isolated frame in clean speech conditions, after which the likelihood_noisy_speech state variable undergoes an exponential decay towards zero, eventually crossing into the denormal range. Note that the large smoothing constant of 0.99 implies that the variable will remain in denormal range for a long string of consecutive frames. 
5. Addressing broken Ofast outputs
After discussing this issue with Fraunhofer and Intel, it was decided to pursue a straightforward change to avoid denormals in the generate_masking_noise() functions. Details of this fix are to be presented in a CR at SA4#96 in Albuquerque, NM. We have confirmed that this change addresses all broken (Inf/NaN) outputs generated in the test. 
6. Results

After modifying the EVS FL reference to avoid broken outputs, we reran the processing and POLQA processes for the Ofast case. For the O2 case, we used unmodified EVS FL reference code. Table 2 summarizes the results obtained for the two compiler versions. 
Table 2 : Summary of differences

	
	
	O2
	Ofast

	a) - b)
	AVG
	0.0005
	0.0022

	
	MIN
	-0.1136
	-0.0760

	
	MAX
	0.0819
	0.1595

	
	STD
	0.0194
	0.0224

	
	95%
	0.0425
	0.0490

	a) - c)
	AVG
	0.0011
	0.0331

	
	MIN
	-0.0341
	-0.0411

	
	MAX
	0.0629
	0.5291

	
	STD
	0.0102
	0.0850

	
	95%
	0.0240
	0.1994

	a) - d)
	AVG
	0.0009
	0.0191

	
	MIN
	-0.0928
	-0.0959

	
	MAX
	0.0829
	0.3737

	
	STD
	0.0195
	0.0577

	
	95%
	0.0444
	0.1098


Unilateral CDFs of the difference POLQA scores are plotted in Figures 5, 6 and 7, for the cases a)-b), a)-c) and a)-d), respectively. Regions were the CDF reaches 100% are indicated with oversized markers. When the oversized marker is at only 0.1, this indicates overload.
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Figure 5: CDF for a) - b) test case
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Figure 6: CDF a) – c) test case
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Figure 7: CDF a) – d) test case
Note that the results for O2 and Ofast are similar in the a) – b) test case, but that Ofast drops off for the cross-connect cases. This indicates that the deviations produced by Ofast compilation are “balanced” between the encoder and decoder – but manifest as unacceptable degradations when connecting to the fixed point encoder/decoder. This represents a useful reference for developing conformance criteria. 
Investigating the outliers present in these new results confirmed that no broken outputs were present. Moreover, we observe that the largest outliers are produced by the 48, 96 and 128kbps modes, indicating an issue in TCX coding. Examining the output files in these conditions shows the same trend as the overall results: good output in the FL->FL test case, with noticeable artefacts appearing in the FX->FL and FL->FX test cases. Further investigation of these TCX outliers is pending. 
7. Restricted results

We have observed that, for the O2 case, channel error and DJB test conditions display greater variance and outliers in POLQA scores relative to other conditions. We consider a restricted test that excludes them and focuses on clean channel conditions. This allows the consideration of strict criteria that give very high confidence that the core coding modes are implemented correctly. For completeness, this could be combined with a second set of criteria covering all conditions. The results for this restricted test are summarized in Table 3. Note that the maximum, standard deviation, and 95% intervals for the O2 cases all shrink significantly.
Table 3 : Summary of differences – excluding PLC and DJB
	
	
	O2
	Ofast

	a) - b)
	AVG
	-0.0014
	-0.0011

	
	MIN
	-0.0492
	-0.0507

	
	MAX
	0.0508
	0.0877

	
	STD
	0.0132
	0.0156

	
	95%
	0.0284
	0.0326

	a) - c)
	AVG
	0.0017
	0.0498

	
	MIN
	-0.0292
	-0.0215

	
	MAX
	0.0557
	0.5291

	
	STD
	0.0092
	0.1102

	
	95%
	0.0230
	0.3472

	a) - d)
	AVG
	-0.0018
	0.0256

	
	MIN
	-0.0492
	-0.0526

	
	MAX
	0.0649
	0.3737

	
	STD
	0.0119
	0.0733

	
	95%
	0.0241
	0.2141


Unilateral CDFs of the difference POLQA scores are plotted in Figures 8, 9 and 10, for the cases a)-b), a)-c) and a)-d), respectively. Regions were the CDF reaches 100% are indicated with oversized markers. Oversized markers at 0.1 only indicate overload. 
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Figure 8: CDF for a) - b) test case
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Figure 9: CDF for a) – c) test case
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Figure 10: CDF for a) – d) test case
Note again that the results for O2 and Ofast are similar for the a) – b) FL->FL test case, but that Ofast degrades in the cross connect cases. 
8. Conclusion
The results presented show that broken outputs stemming from aggressive compilation of the EVS FL reference code can be addressed with a source code change. The patched reference code under aggressive compilation exhibits improved quality in FL->FL connection, but degrades in cross connection with the FX coder. This results in a more salient reference for evaluating conformance criteria. Additionally we show that restricting testing to clean-channel conditions allows setting of tight criteria that give high confidence in the correctness of the underlying implementation.
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