
3GPP TSG-SA WG4 Meeting #90
S4-161035
Ljubljana, Slovenia, 5th – 9th Sep 2016

Agenda item:
9.6
Source:
Qualcomm Incorporated, Expway
Title:
TRAPI: Service APIs
Document for
Agreement
1 Introduction

Based on the discussions and agreements in the telco, this document uses the methodology that was agreed to document the service APIs. Specifically, the outline and documentation is used.
2 Motivation and Background
We have reviewed different approaches for the service API and we base our documentation on implementation knowledge and the rationales provided inline.
3 Service API
3.2 Graphical Presentation

Figure 1 provides a graphical overview of how the MBMS Application Programming Interface (API) fits into the UE architecture of deliverying MBMS content to applications.

[image: image2.emf]MBMS URL

Handler

MBMS-Aware

Application

Application

URL Dispatch

MBMS API

HTTP URL

Handler

HTTP

Function

MBMS Client

 Figure 1 Application to MBMS function API
The MBMS API implementation on some HLOSs (e.g., Android) and some application development frameworks (e.g, Android applications) is realized as a library that is linked to the application code and that runs in the application context. That library implementation communicates with a particular MBMS Client implementation and abstracts from the application the detailed interactions with the MBMS Client. The MBMS API exposes to the application a set of simple interfaces described in the IDL definitions in clauses of this specification; in particular, the IDL makes use of callback functions as the means for the MBMS Client to notify applications of events relevant to the reception of MBMS content. The MBMS library communication with the MBMS Client is not in the scope of this specification and can be implemented using different solution approaches (e.g., Android services, WebSockets, etc.).
It is understood that in some application development frameworks (e.g., HTML/Web Applications), linking a library to the application is not a solution that is available. In these cases, the callback functions in the IDL definitions in clauses of this specification may not be realized programmatically as function calls. In particular, the application may need to implement the necessary approach available on these frameworks (or the selected solution approach) to receive event notifcations from the MBMS client in place of callback functions. For such frameworks, the implementation of callback functions described in the IDL of this specification is not required. However, the information structures defined on the IDL callback functions are to be communicated to the application when the MBMS Client generates the corresponding event notification to the application using the available (or selected) notification mechanism.
Figure 2 provides an overview of the graphical representation of multiple application connecting to MBMS Service API.

[image: image4.emf]MBMS-Aware

Application

MBMS Client

MBMS API

MBMS-Aware

Application

Figure 2 Multiple Applications connecting to MBMS Client

3.3 Services Provided

eMBMS Service API provides interfaces for different types of eMBMS services defined in 3GPP 26.346(or add a spec to the reference document and use the reference here). Each of the services is exposed as a self-contained interface (IDL interface).
Note : eMBMS Service specific service types approach enables applications to use different eMBMS services independently. An Application interested only in streaming service does not need to provide an empty implementation of the callback listener for the file delivery service and vice versa. This also allows for MBMS client implementations where only some services are available and not others.
1. File Delivery Application Service
The File Delivery Application Service API provides MBMS Aware Applications with interfaces to manage the reception of files delivered over File Delivery Application Services. Some of the interfaces defined allow an application to get information on the available eMBMS File Delivery Application Services and possibly the files scheduled to be carried on these services; to start and stop the capture of files on these services; and to allow the MBMS Client to provide notifications associated with the reception of files. Clause TBD provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and clause TBD includes an abstract IDL definition for these interfaces.
2. DASH Streaming Service

The DASH Streaming Service API provides MBMS Aware Applications with interfaces to manage the reception DASH streaming content delivered over DASH Streaming Services. Some of the interfaces defined allow an application to get information on the available DASH Streaming Services; to start and stop the reception of DASH content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of DASH content. Clause TBD provides a complete description and the associated uses for the interfaces in the File Delivery Application Service API and clause TBD includes an abstract IDL definition for these interfaces.
3. RTP-over-MBMS Streaming Service (in progress)
RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available RTP streaming service. Application will receive information about the RTP data.

3.4 File Delivery Application Service API

The File Delivery Application Service API provides MBMS Aware Applications with interfaces to manage the reception of files delivered over File Delivery Application Services. This API is intended to support applications that are registered and running while files are being broadcast as well as applications that the user may have quit/exited and therefore are not running to receive information on files received via broadcast; applications are required to de-register before exiting.
In order to support application that may not be currently registered while files are being received, the MBMS client will persistently keep received files for a period of time configured by the application, which should include means to collect received files even if the user does not actively interacts with the application to consume the received files.

When the application is currently registered and can collect the files received over broadcast, the MBMS client will move/copy the files to the application space. It is untimately the application’s responsibility to manage the storage of requested files, especially the amount of storage to be used. Any persistant storage of received files by the MBMS client is only intended to ensure that the received files are made available to the respective requesting application. Once files are move/copied to the application space, the application is responsible for managing those files.
3.4.1 File Delivery Use Cases and Message Flows
3.4.1.1 Intro

Editor’s note: Need to add brief description of notation on how the parameters are described in this clause and how they refer to the IDL in clause XXX. Maybe just describe the element and not the type.
3.4.1.2 File Delivery Application Service Registration

[image: image5.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerFdApp()

deregisterFdApp()

getFdServices()

registerFdResponse()

Figure 3 Application Registration sequence diagram
An MBMS Aware Application calls the registerFdApp() interface to register with the MBMS Client to consume File Delivery Application Services. The registerFdApp() interface has two purposes:
1) It signals to the MBMS Client that an application is interested to consume MBMS content. This allows the MBMS Client to check for updates to the File Delivery Application Services defined.
2) It allows the application to identify its callback listeners defined in the File Delivery Application Service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with the reception of files.
Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerFdApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. These notification will include the same information content as defined on the structures for the IDL callback functions.
The parameters for the registerFdApp() API are:

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information (e.g., capture requests and captured files) for a particular MBMS Aware Application.

· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to cummunicate with the MBMS client via platform services.

· For Android this is Context class, see https://developer.android.com/reference/android/content/Context.html for details.

· sequence<string> serviceClassList – provides the list of service classes which the application is interested to register. This also signals to the MBMS client to only report to the application via the getFdServices() the serviceIDs for the File Delivery Application Services that are associated to one of the service classes in this list.

· The application will be pre-configured with the set of service classes that allows it to consume the File Delivery Application Services associated with these service classes.

· The application may change the list of active service classes it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdServiceClassFilter() while the application is registered with the MBMS client to consume File Delivery Application Services.

· StorageLocation locationPath – optionally identifies a local directory on the device, which the application can access and where successfully collected files will be copied/moved before making the file available to the application.

· If not defined by
an application, the MBMS client will ensure that the application will have access to the files the MBMS Client received on behalf of the application.

· The application may change the selected locationPath it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdStorageLocation() while the application is registered with the MBMS client to consume File Delivery Application Services.

· Any updates to the currently defined locationPath for an application will only take effect for the next new file the MBMS client receives for that application.

· unsigned long registrationValidityDuration –
 the period of time following the application de-registration, and possible exit, over which the eMBMS client still considers the application registered for the purpose of fulfilling any outanding startFileCapture() requests. This enables the application to allow the eMBMS client to capture files in the background when the application is not currently registered. The application developer is to be aware that received files belong to the application and that the MBMS client does not provide content management functions beyong reception and temporary storage of received files inbetween consecutive runs of the application.

· Once registrationValidityDuration period after the last application de-registration expires, the MBMS client will cancel all outstanding startFileCapture() requests and delete all files collected for the application that are still present on the MBMS client storage space.

· The default value of this option is 0 (zero) which signals to the the eMBMS client to clear any outstanding startFdCapture() requests for that application upon its de-registration, and possible exit.

· The MBMS client may be configured to support a maximum registrationValidityDuration. The MBMS client will provide the acceptedFdRegistrationValidityDuration
 via the registerFdResponse(); that value will be the registrationValidityDuration the application requested or the configured maximum registrationValidityDuration the MBMS client can support.

· Guideline: The application selects a value for this parameter to constrain the amount of storage the MBMS client will use to collect and keep application-requested files in the MBMS client storage space while the application is not currently registered. The amount of files cached for an application that does not collect its files may impact the MBMS client’s ability to collect files for other applications. In selecting a value for the registrationValidityDuration the following should be considered:

· The frequency and amount of files received during the selected registrationValidityDuration. For instance, assuming that 100MB worth of files are delivered every day:

· The appplication could select a registrationValidityDuration of Nx24h (e.g., N=10) to request the MBMS client to store at most Nx100MB (e.g., 1GB) if the application is not run by the user in Nx24h.

· The application could ask its user (or have a preconfigured behavior on) how long the user wants files to be collected in-between the user’s access to files delivered to the application. If the user selects a long period (e.g., 2months) the application should not use that large values as the registrationValidityDuration (e.g., this could mean 6GB in the example above). Instead, the application should include behaviors to periodically re-register (e.g., every 5days) and collect received files to manage storage of its application files. Leaving those files in the MBMS client storage space (e.g., 6GB) could exceed the MBMS client storage space allowance and impact the reception of files for other applications.

· The relevance of older vs. newer files when managing the storage for files received if the user does not access the application over a long period of time.

· The application could ask the user how much storage to use for reived files and whether to delete older files (newer files preferred), or stop new downloads (older preferred), or however else the application choses to support managing received files.

· As described above, in the absence of the user launching the application for File Delivery Application Services with outstanding startFdCapture() requests, that application should automatically re-register (e.g., every 5days as discussed above) with the MBMS client with a periodicity not greater than registrationValidityDuration and retrieve files captured during the period the application was not currently registered.

· The application should then manage the downloaded files with respect to the amount of storage consumed by files of that application. For instance, the application may prioritize retaining newer versues older files or let the registrationValidityDuration expire (therefore causing the MBMS client to stop continued file downloads for that application) if the user does not consume file contents for that application.

· Examples 1: Daily headline news application allows the user to collect files from two File Delivery Application Services with new/updated video clip files downloaded twice every day.

· The application registrationValidityDuration is 2days, it re-registers wth the MBMS client every 1.5 days and it keeps only the files that are no more than two days old, e.g., as configured by the user.

· Examples 2: Weekly magazine application allows the user to collect files from a File Delivery Application Service with new/updated files for selected electronic versions of weekly magazines downloaded once a week.

· The application registrationValidityDuration is 15days, it re-registers wth the MBMS client every 7days and it keeps only the files that are no more than three weeks old, e.g., as configured by the user.

· ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with File Delivery Application Service APIs for the registering MBMS Aware Application. The callback element is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported, the same information content as defined on the callback structures is to be provided to the application via the notification method available with the development framework when the respective condition is met.
· The MBMS client uses the interfaces in the callback parameter of the registerFdApp() interface to send notification of event occurences to the MBMS Aware Application. For example, as the MBMS client periodically checks for service announcement updates, and it sends a notification of fdServiceListUpdate() to the application to signal that the list of services previously retrieved is updated. The callback interface provides an efficient method to give instantaneous service updates to the application.
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement data over the broadcast channel and caches the eMBMS services definition.

Once registered, the application may start making calls on the File Delivery Application Service API interfaces. For example, application may request retrieval of the eMBMS File Delivery Application Service list. The getFdServices() interface returns the complete list of available File Delivery Application Services information, including service_id, service name, lang, file URIs, etc.

When application is no longer interested in consuming File Delivery Application Services, it calls deregisterFdApp() interface.
3.4.1.3 File Delivery Application Service Registration Response

As illustrated in figure 3, the MBMS client will respond to an Application call to the registerFdApp() API with a registerFdResponse() call back providing the result of the registration request. The parameters for the registerFdResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

· REGISTER_SUCCESS – indicates that the registration has been processed and the application can proceed with other API interactions with the MBMS client for File Delivery Application Services.

· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the File Delivery Application Service API did not find an MBMS client available on the device on which the application is running and no eMBMS service will be available to the application.

· String message – provides an associated text description of the error message.

· unsigned long acceptedFdRegistrationValidityDuration – included when returning REGISTER_SUCCESS, it indicates the registration validity duration the MBMS client will provide to the registering application. It can be the registrationValidityDuration the application requested, or the maximum validity duration that the MBMS client can support. The application should adjust its expectations accordingly if the value returned is not what was requested.

3.4.1.4 Getting information on available File Delivery Application Services

As illustrated in figure 3, after a successful registration with the MBMS client, the MBMS Aware Application can use the getFdServices() API to discover the available File Delivery Application Services associated with the service classes registered via the registerFdApp(). The getFdServices() API returns a list describing the available File Delivery Application Service, where each service is described by the following parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
· string name – offers a title for the user service on the language identified in the lang parameter.

· string lang – identifies a natural language identifier per [xx
].

· string serviceClass – identifies the service class which is associated with the service.

· string serviceId – provides the unique service ID for the service.

· string serviceLanguage – indicates the available language for the service and represented as an identifier per [xx]
.

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.
·
·
· The possible values are:

· BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

· BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

Note: Since the service is included on the list of available File Delivery Application Services for the registered service classes, the MBMS Aware Application can issue startFdCapture() requests on these services, regardless of whether or not the UE is currently in the broadcast coverage area for the service. The MBMS client will handle the reception of requested files via broadcast if the UE is in broadcast coverage at the time when these files are transmitted, or retrieve/repair these files via the MBMS unicast file repair procedures if the UE was not in broadcast coverage at the time when the requested files were transmitted.

· sequence<string> fileUriList – optionally provides a list of file names for the files that are currently scheduled to be transmitted if advertised to the MBMS client by the network via the schedule description metadata fragment. The MBMS clien will only include fileUri(s) from the fileSchedule in the schedule description if there is a current or a future scheduled transmission of that file.

· EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active File Delivery Application Service start time, when files start being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files are being broadcast for the service at the current time.

· If the activeDownloadPeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeDownloadPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

· EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active File Delivery Application Service stop time, when files stop being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files are being broadcast for the service at the current time, but transmissions will end at activeDownloadPeriodEndTime.

· If the activeDownloadPeriodEndTime is in the past, there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.

3.4.1.5 Setting the storage location

[image: image6.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdStorageLocation()

registerFdResponse()

Figure 4 Sequence diagram for updating the storage location for collected files
While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdStorageLocation() API to set or update the location where files collected for the application are to be stored, if not done via the registerFdApp() API. The MBMS Aware Application can also invoke the setFdStorageLocation() API to update the previously defined storage location.

· StorageLocation locationPath – optionally identifies a local directory on the device, which the application can access and where successfully collected files will be copied/moved before making the file available to the application.
· While the storage location is not defined for an MBMS Aware Application, via the registerFdApp() or the setFdStorageLocation() the MBMS client will select a local directory on the device, which the application can access.

· The application may change the selected locationPath has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdStorageLocation() while the application is registered with the MBMS client to consume File Delivery Application Services.

· Any updates to the currently defined locationPath for an application will only take effect for the next new file the MBMS client receives for that application.

3.4.1.6 Updating the registered service classes

[image: image7.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdServiceClassFilter()

registerFdResponse()

fdServiceListUpdate()

getFdServices()

Figure 5 Sequence diagram for updating the registered service classes for an application
While an application is actively registered with the MBMS client to consume File Delivery Application Services, the MBMS Aware Application can call the setFdServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 5. The MBMS Aware Application updates the list of registered service class by invoking the setFdServiceClassFilter() API with a new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes defined when the registerFdApp() or an earlier setFdServiceClassFilter() was called. The parameters for the setFdServiceClassFilter() API are:

· sequence<string> serviceClassList – provides the complete list of service classes which the application is interested to be registered with.

· The MBMS client will dis-associate the service classes previously associated with the MBMS Aware Application that are not included on this list.

· The MBMS client will associate the service classes not previously associated with the MBMS Aware Application that are newly included on this list.
· Since the list of service classes associated with the MBMS Aware Application has changed, the corresponding list of services the application should have access to has also changed. The MBMS client issues a fdServiceListUpdate() notification to the application to alert it of this effect. The MBMS Aware Application should involke the getFdServices() API to update the list of File Delivery Application Services the application can consume given the updated service class registration. This is illustrated in figure 5.
3.4.1.7 Start File Delivery Capture

[image: image8.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 6 File Delivery Application Start Capture
After the the File Delivery Application Service registration, the MBMS Aware Application can make calls on the startFdCapture() API to the select fileURIs for the files to be received over broadcast. The fileURI identifies the names for the files as they will also be used on the FLUTE FDTs for the File Delivery Application Service to also identify the files being sent on the FLUTE session. It is recommended that http:// or file system names c:/user/… be used as fileURIs; the fileURI format is not validated by the MBMS client.

After capturing the files requested on a startFdCapture request, the MBMS Client will send a fileAvailable() notification via the registered callback listener.

When application is no longer interested in consuming the File Delivery Application Service, it calls the stopFdCapture() interface which will stop download of files for the service over broadcast.

The parameters for the startFdCapture() API are:

· string serviceId – identifies the File Delivery Application Service where the MBMS client is to try an capture the files indicated in fileUri.

· string fileUri – identifies the files to be captured on the service identified in serviceId. Allowed values include:

· The empty string signals that the application is interested in receiving all new files and updates to previously received files.

· A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.

· An application may make use of this option if it orginzes its files in a structured way (in a directory) such as to allow the identification of a group of files. For instance, a headline news clips application may group files under a …\sports\, a …\politics\, etc. folder and allow the user to select what type of headline news of interest and therefore request the MBMS client to capture all the files under …\sports\ if the user is only in terested in sports headline news.

· An absoluteURL, i.e., a complete URL that indenfies a single file resource. An software update application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when resquest that its software image be received on a FOTA File Delivery Application Service.

· The MBMS client will send a failure indication via the fdServiceError() with the FD_DUPLICATE_FILE_URI error code if the requested fileURI matches an existing outstanding startFdCapture() request.

· Guideline: As described in clause TBD, the application will use a stopFdCapture() API to stop the reception of files requested on a startFdCapture() request. The application should avoid having ambiguous startFdCapture() requests, for instance one requesting files that match http://example.com/servicex/sport/ (using a BaseURL) and another requesting a file that matches http://example.com/servicex/sport/file5.mp4 (using an absolute URL).

· The MBMS client will enforce that each outstanding startFdCapture() is unambiguous as follows:

· The MBMS client will send a failure indication via the fdServiceError()with the FD_AMBIGUOUS_FILE_URI error code if the requested fileURI is more specific and matches an existing outstanding startFdCapture():

· When fileURI is an absoluteURL or a BaseURL and there is an existing outstanding startFdCapture() with an empty fileURI.

· When fileURI is an absoluteURL and there is an existing outstanding startFdCapture() with an BaseURL in the fileURI that is base URL for the aboluteURL.

· The MBMS client will send a failure indication via the fdServiceError() with the FD_DUPLICATE_FILE_URI error code if the requested fileURI matches an existing outstanding startFdCapture().

· The MBMS client will remove existing outstanding startFdCapture() requests when the requested fileURI on a startFdCapture() is broader (i.e., superceding older requests) than these existing outstanding startFdCapture() requests; this request consolidation will not impact on going file downloads:

· When fileURI is empty on the new startFdCapture(), all existing outstanding startFdCapture() are removed. The application may use the getFdActiveServices() API to get back in synch with fileURI in remaining outstanding startFdCapture() requests, see clause TBD.

· When fileURI is a BaseURL, existing outstanding startFdCapture() requests with an absoluteURL are removed if the new fileURI in the request is a base URL for the aboluteURL on these existing outstanding startFdCapture().

Note: once the MBMS client combines more specific outstanding startFdCapture(), e.g., with absoluteURLs, with a new startFdCapture(), e.g., with a BaseURL, the total number of outstanding startFdCapture() requests is smaller. The application may use the getFdActiveServices() API to get back in synch with fileURI in remaining outstanding startFdCapture() requests, see clauseTBD.

· boolean disableFileCopy – when set to true, this signals that the application does not want the MBMS client to make the file available on the application space. In this case, the MBMS client will include the availabilityDeadline when signaling the fileAvailable() notification for a file reception matching this startFdCapture() request
.

· boolean captureOnce – when set to true, signals that the file requested via the fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once. Any subsequent transmissions of a file matching that fileURI will not be captured until a new startFdCapture() requests that file again.

3.4.1.8 File Delivery Application Service De-registration

An MBMS Aware Application registers services classes with the MBMS client to request the capture of files on File Delivery Application Services, but the application does not have to be currently registered while files are being captured as discussed earlier.

MBMS Aware Application registered with the MBMS client via the registerFdApp() API should involke the deregisterFdApp() before exiting. This is the signal to the MBMS client to continue collecting files for the application and persistently keeping the received files until the application registers again via a new registerFdApp() request. There are no parameters for the deregisterFdApp() API.
3.4.1.9 File Available Notification

As illustrated in figure 6, once the MBMS client has successfully collected a file that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client will invoke the fileAvailable() callback function (which the application registerd with the MBMS client via the registerFdApp() API) while that application has not de-regstered, to let it know the information on the file that has been received. The parameters for the fileAvailable() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client captured the file indicated in fileUri.

· The following is the file information for the received file:

· string fileUri – identifies the file captured on the service identified in serviceId. The MBMS client will invoke the fileAvailable() for each received fileUri individually.

· string fileLocation – indetifies the location where the MBMS Aware Application can find the collected file. Possible location alternatives are:

· A complete file name (including the directory path) on the UE local file system where the file can be accessed.

· The file can be stored under the directory in the currently defined locationPath (either via the registerFdApp() or the setFdStorageLocation()), if the MBMS client is successful in copying/moving the collected file to that locationPath.

· The file can be stored under an MBMS client defined directory that is accessible to the application if the MBMS client is not successful in copying/moving the collected file to the currently application defined locationPath.

· An HTTP URL where the MBMS Aware Application can retrieve the file using the HTTP GET method. This format is used when the MBMS client is not able to copy/move the collected file to the storage area defined by the locationPath or the file is stored on a location that is not directly accessible to the application
.

· string contentType – indicates the MIME type for the file identified in the fileUri, if a MIME type was defined via the FDT describing that file transmission.

· unsigned long availabilityDeadline – signals a deadline when the file stored at the fileLocation will be removed from the MBMS client storage location, if the file was not copied/moved to the currently application defined locationPath (i.e., fileLocation is not under the locationPath or it is an HTTP URL).

3.4.1.10 File Download Failure Notification

[image: image9.emf]startFdCapture()

fileDownloadFailure()

MBMS Aware

Application

MBMS Client

Open FLUTE session and receive a file but fail FEC

decoding or fil repair for the file

stopFdCapture()

Figure 7 Signaling download failures
As illustrated in figure 7, once the MBMS client has attempted to collect symbols for a file (possibly even via the unicast file repair procedure), that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client may still not be able to recover the file. Once the MBMS client detects that it failed FEC decoding the file, the MBMS client will invoke the fileDownloadFailure() callback function (which the application registerd with the MBMS client via the registerFdApp() API) while that application has not de-regstered, to let the application know that the reception for a requested file has failed. The parameters for the fileDownloadFailure() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client failed to captur a requested file indicated in fileUri.

· string fileUri – identifies the file which failed being received on the service identified in serviceId.

3.4.1.11 File List Available Notification

[image: image10.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,fileURI1)

startFdCapture(S2,fileURI2)

Collect Files Matching

startCapture(S2,fileURI2) requests

registerFdApp()

fileListAvailable(S2)

getFdAvailableFileList(S2)

Figure 8 Sequence diagram for notifying the application about collected files
As illustrated in figure 6, an MBMS Aware Application that is currently registered when a requested file is successfully received is notified of the availability of the new file via the fileAvailable() API. Figure 8 illustrates what happens when an application registers to consume File Delivery Application Services with a non-zero registrationValidityDuration, asks different files to be captured (possibly from different File Delivery Application Services), and then de-registers. During the registrationValidityDuration period following the application de-registration, the MBMS client collects files matching the outstanding capture requests from the applicatioin and keeps the files in its cache while the application is not currently registered, see clause XXX.

Once the application re-registers with the MBMS client, the MBMS client copies the received files to the locationPath the application registered via the registerFdApp() API and invokes the fileListAvailable() callback function for each service that had files collected while the application was not registered. This lets the application know that a list of files have been received for the application and these files are ready to be accessed. The parameter for the fileListAvailable() API is:

· string serviceId – identifies the File Delivery Application Service for which the MBMS client captured files on behalf of the application while the application was not registered with the MBMS client.

Note: while an MBMS Aware application is deregistered and files are received for that application, if multiple versions of the same file (i.e., the same fileURI but different Content-MD5 in the FDT for a File Delivery Application Service) are received, only the last file version received is kept by the MBMS client and made available to the application after the new registration.

3.4.1.12 Getting the List of Available Files

As illustrated in figure 8, once the MBMS Aware Application re-registers with the MBMS client, the MBMS client copies the received files to the registered locationPath and invokes the fileListAvailable() callback function to let the application know that a list of files have been received for a service and are now ready to be accessed. That application can then invoke the getFdAvailableFileList() API to retrieve information on these received files. The parameters for the getFdAvailableFileList() API are:

· string serviceId (input parameter) – identifies the File Delivery Application Service with files the MBMS client captured for the application.

· A list of file information (output parameter) – the same set of file parameters defined for the fileAvailable(), with the same defintions, is provided for each received file, including the fileLocation in not in the registered locationPath and an associated availabilityDeadline if the MBMS client was not able to copy/move the file to the registered locationPath.

3.4.1.13 Stop File Delivery Capture

[image: image11.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 9 File Delivery Application Stop Capture
As indicated in clause XXX, the application can make startFdCapture()calls to the select fileURIs for the files to be received over broadcast. These startFdCapture() calls identify the file (via an absolute URL) or files (via a BaseURL or not specifying a specific fileURL) to be received. The application should cache the requested fileURIs and use the stopFdCapture() API to signal to the MBMS client when the application no longer wishes to receive files matching the fileURIs on earlier capture requests. Upon receiving a stopFdCapture() request that matches the fileURI of an earlier startFdCapture() request, the MBMS client will stop any on-going and future file receptions that match that particular request.

The parameters for the stopFdCapture() API are:

· string serviceId – identifies the File Delivery Application Service where the MBMS client is to stop capturing the files indicated in fileUri.

· string fileUri – identifies the files from a previous startFdCapture() request for the service identified in serviceId. Allowed values include:

· The empty string signals that the application is canceling a previous startFdCapture() request with an empty string.

· A BaseURL signals that the application is canceling a previous startFdCapture() request with the same BaseURL.

· An absolute URL signals that the application is canceling a previous startFdCapture() request with the same abdolute URL.

· Guideline: As described in clause XXX, the MBMS client will either reject ambuguous startFdCapture() requests from the application or consolidate new and outstanding startFdCapture() requests. As such,
· the MBMS client will keep records of outstanding startFdCapture() requests that are unambiguous and that can be separately stopped via a stopFdCapture() request. Similarly:

· The MBMS client will also send a failure indication via the fdServiceError() with the FD_AMBIGUOUS_FILE_URI error code when the requested fileURI on a stopFdCapture() is more specific than an existing outstanding startFdCapture() requests that is broader:

· When fileURI is an absoluteURL or a BaseURL and there is an existing outstanding startFdCapture() with an empty fileURI.

· When fileURI is an absoluteURL and there is an existing outstanding startFdCapture() with an BaseURL in the fileURI that is base URL for the aboluteURL.

· The MBMS client will send a failure indication via the fdServiceError() with the FD_STOP_FILE_URI_NOT_FOUND
error code to any stopFdCapture() request that does not match an outstanding startFdCapture() request.

Note: If the MBMS Aware application has not properly cached the list of fileURIs on its outstanding startFdCapture() requests, the application should invoke the getFdActiveServices() API described in clause TBD to re-syncrhonize on its outstanding startFdCapture() requests.

3.4.1.14 Getting the list of outstanding fileURIs being captured

[image: image12.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,BaseURL1)

registerFdApp()

stopFdCapture(S1,BaseURL1)

getFdActiveServices()

Figure 10 Sequence diagram for an application to collect info on outstanding startFdCapture() requests
An MBMS Aware application should keep track of its outstanding startFdCapture() requests and only issue stopFdCapture() with a fileURI that matches an outstanding startFdCapture() request. Figure 10 illustrates that the application may also invoke the getFdActiveServices() API to reteieve the fileURI for these outstanding startFdCapture() requests, especially after a new registration or if a more recent startFdCapture() with a BaseURL superseded an earlier startFdCapture() with an AbsoluteURLs as discussed in clause TBD. The parameter for the getFdActiveServices() API are:

· A list of service IDs and the associated fileUri for each of the outstanding startFdCapture() for which the MBMS client is actively trying to collect files. Each entry in such a list includes:

· string serviceId – identifies the File Delivery Application Service over which the MBMS client is to try capture files from outstanding startFdCapture() requests.

· sequence<string> fileUriList – identifies the fileURI(s) for outstanding startFdCapture() requests for the service identified by the serviceId.

3.4.1.15 Notification on state change for files

[image: image13.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

fileDownloadStateUpdate(S1)

registerFdResponse()

startFdCapture(S1,BaseURL1)

fdServiceListUpdate()

getFdDownloadStateList()

getFdServices()

getFdDownloadStateList()

Figure 11 Sequence diagram for notifying the application about changes to the state of files being collected
As illustrated in figure 11, after an MBMS Aware Application registers with the MBMS client and requests that files are to be captured, the MBMS client may issue fileDownloadStateUpdate() notifications to an application to signal that the state the MBMS client maintains for file(s) received or being received for the application has changed. The parameter for the fileListAvailable() API is:

· string serviceId – identifies the File Delivery Application Service for whichthe state the MBMS client maintains for file(s) received or being received for the application has changed.

3.4.1.16 Getting the state on file(s) received or being received

An MBMS Aware application may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that application. As illustrated in Figure 11, the application may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification.

The application may also detect via updated service definition information (i.e., via a fdServiceListUpdate() followed by a getFdServices()) that a file previously advertised on an earlier getFdServices() and which the application requested to be capture is no longer described on the information retrieved via the latest getFdServices(), and the application did not receive a fileAvailable() or a fileDownloadFailure() reporting the successful or failed reception of the requeste file, respectively. This could happen because the requested file is no longer advertised as available for request (there is no current of future transmission for the file described on a fileSchedule in the scheduled description fragment), but the file is still pending file repair.

An interested application can request information on the current state for files requested to be downloaded by the MBMS client on behalf of that application by involking the getFdDownloadStateList() API. The getFdDownloadStateList() API includes the following parameters:

· string serviceId [input parameter]
 – identifies the File Delivery Application Service for which the application wants the MBMS client to report on the state on files downloaded or being downloaded on behalf of the application over that service.

· A list of fileUri and the associated download state information [output parameter] for files downloaded or being downloaded on behalf of the application. For each entry on this list the following is described:

· string fileUri – identifies one fileURi matching an outstanding startFdCapture() requests for the service identified by the serviceId.

· If an entry is not defined for a file of interest that the application previously requested to be captured by the MBMS client, the application is to assumed that the MBMS client has not started collecting symbols for that file.

· If the file of interest is not advertised in the fileUriList of the getFdServices() API, see clause TBD, the application is to assume that there is no currectly defined transmission schedule for the service.

· If the file of interest is not advertised in the fileUriList of the getFdServices() API, but it was advertised on an earlier call to the getFdServices() API, the application is to assume that the previously scheduled reception of that file has been cancled or it has failed.

· DownloadState state – identifies the download state for the file being described in fileURI.

· The MBMS client will signal the state to be FD_IN_PROGRESS if when the MBMS client has started collecting the file in fileUri. In particular, the MBMS client will report this state when there are no current or future transmissions schedules for the file and the MBMS client is pending completion of the unicast file repair procedure.

3.4.1.17 Notification of updates to the service definition

As illustrated in figure 10, after an MBMS Aware Application registers with the MBMS client and possibly requests that files are to be captured, the MBMS client may issue fdServiceListUpdate() notifications to an application to signal that there have been changes to the definition of File Delivery Application Services associated with the service classes the application has registered with the MBMS client.

The MBMS client will invoke the fdServiceListUpdate() whenever there has been a change to the parameters reported to the application in response to a getFdServices() API, as defined in clause TBD, for any of the services associated with the registered service classes. This will include additions and removals of File Delivery Application Servicesassociated with registered service classes; changes to the serviceBroadcastAvailability state for service(s); updates to the fileUriList, including changes to the current or a future scheduled transmission of file(s); and changes to the current activeDownloadPeriodStartTime and activeDownloadPeriodEndTime.

There are no parameter for the fdServiceListUpdate() API. In response to a fdServiceListUpdate() API notification from the MBMS client, the MBMS Aware application should invoke a getFdServices() API and process the updated information accordingly.

3.4.1.18 Notification of File Delivery Application Service errors

[image: image14.emf]startFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

startFdCapture() validation

errors detected

Figure 12 Signaling errors with the startFdCapture request from the MBMS Aware Application

[image: image15.emf]stopFdCapture()

fdServiceError()

MBMS Aware

Application

MBMS Client

stopFdCapture() validation

errors detected

Figure 13 Signaling errors with the stopFdCapture request from the MBMS Aware Application
As illustrated in figure 12, the startFdCapture() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the fdServiceError() to signal the error code for the result of processing the application’s startFdCapture(). Figure 13 also illustrates that the fdServiceError() is used to signal the error code for the result of processing the application’s stopFdCapture() request. The parameters for the fdServiceError() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client failed to process the startFdCapture() or the stopFdCapture() request and for the requested fileURI indicated via the fileUri in this API.

· string fileUri – identifies the requested fileURI indicated in the startFdCapture() or the stopFdCapture() request which the MBMS client failed to process.

· FdErrorCode errorCode – identifies the error code for the reason causing the startFdCapture() or the stopFdCapture() request for the serviceId and fileUri to fail. The available error codes are:

· FD_INVALID_SERVICE – signals that serviceID defined on the startFdCapture() or the stopFdCapture() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· FD_DUPLICATE_FILE_URI – signals that fileUri defined on the startFdCapture() request has already been requested on a previous startFdCapture() request. This is a duplicate request and the previous request is still in effect, i.e., impact to that earlier request. The MBMS client will not signal this error for the same condition on a stopFdCapture() request.

· FD_AMBIGUOUS_FILE_URI – signals that fileUri defined on the startFdCapture() or the stopFdCapture() request creates ambiguity with a previously issued startFdCapture() or stopFdCapture() request. See clauses XXX and YYY for details on the conditions when this error code is generated for the startFdCapture() and the stopFdCapture() request, respectively.
· FD_STOP_FILE_URI_NOT_FOUND
– signals that the indicated fileURI does not match an outstanding startFdCapture() request. The MBMS Aware application may invoke the getFdActiveServices() API described in clause TBD to re-syncrhonize on its outstanding startFdCapture() requests.
· FD_UNKNOWN_ERROR – signals an error codition not explicitly identified.

· string errorMsg – may provide additional textual description of the error condition.

3.4.1.19 Notification on storage limitations

[image: image16.emf]startFdCapture()

insufficientStorage()

MBMS Aware

Application

MBMS Client

Not enough storage is available to capture the

file of size as described on the FDT

Figure 13 Signaling a low storage level condition impacting a file download
As illustrated in figure 13, once a file is to be received for an MBMS Aware Application (at a scheduled transmission time for the respective File Delivery Application Service), the FDT for the FLUTE session for that service will signal the size for that file. When the MBMS client detects that not enough storage is available on the UE to receive the file, the MBMS client will send the warning indication via the insufficientStorage() API to signal the application of the low storage condition. The application may be able to clean up some of its own files or alert the user to clean up storage space on the UE.

The insufficientStorage() API is only invoked for the applications that are currently registered at the time that the low storage condition is detected. If the application is not currently registered at the time, the application will not be notified. The download for that file may eventually fail if the application does not get this notification or cannot clean up storage space in time to enable the successful download.

The parameters for the insufficientStorage() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client has started to capture the file in fileUri and that will fail download because of insufficient storage on the UE.

· string fileUri – identifies the file being transmitted on the File Delivery Application Service in serviceId which the MBMS client has started to capture and that will fail download because of insufficient storage on the UE.

· StorageLocation storagePath – indicates the storage location where the file is being stored.

· unsigned long storageNeeded – indicates the additional storage space that needs to be cleared on the storagePath to enable the download of the file in fileURI to succeed.

3.4.1.20 Notification on storage access issues

[image: image17.emf]startFdCapture()

inaccessibleLocation()

MBMS Aware

Application

MBMS Client

The storage location is not accessible for the

MBMS client to copy files

Figure 14 Signaling a storage access condition limitation impacting file download
As illustrated in figure 14, the locationPath where the MBMS Aware Application registered to have its requested files copied may not be available (e.g., SD card not inserted/locked). When the MBMS client detects that the register locationPath is not accessible, the MBMS client will send the warning indication via the inaccessibleLocation() API to signal the application of the storage access limitation; this can be done at different times, e.g., following a startFdCapture() as illustrated in figure 14. The application may select an alternatie locationPath, or prompt the user to choose another locationPath. The application can notify the MBMS client of the new locationPath via the setFdStorageLocation() API.

The inaccessibleLocation() API is only invoked for the applications that are currently registered at the time that the storage inaccessible condition is detected. If the application is not currently registered at the time, the download of files for that application may fail, or the MBMS client may be able to receive files but these file receptions may impact file downloads for other application.

The parameters for the inaccessibleLocation() API are:

· string serviceId – identifies the File Delivery Application Service on which the MBMS client will fail to download files because of the inaccessibility of the registered locationPath.

· string message – may provide additional textual description of the error condition.

· StorageLocation storagePath – indicates the storage location where files are to be stored per the registered locationPath at the time that the download started, which is not accessible by the MBMS client.

3.4.1.21 Checking the version for File Delivery Application Service interface

In order for the MBMS Aware Application to know the version of the File Delivery Application Service interface, the getVersion() API is provided. In this version of the specification the getVersion() API is to return version 1.0
.

3.4.2 File Delivery Application Service IDL:

#include "EmbmsCommonTypes.idl"
module FileDeliveryService

{

 //Forward Declaration
 interface ILTEFileDeliveryServiceCallback;

 /**
 * @name DownloadState
 * @brief List of the file download state
 */
 enum DownloadState

 {

 FD_IN_PROGRESS /**< File download is in progress */
 };

 /**
 * @name FdErrorCode
 * @brief List of the errors for File Delivery service
 */
 enum FdErrorCode

 {

 FD_INVALID_SERVICE, /**< Invalid service ID */
 FD_DUPLICATE_FILE_URI, /**< There is another pending captue request for the specified file URI. */
 FD_AMBIGUOUS_FILE_URI, /**< The specified file URI cannot identify a pending capture request. */
FD_STOP_FILE_URI_NOT_FOUND
, /**< The file URI specified on a stopFdCapture does not match an outstanding startFdCapture() request. */
 FD_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name cacheControl
 * @brief List of the errors for File Delivery service
 */
 enum cacheControlMode

 {

 FD_NO_CACHE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_NO_CACHE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_MAX_STALE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_MAX_STALE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_EXPIRES /**< The application uses Cache directives to manage how long to retain files.
 When FD_EXPIRES is selected, indicates the file has expected expiry time.
 In that case cacheControlExpires value is the expiry time*/
 };

 /**
 * @name RegisterFdResponseNotification
 * @brief Fd app registration information
 */
 struct RegisterFdResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registration value as defined in RegResponseCode */
 string message; /**< Message described the result */
 unsigned long acceptedFdRegistrationValidityDuration; /**< Accepted registeration validity duration */
 };

 /**
 * @name FileInfo
 * @brief Downloaded file information
 */
 struct FileInfo

 {

 string fileUri; /**< File URI */
 string fileLocation; /**< The physical location of the file or HTTP URL where the file can be accessed */
 string contentType; /**< MIME type as described in FDT of the file */
 unsigned long availabilityDeadline; /**< The maximum time that embms client guarantees to keep the file in its storage */
 };

 /**
 * @name RegisterFdAppData
 * @brief File delivery app registration information
 */
 struct RegisterFdAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides a
 platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 StorageLocation locationPath; /**< Local storage location on the device where collected files are copied */

 unsigned long registrationValidityDuration; /**< The period of time in seconds that the eMBMS client honors
 the app registration and file capture requests
 after the app deregisters and exits.
 This enables the app to let the eMBMS client capture
 files in the background when the application is not currently registered
.
 Default value of this option is 0 which means middleware clears
 any outstanding startFdCapture requests.* /
 };
 /**
 * @name StartFdCaptureData
 * @brief File delivery start capture information. It is used in StartFdCapture API
 */
 struct StartFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI for the file(s) to be captured.
 If empty, this implies capture all files. If an absolute URL,
 this implies only the capture of that particular file.
 If a Base URL, this implies the capture of all files that have that Base URL. */
 boolean disableFileCopy; /**< Disables copying of files to register locationPath */
 boolean captureOnce; /**< Capture the file only once and the bearer would be deactivated after file gets downloaded*/
 };

 /**
 * @name StopFdCaptureData
 * @brief File delivery stop capture information. It is used in StopFdCapture API
 */
 struct StopFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI. If empty, then it stops capture on all files.
 The path of the URI should contain the complete folder or file name. */
 };

 /**
 * @name FileList
 * @brief List of file URIs
 */
 struct FileList

 {

 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name FdServiceInfo
 * @brief File delivery service information
 */
 struct FdServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service broadcast availability */
 sequence<string> fileUriList; /**< List of file URIs */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 };

 /**
 * @name FdServices
 * @brief List of FD service info objects
 */
 typedef sequence<FdServiceInfo> FdServices;

 /**
 * @name FdServiceClassList
 * @brief ServiceClass information that the app is interested in. It is for the SetFdServiceClassFilter API.
 */
 typedef sequence<string> FdServiceClassList;

 /**
 * @name ActiveFdService
 * @brief Information about active file capture
 */
 struct ActiveFdService

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 sequence< string > fileUri; /**< File URI list */
 };

 /**
 * @name ActiveFdServiceList
 * @brief List of File delivery service ID from FdServiceInfo
 * @see getFdActiveServices()
 */
 typedef sequence< ActiveFdService > ActiveFdServiceList;

 /**
 * @name StorageLocation
 * @brief Local storage location on the device where collected files are copied.
 * It is used in the SetStorageLocation and registerFdApp API.
 */
 typedef string StorageLocation;

 /**
 * @name FileAvailableNotification
 * @brief Information about the downloaded file.
 */
 struct FileAvailableNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 FileInfo downloadedFileInfo; /**< Downloaded file information */
 };

 /**
 * @name FdServiceErrorNotification
 * @brief File delivery service error information. It is used by the FdServiceErrorNotification API.
 */
 struct FdServiceErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 FdErrorCode errorCode; /**< File delivery service error ID */
 string errorMsg; /**< error message */
 };

 /**
 * @name FileDownloadFailureNotification
 * @brief File download failure information.
 * @see FileDownloadFailureNotification()
 */
 struct FileDownloadFailureNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 };

 /**
 * @name InsufficientStorage
 * @brief Insufficient storage notification information
 * @see InsufficientStorage()
 */
 struct InsufficientStorageNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 StorageLocation storagePath; /**< Storage path that does not have sufficient storage to complete the file download */
 unsigned long storageNeeded; /**< Storage needed to complete the file download */
 };

 /**
 * @name InaccessibleLocationNotification
 * @brief Inaccessible storage notification information
 * @see InaccessibleLocation()
 */
 struct InaccessibleLocationNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string message; /**< Message with additional information */
 StorageLocation locationPath; /**< The path that is not accessible */
 };

 /**
 * @name FdDownloadStateInfo
 * @brief Information returned by getFdDownloadStateList().
 * @see getFdDownloadStateList()
 */
 struct FdDownloadStateInfo

 {

 string fileUri; /**< File URI */
 DownloadState state; /**< State of files from DownloadState. */
 };

 /**
 * @name FileDownloadStateInfoList
 * @brief List of FdDownloadStateInfo
 * @see getFdDownloadStateList()
 */
 typedef sequence<FdDownloadStateInfo> FileDownloadStateInfoList;

 /**
 * @name FileDownloadStateUpdateNotification
 * @brief File download state update notification information
 * @see fileDownloadStateUpdate()
 */
 struct FileDownloadStateUpdateNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 };

 /**
 * @name GetFdDownloadStateListData
 * @brief Information needed to call getFdDownloadStateList(). The returned list of getFdDownloadStateList() is filtered based on the options set in GetFdDownloadStateList.
 * @see getFdDownloadStateList()
 */
 struct GetFdDownloadStateListData

 {

 string serviceId; /**< Active file delivery service ID from FdServiceInfo. */
 };

 /**
 * @name AvailableFileList
 * @brief List of FileInfo
 * @see getFdAvailableFileList()
 */
 typedef sequence < FileInfo > AvailableFileList;

 /**
 * @name FileListAvailableNotification
 * @brief File List Available notification information
 * @see fileListAvailable()
 */
 struct FileListAvailableNotification

 {

 string serviceId; /**<File delivery service ID from FdServiceInfo. */
 };

 interface ILTEFileDeliveryService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current File delivery service interface implementation
 @return Interface Version
 **/
 string getVersion();

 /**
 @name registerFdApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo Information required for application registration
 @param[in] cb Callback listener
 @see RegisterFdAppData
 @see registerFdResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerFdApp(in RegisterFdAppData regInfo, in ILTEFileDeliveryServiceCallback callBack);

 /**
 @name deregisterFdApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls registerFdApp
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterFdApp();

 /**
 @name startFdCapture
 @brief Start download of files over file delivery service over broadcast
 @param StartFdCapture Struct includes parameters for StartFdCapture request
 @pre Application is registered for File Delivery service
 @see fileAvailable()
 @see StartFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startFdCapture(in StartFdCaptureData info);

 /**
 @name stopFdCapture
 @brief Stop download of files for the file Delivery service over broadcast
 @param stopFdCapture Struct includes parameters for stopFdCapture
 @pre Application is registered for File Delivery service
 @see StopFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopFdCapture(in StopFdCaptureData info);

 /**
 @name getFdActiveServices
 @brief Get list of currently active services
 @param[out] ActiveFdServiceList The list of services the app has
 @pre Application is registered for File delivery service
 @see ActiveFdServiceList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdActiveServices(out ActiveFdServiceList services);

 /**
 @name getFdAvailableFileList
 @brief Retrieves the list of files previously captured for the
 application.
 @param[in] File delivery service ID from FdServiceInfo
 @param[out] FileList List of files previously captured and filtered based on serviceId
 @pre Application is registered for File delivery service and received fileListAvailable() notification
 @see fileListAvailable()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdAvailableFileList(in string serviceId, out AvailableFileList files);

 /**
 @name getFdServices
 @brief Retrieves the list of File Delivery services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application
 @param[out] FDServices List of filtered File delivery services
 @pre Application is registered for File delivery service and received fdServiceListUpdate() notification
 @see fdServiceListUpdate()
 @see FdServices
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdServices(out FdServices services);

 /**
 @name getFdDownloadStateList
 @brief Retrieves the state of files pending download
 @param GetFileDownloadState Includes parameters for getFileDownloadState
 @pre Application is registered for File Delivery service and received fileDownloadStateUpdate() notification
 @see fileDownloadStateUpdate()
 @see GetFdDownloadStateListData
 @see FileDownloadStateInfoList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdDownloadStateList(in GetFdDownloadStateListData info, out FileDownloadStateInfoList fdStateList);

 /**
 @name setFdServiceClassFilter
 @brief Application sets a filter on file delivery services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with file delivery service
 @see SetFdServiceClassFilterData
 @see fdServiceListUpdate()
 @see getFdServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdServiceClassFilter(in FdServiceClassList serviceClassInfo);

 /**
 @name setFdStorageLocation
 @brief Sets the storage location to store the application downloaded files
 @param[in] StorageLocation Includes parameters for setStorageLocation request
 @pre Application is registered for File Delivery service
 @see StorageLocation
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdStorageLocation(in StorageLocation locationPath);

 };

 interface ILTEFileDeliveryServiceCallback

 {

 /**
 @name registerFdResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for register File delivery response
 @pre Application called registerFdApp
 @see RegisterFdResponseNotification
 @see registerFdApp()
 **/
 void registerFdResponse(in RegisterFdResponseNotification info);

 /**
 @name fileAvailable
 @brief Notification to application when a new file is downloaded per
 application capture request
 @param FileAvailableNotification Includes parameters for the downloaded file
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileAvailableNotification
 **/
 void fileAvailable(in FileAvailableNotification notification);

 /**
 @name fdServiceListUpdate
 @brief Notification to application on an update of the available for file delivery services.
 Update may be due to the received USD or the network configuration
 @pre Application is registered for file delivery service
 @post Call getFdServices()
 **/
 void fdServiceListUpdate();

 /**
 @name fdServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startFdServiceCapture
 @see FdServiceErrorNotification
 **/
 void fdServiceError(in FdServiceErrorNotification notification);

 /**
 @name fileDownloadFailure
 @brief Notification to application that download of a requested file
 failed
 @param FileDownloadFailureNotification Includes information about the failed file download
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileDownloadFailureNotification
 **/
 void fileDownloadFailure(in FileDownloadFailureNotification notification);

 /**
 @name insufficientStorage
 @brief Notification to application that the storage location set by the
 application does not have enough storage for the
file download
 @param InsufficientStorage Includes parameters to specify the file and
 storage requirement
 @pre Application is registered for file delivery service and application called startFdCapture()
 @see InsufficientStorage
 **/
 void insufficientStorage(in InsufficientStorageNotification info);

 /**
 @name inaccessibleLocation
 @brief Notification to application that the storage location set by the
 application is not accessible by the eMBMS Client
 @param InaccessibleLocation Includes the inaccessible storage path
 @pre Application is registered for File delivery service
 @see InaccessibleLocation
 Application calls setStorageLocation
 **/
 void inaccessibleLocation(in InaccessibleLocationNotification info);

 /**
 @name fileDownloadStateUpdate
 @brief Notify application of a change in the state of pending file
 downloads
 @param FileDownloadStateUpdate Includes parameters for fileDownloadStateUpdate()
 @pre Application is registered for File delivery service
 @post call getFdDownloadStateList()
 @see FileDownloadStateUpdate
 **/
 void fileDownloadStateUpdate(in FileDownloadStateUpdateNotification info);

 /**
 @name fileListAvailable
 @brief Notify application when the list of downloaded files is available to retrieve
 @param[in] FileListAvailable Includes parameters for fileListAvailable
 @pre Application is registered for File Delivery service
 @post call getFdAvailableFileList()
 **/
 void fileListAvailable(in FileListAvailableNotification info);

 };

};

module EmbmsCommonTypes

{

 //Common types
 typedef unsigned long long Date;

 /**
 * @name ResultCode
 * @brief The return value of the API
 */
 enum ResultCode

 {

 SUCCESS, /**< Success */
 REGISTRATION_IN_PROGRESS, /**< Failed due to registration in progress */
 NO_VALID_REGISTRATION, /**< Failed due to no valid registration */
 UNKNOWN_ERROR /**< Failed with unknown error */
 };

 /**
 * @name ServiceAvailabilityType
 * @brief Indicates service availability state
 */
 enum ServiceAvailabilityType

 {

 BROADCAST_AVAILABLE, /**< Service is available via broadcast */
 BROADCAST_UNAVAILABLE, /**< Service is unavailable via broadcast */

SERVICE_UNAVAILABLE /**< Service is unavailable */

 };

 /**
 * @name RegResponseCode
 * @brief Indicates app registration response
 */
 enum RegResponseCode

 {

 REGISTER_SUCCESS, /**< Registration was successful */
 FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE /**< Registration failed because LTE eMBMS is unavailable on device */
 };

};

3.5 DASH Streaming Service API

3.5.1 DASH Streaming Use Cases and Message Flows

3.5.1.1 Intro

Editor’s note: Need to add brief description of notation on how the parameters are described in this clause and how they refer to the IDL in clause XXX. Maybe just describe the element and not the type.
3.5.1.2 DASH Streaming Application Service Registration

[image: image18.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

 Figure 15 Application Registration sequence diagram
An MBMS Aware Application calls a registerStreamingApp() API to register with the MBMS client to consume DASH Streaming Application Services. The registerStreamingApp() interface has two purposes:

1) It signals to the MBMS Client that an application is interested to consume MBMS content. This allows the MBMS Client to check for updates to the DASH streaming Application Services defined.

2) It allows the application to identify its callback listeners defined in the DASH Streaming Application Service API for the MBMS Client to provide asynchronous notifications to the application on relevant events associated with the reception of DASH content.
Note: Since some application development frameworks do not support callback functions, an MBMS Aware Application for these frameworks will not provide callback listeners in the registerStreamingApp() interface. Instead, the application will implement the necessary approach available on these frameworks to receive event notifcations from the MBMS Client in place of callback functions. These notification will include the same information content as defined on the structures for the IDL callback functions.
The parameters for the registerStreamingApp() API are:

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information for a particular MBMS Aware Application.

· any platformSpecificAppContext – a platform-specific context for the registering application that enables the MBMS client to get extra information about the application that may be need to enable the application to have access to MBMS services, e.g., to enable application authentication or to enable the application to cummunicate with the MBMS client via platform services.

· For Android this is Context class, see https://developer.android.com/reference/android/content/Context.html for details.

· sequence<string> serviceClassList – provides the list of service classes which the application is interested to register. This also signals to the MBMS client to only report to the application via the getStreamingServices() the serviceIDs for the DASH Streaming Application Services that are associated to one of the service classes in this list.

· The application will be pre-configured with the set of service classes that allows it to consume the DASH Streaming Application Services associated with these service classes.

· The application may change the list of active service classes it has registered via a new registerStreamingApp(), after a deregisterStreamingApp(), or via setStreamingServiceClassFilter() while the application is registered with the MBMS client to consume DASH Streaming Application Services.

· ILTEStreamingServiceCallback callBack – provides the MBMS client with the call back functions associated with DASH Streaming Application Service APIs for the registering MBMS Aware Application. The callback element is optional and only included when the application development framework supports programmatic callback interfaces. If callbacks are not supported, the same information content as defined on the callback structures is to be provided to the application via the notification method available with the development framework when the respective condition is met.
· The MBMS client uses the interfaces in the callback parameter of the registerStreamingApp() interface to send notification of event occurences to the MBMS Aware Application. For example, as the MBMS client periodically checks for service announcement updates, and it sends a notification of streamingServiceListUpdate() to the application to signal that the list of services previously retrieved is updated. The callback interface provides an efficient method to give instantaneous service updates to the application.
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement data over the broadcast channel and caches the eMBMS services definition.

Once registered, the application may start making calls on the DASH Streaming Application Service API interfaces. For example, application may request retrieval of the eMBMS DASH Streaming Application Service list. The getStreamingServices() interface returns the complete list of available DASH Streaming Application Services information, including service_id, service name, lang, file URIs, etc.

When application is no longer interested in consuming DASH Streaming Application Services, it calls deregisterStreamingApp() interface.

3.5.1.3 DASH Streaming Application Service Registration Response

As illustrated in figure 15, the MBMS client will respond to an Application call to the registerStreamingApp() API with a registerStreamingResponse() call back providing the result of the registration request. The parameters for the registerStreamingResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:

· REGISTER_SUCCESS – indicates that the registration has been processed and the application can proceed with other API interactions with the MBMS client for DASH Streaming Application Services.

· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the DASH Streaming Application Service API implementation did not find an MBMS client available on the device on which the application is running and no eMBMS service will be available to the application.

· String message – provides an associated text description of the error message.

3.5.1.4 Getting information on available DASH Streaming Application Services

As illustrated in figure 15, after a successful registration with the MBMS client, the MBMS Aware Application can use the getStreamingServices() API to discover the available DASH Streaming Application Services associated with the service classes registered via the registerStreamingApp (). The getStreamingServices() API returns a list describing the available DASH Streaming Application Service, where each service is described by the following parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

· string name – offers a title for the user service on the language identified in the lang parameter.

· string lang – identifies a natural language identifier per [xx
].

· string serviceClass – identifies the service class which is associated with the service.

· string serviceId – provides the unique service ID for the service.

· string serviceLanguage – indicates the available language for the service and represented as an identifier per [xx
].

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service. The application may use this information to highlight to the user whether service consumption will happen via unicast or broadacast.

·
· The possible values are:

· BROADCAST_AVAILABLE – if content for the service broadcast at the current device location.

· BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location. DASH streaming is available via unicast at the current device location
.
· SERVICE_UNAVAILABLE
– if content for the service is at all available at the current device location.
·

·
·
·
· string mpdUri – provides an HTTP URL where the MPD for the DASH Streaming Application Service is hosted and available for DASH clients access.

· EmbmsCommonTypes::Date activeBroadcastPeriodStartTime – signals the current/next active DASH Streaming Application Service start time, when DASH media segments and other resources start being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeBroadcastPeriodStartTime ≤ current time ≤ activeBroadcastPeriodEndTime, DASH content is being broadcast for the service at the current time.

· If the activeBroadcastPeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeBroadcastPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

· EmbmsCommonTypes::Date activeBroadcastPeriodEndTime – signals the current/next active DASH Streaming Application Service stop time, when DASH media segments and other resources stop being broadcast over the air. This allows the application to determine the current broadcast state for the service as follows:

· If the current time is such that activeBroadcastPeriodStartTime ≤ current time ≤ activeBroadcastPeriodEndTime, DASH content is being broadcast for the service at the current time, but transmissions will end at activeBroadcastPeriodEndTime.

· If the activeBroadcastPeriodEndTime is in the past, there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.
· sequence<long> SAIList – present when the serviceBroadcastAvailability parameter indicates BROADCAST_AVAILABLE. It defines a list of Service Area IDs [x] in the current UE location that match the SAIs defining the broadcast availability for the service.

3.5.1.5 Updating the registered service classes

[image: image19.emf]MBMS Aware

Application

MBMS Client

registerStreamingApp()

deregisterStreamingApp()

setStreamingServiceClassFilter()

registerStreamingResponse()

streamingServiceListUpdate()

getStreamingServices()

Figure 16 Sequence diagram for updating the registered service classes for an application
While an application is actively registered with the MBMS client to consume DASH Streaming Application Services, the MBMS Aware Application can call the setStreamingServiceClassFilter() API to update the list of service classes the application wants to be registered with, see figure 16. The MBMS Aware Application updates the list of registered service class by invoking the setStreamingServiceClassFilter() API with a new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes defined when the registerStreamingApp() or an earlier setStreamingServiceClassFilter() was called. The parameters for the setStreamingServiceClassFilter() API are:

· sequence<string> serviceClassList – provides the complete list of service classes which the application is interested to be registered with.

· The MBMS client will dis-associate the service classes previously associated with the MBMS Aware Application that are not included on this list.

· The MBMS client will associate the service classes not previously associated with the MBMS Aware Application that are newly included on this list.
· Since the list of service classes associated with the MBMS Aware Application has changed, the corresponding list of services the application should have access to has also changed. The MBMS client issues a streamingServiceListUpdate() notification to the application to alert it of this effect. The MBMS Aware Application should involke the getStreamingServices() API to update the list of File Delivery Application Services the application can consume given the updated service class registration. This is illustrated in figure 16.
3.5.1.6 Start DASH Streaming Service

[image: image20.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

Figure 17 Application starts DASH streaming services
After the DASH Streaming Application Service registration, the MBMS Aware Application can make calls on the startStreamingService() API for the MBMS client to start reception of DASH content received over unicat or broadcast, depending on the streamingSubtype and current serviceBroadcastAvailability for the service.
The parameter for the startStreamingService() API is:

· string serviceId – identifies the DASH Streaming Application Service which the MBMS client is to start reception of DASH content.

3.5.1.7 Notification that DASH Streaming for a Service has started

As figure 17 illustrates, after the MBMS Aware Application requests the start of streaming for a DASH Streaming Application Service via a startStreamingService(), the MBMS client will signal that DASH streaming playback for that service is ready via the serviceStarted() API. This is the indication for the MBMS Aware Application to initiate the DASH client with the MPD URL in the mpdUri for the service.
The parameter for the serviceStarted() API is:

· string serviceId – identifies the DASH Streaming Application Service for which the MBMS client is ready to enable access to the DASH content for that service.

3.5.1.8 Stop DASH Streaming Service

As figure 17 illustrates, when an MBMS Aware Application that issued a startStreamingService() for a service is no longer interested in consuming the DASH content for that service, it will call the stopStreamingService() API, which will stop download of segments for the service over broadcast. The application should also stop the stream playback by the DASH client.

The parameter for the stopStreamingService() API is:

· string serviceId – identifies the DASH Streaming Application Service which the MBMS client is to stop reception of DASH content.

3.5.1.9 DASH Streaming Application Service De-registration

An MBMS Aware Application registers services classes with the MBMS client to request the start of streaming for DASH Streaming Application Services. The MBMS Aware Application that registered with the MBMS client via the registerStreamingApp() API should involke the deregisterStreamingApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no applications registered. There are no parameters for the registerStreamingApp() API.

3.5.1.10 Notification that DASH Streaming for a Service has stalled

[image: image21.emf]startStreamingService()

MBMS Aware

Application

MBMS Client

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast

coverage

Stop Playback

Get MPD/DASH Segments

serviceStalled()

Mobility into broadcast

coverage

Start Playback (MPD url)

serviceStarted()

Figure 18 Signaling that a DASH streaming service stalled
The MBMS client will enable consumption of a DASH Streaming Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. However, due to UE mobility in and out of broadcast coverage for some DASH Streaming Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circunstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client will signal the application that the service is temporarily not available for playback by invoking the serviceStalled() API. When broadcast reception of the service is re-established, the MBMS client will signal the application that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in figure 18.

The MBMS Aware Application can stop the DASH client playback on reception of the serviceStalled() call, but it should not stop the MBMS client from trying to collect DASH content over broadcast for the requested service. This will enable the MBMS client to signal that content is available via broadcast again once the UE moves back into the broadcast coverage for the service, as described above. The application should also properly represent the service interruption to the user.

The parameter for the serviceStalled() API are:

· string serviceId – identifies the DASH Streaming Application Service for which broadcast receptions have temporarily stalled.
· StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:

· RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.

· END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeBroadcastPeriodEndTime time has been reached.

· OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.

·
·

· STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.
3.5.1.11 Notification of DASH Streaming Application Service errors

[image: image22.emf]startStreamingService()

streamingServiceError()

MBMS Aware

Application

MBMS Client

startStreamingService() validation

errors detected

Figure 19 Signaling errors with the startStreamingService() request from the DASH Streaming Application

[image: image23.emf]stopStreamingCapture()

streamingServiceError()

MBMS Aware

Application

MBMS Client

stopStreamingCapture() validation

errors detected

Figure 20 Signaling errors with the stopStreamingService() request from the DASH Streaming Application
As illustrated in figure 19, the startStreamingService() request from an MBMS Aware Application may not be served, so the MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the application’s startStreamingService(). Figure 20 also illustrates that the streamingServiceError() is used to signal the error code for the result of processing the application’s a stopStreamingService() request. The parameters for the streamingServiceError() API are:

· string serviceId – identifies the DASH Streaming Application Service on which the MBMS client failed to process the startStreamingService() or the stopStreamingService() request.

· FdErrorCode errorCode – identifies the error code for the reason causing the startStreamingService() or the stopStreamingService() request for the serviceId to fail. The available error codes are:

· STREAMING_INVALID_SERVICE – signals that serviceID defined on the startStreamingService() or the stopStreamingService() request is not currently defined or it is not associated with the service classes with the MBMS Aware Application is registered.

· STREAMING_UNKNOWN_ERROR – signals an error codition not explicitly identified.

· string errorMsg – may provide additional textual description of the error condition.

3.5.1.12 Checking the version for DASH Streaming Application Service interface

In order for the MBMS Aware Application to know the version of the DASH Streaming Application Service interface, the getVersion() API is provided. In this version of the specification the getVersion() API is to return version 1.0.

3.5.2 DASH-over-MBMS Streaming Service IDL

#include "EmbmsCommonTypes.idl"
module StreamingService

{

 //Forward Declaration
 interface ILTEStreamingServiceCallback;

 /**
 * @name StreamingErrorCode
 * @brief List of the errors for streaming service
 */
 enum StreamingErrorCode

 {

 STREAMING_INVALID_SERVICE, /**< Invalid service ID */
 STREAMING_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for streaming service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterStreamingAppData
 * @brief Streaming app registration information
 */
 struct RegisterStreamingAppData

 {

 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides
 a platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name StreamingServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setStreamingServiceClassFilter API.
 */
 typedef sequence<string> StreamingServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name StreamingServiceInfo
 * @brief Streaming service information
 */
 struct StreamingServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service availability */

 string mpdUri; /**< MPD URI used by DASH player */
 EmbmsCommonTypes::Date activeBroadcastPeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeBroadcastPeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 sequence<long> SAIList; /**< Servcie Area IDs based on current location of the device*/
 };

 /**
 * @name StreamingServices
 * @brief List of streaming service info objects
 */
 typedef sequence<StreamingServiceInfo> StreamingServices;

 /**
 * @name StartStreamingServiceData
 * @brief Start streaming service information. It is used by StartStreamingService API.
 */
 struct StartStreamingServiceData

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StopStreamingServiceData
 * @brief Stop streaming service information.
 * It is used by the StopStreamingService API.
 */
 struct StopStreamingServiceData

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Streaming service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Streaming service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StreamingServiceErrorNotification
 * @brief Streaming service error information. It is used by the StreamingServiceErrorNotification API.
 */
 struct StreamingServiceErrorNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 StreamingErrorCode errorCode; /**< Streaming service error Id */
 string errorMsg; /**< error message */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Streaming service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 StalledReasonCode reason; /**< Streaming service stalled reason ID */
 };

 /**
 * @name RegisterStreamingResponseNotification
 * @brief Streaming app registeration response information
 */
 struct RegisterStreamingResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEStreamingService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Streaming service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerStreamingApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterStreamingAppData
 @see registerStreamingResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerStreamingApp(in RegisterStreamingAppData regInfo, in ILTEStreamingServiceCallback callBack);

 /**
 @name deregisterStreamingApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterStreamingApp();

 /**
 @name startStreamingService
 @brief Start download of segments of streaming service over broadcast
 @param[in] StartStreamingService Parameters for starting the streaming services API
 @pre Application is registered for streaming service
 @see StartStreamingServiceData
 @see serviceStarted()
 @see streamingServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startStreamingService(in StartStreamingServiceData serviceInfo);

 /**
 @name stopStreamingService
 @brief Stop download of segments of Streaming service over broadcast
 @param[in] StopDASHService Parameters for starting the streaming services API
 @pre Application is registered for DASH service
 @see serviceStopped()
 @see StopStreamingServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopStreamingService(in StopStreamingServiceData serviceInfo);

 /**
 @name setStreamingServiceClassFilter
 @brief Application sets a filter on streaming services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with streaming service
 @see serviceUpdate()
 @see getStreamingServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setStreamingServiceClassFilter(in StreamingServiceClassList serviceClassList);

 /**
 @name getStreamingServices
 @brief Retrieves the list of streaming services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] StreamingServices List of filtered streaming services
 @pre Application is registered for streaming service and received streamingServiceListUpdate notification
 @see StreamingServices
 @see streamingServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getStreamingServices(out StreamingServices services);

 };

 interface ILTEStreamingServiceCallback

 {

 /**
 @name registerStreamingResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for registering a streaming response
 @pre Application called registerStreamingApp
 @see RegisterStreamingResponseNotification
 @see registerStreamingApp()
 **/
 void registerStreamingResponse(in RegisterStreamingResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that streaming service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that streaming service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for streaming service and called stopStreamingService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name streamingServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startStreamingService
 @see StreamingServiceErrorNotification
 **/
 void streamingServiceError(in StreamingServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for streaming service stalled notification
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name streamingServiceListUpdate
 @brief Notification to application on an update that is available for streaming services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for streaming service.
 @post call getStreamingServices()
 **/
 void streamingServiceListUpdate();

 };

};

3.6 RTP-over-MBMS Streaming Service API
3.6.1 RTP-over-MBMS Streaming Use Cases and Message Flows

3.6.2 RTP-over-MBMS Streaming Service IDL

4 Proposal

It is proposed to add clause 3 to TS26.347 clause 6 as service APIs.
�Replaced based on agreement from off-line discussion. Updated text below accordingly.

�Replaced based on agreement from off-line discussion.

�Updated during offline discussion.

�Reworded for better readability and addressing the agreement from offline discussion. Includes additional edits from Cedric.

�Per agreement on the off-line discussion, no additional edits are required.

�Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

�Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

�Updated per off-line discussion

�Consistent change as above

�Updated text per off-line discussion

�Updated based on feedback from off-line discussion.

�Agreed not to include this in off-line discussion since the corresponding text was not added on the localPath discussion in the registration request.

�Update IDL

�Editor: Need to add description on notation for input/output parameters on synchronous calls.

�Update IDL

�Editor: need to revisit use of API version information and capture details on how versioning is to be done to address backward/forward compatibility. For instance, do we need (.x) minor version?

�Update IDL

�Update IDL

�Update IDL.

�Update IDL.

��Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

��Editor: Add appropriate reference notation when compiling the reference list. This needs to refer to RFC3066.

�Removed per agreed updates below.

�Updated based on the offline discussion.

�Update IDL

�Updated based on the offline discussion.

�Updated accordingly based on the updates to the description for the serviceBroadcastAvailability agreed in off-lined discussion.

�Updated based on agreement on offline discussion

�Updated based on off-line discussion

�Update IDL

�Updated per off line discussion.

�Update IDL

_1533645604.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1534619629.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

_1534745899.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1534746120.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1534663231.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1534666018.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

stopStreamingCapture()

startStreamingService()

stopFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

stopFdCapture() validation
errors detected

_1534653047.vsd
startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session and receive a file but fail FEC decoding or fil repair for the file

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533738595.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1534002115.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

_1534567417.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

startStreamingService()

serviceStalled()

MBMS Aware Application

MBMS Client

Mobility into broadcast coverage

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Mobility out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

Start Playback (MPD url)

serviceStarted()

_1534004652.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startStreamingService()

streamingServiceError()

MBMS Aware
Application

MBMS Client

startStreamingService() validation
errors detected

_1533995029.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1533714662.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

_1533720265.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

startFdCapture()

insufficientStorage()

MBMS Aware
Application

MBMS Client

Not enough storage is available to capture the file of size as described on the FDT

startFdCapture()

inaccessibleLocation()

MBMS Aware
Application

MBMS Client

The storage location is not accessible for the MBMS client to copy files

_1533712200.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

startFdCapture()

fdServiceError()

MBMS Aware
Application

MBMS Client

startFdCapture() validation
errors detected

_1532773212.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533236913.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533370273.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533127499.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522200.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525523943.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525523981.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522162.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

