TSG SA4#88 meeting
Tdoc S4 (16)0803
June 2016, Kista, Sweden

Source:
David Singer, Apple
Title:
On the MBMS URL Forms
Document for:
Discussion
Agenda Item:

8.6 (MBS/TRAPI)
1 Introduction

We have a number of proposals on the table. It is time to take a step back and look at what we need, and how well the proposals meet the needs.
(Tracked changes indicate updates from 160584).
2 Requirements

In this section, I try to take that step back, and look at the requirements.

2.1 One form for each interface behavior

Generally, a URL form implies a certain behaviour, i.e. a service. For example, a mailto: URL has a completely different function from an HTTP URL. If we have different classes of behaviour, they should (probably must) have different scheme names.
So, if we wish to cover file-delivery and RTSP/RTP, we should have separate forms as their returned result, and effect, are quite different.

In this document I focus on URIs that identify files, that have MIME types, and so on. Other services are possible.
2.2 Location

URL stands for Uniform Resource Locator (RFC1738); URI stands for Uniform Resource Identifier (RFC3986).

The form we choose must locate (or identify) a resource, of a given (and identified in the return) type.
This is in contrast to simply identifying a service, for example. Locating a resource means that, in an environment that supports MBMS URL forms, an MBMS URL may be used wherever a resource can be referred to; the example we have used in the past is HTML, as the resource of say an image or video element.

2.3 Acts purely as a locator

It's not the job of the URL to describe how the protocol works, or indeed to manage behaviour; it's a locator, not a protocol engine. (Of course, resolving a locator is a dynamic step, operated by the protocol).

The URL form must provide resource location, and not protocol description or behaviour.
2.4 Conforms to the relevant RFC and W3C Recommendations

Any form we design must be conformant to the basic rules for a URL/URI (the RFCs named above).

It's highly desirable that the same parsing and relative URL composition rules as for HTTP should work; the same reserved characters, the same use of delimiters, and so on.

It must be possible for fragment locators (defined by, and owned by, the type of resource returned) be usable with the URL form. (E.g. #anchor as used for HTML).
If other specifications are used, then obviously the design must comply with them. Example, if DNS RR records are used, the URL scheme needs to comply with the guidelines in RFC 2782.
2.5 Relative URLs

Many environments establish a base URL either by protocol operation (e.g. the root web page in HTML) or by definition (e.g. the Base URL elements in a DASH MPD). It's important that if such a base URL establishes an MBMS base, we can compose relative URLs against it to make absolute MBMS URLs.

The composition of a relative URL against a base URL to make an absolute URL, using the same formation rules as for HTTP, must work.
2.6 Emulates the client-side of other protocols of its type
2.7 For a a file-delivery protocol, the
 interface to the URL handler must behave, as much as possible, like the interface to other file-delivery protocols, notably like HTTP. This means that it can indeed be 'plugged in' to a generic file-delivery URL handler in an operating system, can in fact be used 'wherever a file is expected', and so on.
It is important that the URL should be capable of integration into existing APIs, or APIs that emulate then. An example of an existing API is libCurl.
2.8 Readable

I think it is highly desirable if it is evident by reading the URL (a) what service is being used, from what origin, and (b) what is being retrieved from that service.

The URL form should be readable and self-describing.
2.9 Bootstrap

It's obvious, but the URL must provide enough information to enable the located resource to be retrieved, i.e. that from a 'standing start', one can (and we do, in the specification) describe the steps to retrieve the located resource and return it.

Ideally, it should do that bootstrap with as little dependency, or none, on other preparatory steps (e.g. that the terminal has been configured by the operator or user to gather USDs and cache them).
2.10 Cache sharing

The label of the resources in MBMS is sometimes (often?) an HTTP URL, indicating (at least) that the file should be cached in a shared cache with the HTTP protocol handler. The URL form must not dictate the form of the label used for the resource within the MBMS protocol

(Though perhaps a design in which it can be deduced, or the label is the MBMS URL itself, could be possible.)
2.11 Use existing technologies, be simple
We are used to using DNS, and host names in URLs, and they both give a dynamism (the name service can return different values if it needs to) and a readability (a URL that uses apple.com would be much more readable than an IP multicast address, for example).

For ease of use and deployment, it's desirable if the URL form and its resolution are simple. This means using commonly available and deployed technologies when possible (e.g. DNS address records rather than new or less-widely-deployed record types).
2.12 Few restrictions on the service

The URL form is an addition to an existing protocol, with intricate internal details. Though we desire simplicity, it should not restrict the options or variety in the protocol any more than is needed to achieve simplicity. However, this is not hard and fast, as long as those wanting to use URLs can easily engineer their deployment to meet the restrictions.
In particular, if the service supports fallback, or unicast and multicast:

1. The MBMS URL handling (i.e. the protocol itself) shall support fallback to unicast delivery if the requested resource is not available over MBMS

2. The MBMS URL handling (i.e. the protocol itself) shall support MooD by resolving automatically to either a unicast or broadcast location

2.13 Rapid failure

It should be possible to detect rapidly when the locator cannot be resolved to a resource, notably in the two cases (a) you are not in the time interval when this resource is being made available over MBMS or (b) you are not on a network where this resource is being made available over MBMS. We would like to avoid time-out as the failure mechanism, when possible.
2.14 Maps to MBMS APIs

The parameters needed to perform the operation using the APIs need to be present in the URL form, i.e. one can initiate the API operation by decomposing the URL.
3 Future Requirements

3.1 Can be made to work when the final hop is non-3GPP (e.g. WiFi)

Though the protocol we are considering at base is 3GPP-specific, it's often the case that the 3GPP network is used as a back-haul to a local technology such as WiFi. Though the IETF has not taken the ball to run with the definition of URL forms for their protocols (Flute and FCast), it's still desirable if we could define, perhaps at some point in the future, how the URL form would work when the proximate network to the client is 802.x (e.g. WiFi, Ethernet), supplied by a back-haul router operating over 3GPP protocols.

It should be possible to use the URL form when the client's immediate network is not a 3G one.

Unfortunately, this really means that we need to work with other 3GPP groups to make MBMS fit into an IP environment; the mapping between IP multicast and MBMS should be defined, and so on. Since this 'IP everywhere' movement is already underway, we might consider sending liaisons to ask about this.

We should design the URL form envisaging this, and to the greatest extent possible, not precluding it.
4

1.
2.
3.
4.

5 Recommendation
I recommend we refine this list of criteria, evaluate the solutions in the TR against them, and then select a baseline and refine it based on the evaluation.

Page: 1/3

Page: 3/3

