[bookmark: h.f9uhrj9gpl24]TSG SA4#88 meeting	TDoc S4-160406
18-22 April, 2016, Memphis, TN, USA

Source:	MBS SWG Chairman[footnoteRef:1] [1: 	M. Frédéric Gabin
	frederic.gabin@ericsson.com
	+33 6 78 44 85 75]

Title:	Report for MBS SWG ad-hoc #53 conference call on MBMS Transport Protocol and APIs (TRAPI) – 6th April 2016
Agenda Item:	5.2
Document for:	Approval

Report for MBS SWG ad-hoc #53 conference call
(a big thank to Charles Lo for the notes)
1. Opening of the session (16:00 CEST 6th April 2016)
From the SA4 agreed timeplan in Tdoc S4-160212

	April 6, 2016 (MBS SWG Telco on TRAPI), 4pm-6pm cet, Host: Qualcomm
	· MBS SWG Telco on TRAPI with focus on
o Agree formalized API description language
o If time permits:
§ Address objectives related to service APIs
§ Address other objectives of work item
· Submission deadline: April 4, 23:59 CET

Participants:
Frédéric (Ericsson)
Cédric (Expway)
Thomas (Qualcomm)
Paul (Sony)
Romain (Expway)
Nermeen (Qualcomm)
Charles (Qualcomm)
Imed (Samsung)
John ()
Dom (Motorola)
Giridar ()
Marcelo (Qualcomm)
Ed (Rodgers)
[bookmark: _GoBack]Thorsten (Ericsson)
Charles agree to act as secretary
2. Approval of the agenda and registration of documents

	S4-AHI542
	Proposed agenda for MBS SWG ad-hoc #53 conference call on TRAPI
	MBS SWG Chairman (Ericsson)
	2
	 Approved

 	
452 was approved.

3. Reports and liaisons from other groups

	S4-AHI541
	Report for MBS SWG ad-hoc #52 conference call on MBMS Transport Protocol and APIs (TRAPI) – 9th March 2016
	MBS SWG Chairman (Ericsson)
	3
	
Noted

Approval not sought today – but for approval at SA4 #88 meeting .
541 was noted.
	
4. 	MBMS Transport Protocol and APIs (TRAPI)

	S4-AHI543
	TRAPI: Formalized Description language for Service APIs and service APIs proposals
	Expway
	4
	Noted

Document was sent on time to the SA4 email list but was not received by several participants. This might be due to the fact that the zip file contains javascript code and the email could have been silently filtered out by company’s mail systems. To be checked with MCC.
Document took some time to arrive to everyone!
Cedric presents the document:
· (Thomas indicates there has been no time to review this document in advance - may need more time to reach any agreement; Frederic acknowledges)
This document describes the Expway’s proposal for eMBMS 3GPP APIs. It also helps the reader to generate the code documentation (using Doxygen) from the provided IDL interface files.
This document assumes the reader is familiar with the following topics:
· LTE/MBMS standard
· DOS command line
· IDL development
Includes DOS script used to generate the IDL documentation and the Java implementation of the Expway’s IDL proposal.
OMG IDL is not a concrete programing language, so an interface generation from the IDL is a mandatory step to use the MBMS API described in this document. However, the behavior of the generated interface is expected to remain identical regardless of the programing language that is used to implement it.
While IDL is not a programming language, there are tools that map IDL to just about every major programming language. As an example purpose, the DOS script provided alongside this document uses idlj executable from the Java JDK. The result is a generated Java implementation of the MBMS API provided with this proposal.
No JSON description - everything described is based on the IDL.
MBMS Instance:
· IEMBMSManagement interface (EMBMSManagement.idl) is designed to allow the management of the eMBMS instance by the user. Prior to any other operation, the createEMBMSControl function must be called create the eMBMS handler. The created instance will be mandatory for all the further API calls
Service Events:
· In order to get the Services’ events, a Service listener must be set to the eMBMS handler.
Access:
· The user can retrieve the array of available Services by calling the getServices method of the IEMBMSService interface. This method is asynchronous. The result of the operation is sent back to the user through the previously configured Service listener.
· The Service’s manifest can be retrieve by calling the getManifest method of the IEMBMSService interface. The manifest file’s contains all the necessary information concerning the Service.
Open-Close
· In order to open an eMBMS service, the open method of the IEMBMSService interface is called.
Java API: The IDL interface can be generated in many different languages. This section only focuses on the generation of the Java implementation of the MBMS API.s
Summary of proposal and for agreement:
· To use of OMG IDL in order to define APIs
· To use the different scripts as example in order to create documentation / java API
· To use the simple approach: open/close/manifest in order to consume any service
· To use EMBMSManagement.idl as basis for the first API definition
· To integrate part 3 and part 4 in the TR
Q&A:
· Thomas: good document to move things forward; sees some similarities and overlaps with the QC proposal.
· Thomas: please explain manifest, why in XML?
· Cedric: manifest provides info to app on the ways to consume the service; for DASH: it may be empty; for RTP: might be URLs of SDP; for file download - list of documents that are available; use Open/Close and obtain manifest; thinks XML file would be a good means to represent
· Nermeen: wouldn’t a simple structure provide the same info and not necessarily XML?
· Cedric: XML may be suitable
· Thomas: JSON was proposed in last QC proposal; and pushed back due to interest to just use IDL; it seems now we’re going the other way
· Cedric: just want to describe the service using a manifest; manifest file format yet to be defined - could be in IDL form, not hard on the format
· Thomas: do you want to define message format - this goes back to last meeting that people did not want to describe message format
· Cedric: would like language-independent manifest file
· Thomas: not clear on rationale/ ogic for a message format or not
· Cedric: thinks manifest is complex and thinks XML format is needed; other calls are strictly IDL-based do not need such language-based formatting
· Dom: is contents of manifest the configuration for a specific app? Does it mean for a specific service the manifest file can be configured per service
· Cedric: yes, these would be config documents and different for DASH vs RTP vs file service
· Nermeen: these are parameters about the service - don’t see need for passing as file to the app; thought the direction is not to define the messages
· Dom: thinks messages define the IDL; this is configuration info
· Thomas: manifest is only locally passed;
· Cedric: manifest is not defined by the API; it’s configuration to enable service consumption
· Nermeen: which entity generates the manifest? Cedric: by the middleware
· Nermeen: in this case, a structure would suffice, right?
· Dom: app can define what it needs to get from the service
· Imed: agrees with Nermeen: how middleware replies to API call, what is returned should be part of the API; similar to not defining the protocol of the API, the format should also not be defined; just need to define abstract syntax of the API
· Cedric: manifest format to be defined; it could be XML, IDL, JSON, etc. Just need to agree on the principle that a manifest is needed
· Ed: if one of the services is PTT service; mt be referenced back to legal access point on source of the service; doesn’t understand how and whether this would be captured
· Cedric: in principle would leave to the PTT provider to define such manifest; it could even be empty
· Dom GCSE methods are outside scope of this API
· Ed: but not necessarily for say web conferencing service using MTSI, essentially would be a type of PTT service
· Ed: needs to be able to tie to LI (Lawful Intercept) for the service definition
· Thomas: doesn;t see the concern right now
· Thomas: nt consistent to dismiss format of one type of message exchange; yet proposing such format now based on this proposal
· Thomas: concept of manifest is not necessarily ubnderstood; app just need get the URL and service type
· Cedric: playlist for YouTube service; for DASH it’s just the MPD; but for file download we’re missing such info
· Thomas: such list of files to be consumed would be info exchanged over the network, not a local API; just a list of files is sufficient; structure is something to be defined in USD format, not the API
· Cedric: MPD is list of files
· Thomas: MPD URL would be sufficient to be passed over the API, not need for the manifest
· Cedric: would need to understand it’s DASH service and access to MPD
· Thomas: no need for manifest structure for this
· Cedric: mainly provides means for app to know how it can consume the MBMS service; Open, Close, and get the manifest (e.g. MPD)
· Dom: doesn’t see issue for use of XML for manifest file
· Thomas: doesn’t understand one call would have file format data structure whereas another call should not have such structure; this was reason for pushback to JSON at last meeting
· Cedric: mainly to make it simple; Thomas: doesn’t agree; if implementation were to use json already, now needs to support another library for manifest format
Frederic: Can we agree on following points:
· To use of OMG IDL in order to define APIs -> YES
· To use the different scripts as example in order to create documentation / java API → not yet agreeable
· Thomas: is this informative, or normative but optional
· Cedric: this is example for use of tools
· Imed: what do the scripts really do?
· Cedric: just a method for using the tools
· Imed: these are just guidelines
· Charles: no need to name a language-specific implementation of the IDL API
· Thomas: are we saying if we use Java implementation, this method shall be normative to enable interoperability?
· Dom: to endure interop would need to follow certain rules based on the IDL specification
· Thomas: still has concern that this requires maintenance; as long as any implementation of IDL using Java?
· To use the simple approach: open/close/manifest in order to consume any service → no agreement yet
· To use EMBMSManagement.idl as basis for the first API definition → not yet agreed
· Thomas: need more time to reach any conclusion
· To integrate part 3 and part 4 in the TR → not yet agreeable
· Dom: since this informative and documents one possible solution, it seems reasonable to include
· Thomas: what would be status of Sec. 3 and 4?
· Cedric: to represent one possible solution; if desired Expway would need to bring in CR to be able to reach any agreement.
543 was then noted.

	S4-AHI544
	Service API – Proposed Specification and Documentation Methodology
	Qualcomm Incorporated
	4
	 Noted

Presented by Thomas:
Based on the discussions during the AHI#52, we propose to use IDL also as the data format for message exchange. However, in order to address the requirements that motivated the initial choice of JSON, we recommend the following two aspects:
- Provide class-based data formats that enable extension and versioning.
- Provide a JSON instantiation
The following is proposed
1. Agree on the specification methodology in section 3
2. Agree on the Streaming Service API in section 5 as the baseline solution
3. Agree on the proposed outline section 6 as the starting point for the Technical Specification
Q&A:
· Cedric: you said not to use JSON, but now you reintroduce it
· Thomas: message format is purely IDL - language independent; API defined with language-independent IDL. Believes there is value for providing stage 3 implementation of JSON messages as reference for such implementation.have network protcol usage whereas MBMS client and application reside on separate differences. Not saying only JSON, but nee one document for JSON esp, for remote messaging protocol.
· Cedric: you opposed Java as example before, but here you tout JSON
· Thomas: we are not opposed to interoperable version of a specific language implementation; if there isn’t direct conversion tool, would propose this JSON implementation to enable interop
· Thomas: for QC, interoperable JSON implementation is crucial for QC; not against other interoperable implementations such as Java
· IDL-independence is one part of spec; another is JSON-instantiation per the spec; or refer to JSON implementation based on the IDL
· Cedric: thinks consistency of implementation is not easy
· Thomas: the commonality is IDL, JSON is one derivation; example of JSON is not sufficient to enable interop
· Imed: different ways of using the API; getting library for the package and binding to the application; the other way is a remote API like REST, using SOAP. For stage 3, using library linked to app using it needn’t bother what wire formats and comm protocol; however with REST, SOAP will need those definitions. IDL is stage 2 allowing various implementation methods to ensure proper results based on linked library or remote protocols. If interop is a concern, please describe why problem exists, and if indeed that’s agreed, may add such text
· Thomas: agree to the point; but we’re not confident there is 1:1 mapping from IDL to JSON, that’s the reason for this proposal of specific JSON implementation; but if such unique mapping method exists, then this description is not necessary
· Dom: because you think such unique mapping doesn’t exist, that’s why you propose the stage 3 text. Thinks if this is a real problem, could consider further extending the IDL to ensure this
· Thomas: points to remote MBMS client and needs use of network protocol to connect to the app
· Dom: would the definition still be IDL?
· THomas: yes, but cannot exchange IDL message, need to codify the message exchange
· Dom: it may be that IDL is sufficient for interoperable remote interface
· Thomas: we need to check this
· Imed: independent of whether the comm entities are on the same or different machines; could use linked library which connect locally or remotely; should consider remote API or linked library
· Cedric: could we have a simpler way to consume service such as Open/Close, as opposed to unique API per service?
· Thomas: would need to check internally
Frederic on specification methodology proposed for agreement:
· Agree on the specification methodology in section 3 → without 3.3 and 3.5 IS AGREED
· Agree on the Streaming Service API in section 5 as the baseline solution → not agreeable, but desire to harmonize, esp. On Sec. 5;
· Agree on the proposed outline section 6 as the starting point for the Technical Specification →
· Thomas: please comment whether this structure can be used as basis for the TS
544 was then noted.

5. 	Review of the future work plan
Next TRAPI session will be at SA4#88.
 	
6. 	Any Other Business
None 	
7. 	Close of the session (18:00 CEST)
At 18:04 CEST
