
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11 MPEG2014/N15214
February 2015, Geneva, Switzerland

	Source
	Systems subgroup

	Status
	Output

	Title
	Technologies under Consideration for Dynamic Adaptive Streaming over HTTP 23009, parts 1, 3 and 4

	Editor
	Alex Giladi, Thomas Stockhammer

Scope

This Technology under Consideration document collects candidate technologies for inclusion into an amendment of ISO/IEC 23009-1 Dynamic Adaptive Streaming over HTTP.

This document supersedes w14857 and includes changes applied during MPEG#111.

Contents

1Scope

31
Support for 3DV with Depth

31.1
Disclaimer

31.2
Introduction

31.3
Example

52
Support of Controlled Playback in DASH

52.1
MPD Signalling

52.2
Scheme for Client Behavior Control

52.3
Semantics

72.4
XML Syntax

82.5
Example

92.5.1
Example MPD 1 (mid-roll ad spliced within a period)

102.5.2
Example MPD 2 (mid-roll)

112.5.3
Example MPD 3 (multiple mid-roll ads)

153
Descriptive information label for Adaptation set and Representation

153.1
Introduction

153.2
Proposed Solution: label

184
Simplified On-Demand Multi-Period Content

184.1
Background and Overview

184.2
Conversion to Multi-Period Content

194.3
Proposed extensions

205
m35917 On Use of HTTP Headers

205.1
Use Cases

205.1.1
Targeted ad insertion

205.1.2
Next segment identification

205.1.3
Cache control

205.1.4
Advertisement behavior control

205.2
Possible solution

205.2.1
Introduction

215.2.2
Definition

215.2.3
Instantiation methods

225.2.4
Use in DASH

225.3
Examples

225.3.1
Cache control

225.3.2
Client identification for ad decision purposes

225.3.3
Player state identification

236
Start-up representations

236.1
Introduction

236.2
Example of SHVC-coded fast start-up representations with resolution change

256.3
Specification text

267
Trick Mode Support

278
Part 3: On HTTP caches, CDN and media origin

278.1
Introduction

278.2
Network architecture

278.3
Example scenario

298.4
Important facts

308.5
References

319
Part 4: Service-level Service Protection using Segment Encryption

319.1
Introduction

319.2
Implementation

1 Support for 3DV with Depth

1.1 Disclaimer

Similar aspects are addressed in the File Format group. Decisions there will be awaited before moving forward.

1.2 Introduction

Currently, MPEG DASH standard could support modern media formats such as MVC and SVC. Recently, new media formats such as HEVC and 3DV are being developed and expected to be supported by DASH in the near future. Especially, new formats of 3D video (namely AVC-based, MVC-based, and HEVC-based formats) include depth data to support flexible view generation for advanced 3D displays. This part presents a solution to enable the delivery of new 3D video formats.

Part 1: New Scheme for 3DV with Depth When depth data is separated from texture data, it is important to describe the association of depth data with a given view and the dependency between streams of texture data and depth data. Even when depth data and texture data of a view are combined in a representation, it is still necessary to describe the dependency between these depth/texture data with the data of other views.

For these purposes, the multiple views scheme of DASH’s Role element is revised with a new name, "urn:mpeg:dash:stereoid:2013". In addition to the existing parameters of the multiple views scheme, a new parameter is added as follows.

	Parameter
	Description

	id (optional)
	- If this parameter has the format of ‘ti’, it specifies the texture indicator of view i with i being a non-negative decimal integer. A representation associated with this type of indicator contains only texture data of the view.

- If this parameter has the format of ‘di’, it specifies the depth indicator of view i with i being a non-negative decimal integer. A representation associated with this type of indicator contains only depth data of the view.

- If this parameter has the format of ‘vi’, it specifies the view indicator of view i with i being a non-negative decimal integer. A representation associated with this type of indicator may contain both texture and depth data of the view.

1.3 Example

In this example, a provider organizes texture data and depth data of a single view into separate adaptation sets. Each type of media component (texture or depth) has two representations. The two Role elements have id’s being “t0” and “d0” that indicate the texture and depth components of view 0. In addition, the attribute dependencyId of each depth representation describes its dependency on a corresponding texture representation.

<MPD>

 <Period duration="PT1256.00S">
 <SegmentList>
 <Initialization sourceURL="seg-m-init-2.mp4"/>
 </SegmentList>
 <!-- Below a single view texture with two representations -->

 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828">
 <Role schemeIdUri="urn:mpeg:dash:stereoid:2013" id="t0"/>
 <Representation id="T1" bandwidth="128000">
 <SegmentList duration="10">
 <SegmentURL media="seg-m1-C2view-201.mp4"/>
 <SegmentURL media="seg-m1-C2view-202.mp4"/>
 </SegmentList>
 </Representation>
 <Representation id="T2" bandwidth="192000">
 <SegmentList duration="10">
 <SegmentURL media="seg-m1-C1view-201.mp4"/>
 <SegmentURL media="seg-m1-C1view-202.mp4"/>
 </SegmentList>
 </Representation>
 </AdaptationSet>

 <!—And below is the depth data associated with the above view texture -->
 <AdaptationSet mimeType="video/mp4" codecs="avc1.640828">
 <Role schemeIdUri="urn:mpeg:dash:stereoid:2013" id="d0"/>
 <Representation id="D1" bandwidth="28000" dependencyId=”T1”>
 <SegmentList duration="10">
 <SegmentURL media="seg-m1-D1view-201.mp4"/>
 <SegmentURL media="seg-m1-D1view-202.mp4"/>
 </SegmentList>
 </Representation>
 <Representation id="D2" bandwidth="58000" dependencyId=”T2”>
 <SegmentList duration="10">
 <SegmentURL media="seg-m1-D2view-201.mp4"/>
 <SegmentURL media="seg-m1-D2view-202.mp4"/>
 </SegmentList>
 </Representation>
</MPD>

2 Support of Controlled Playback in DASH

Note: A Core Experiment on CAPCO was initiated. The content in this clause is part of the core experiment and will be revisited.

2.1 MPD Signalling

Signalling in MPD is required to support the proposed mechanism. The signalling informs a client content dependency as well as the control scheme in use.
The descriptor EssentialProperty/SupplementalProperty is extended and used for client behavior control. Its @schemeIdUri shall be equal to "urn:mpeg:dash:cbc:2014". Attributes and element defined in namespace "urn:mpeg:dash:schema:cbc:2014" are introduced in the descriptor.
Note that attributes and elements defined in namespace "urn:mpeg:dash:scheme:cbc:2014" are prefixed with cbc: in syntax to distinguish them from those defined in "urn:mpeg:dash:schema:mpd:2011".
2.2 Scheme for Client Behavior Control

The CBC scheme allows Media Presentation authors to express dependency between different parts of the content comprising one or more segments in a media presentation. That is, access to some parts of the media presentation – dependent content, depends on a client’s behavior towards other parts of the media presentation –depended content, typically advertisement.
The depended or dependent content can be (segments in) a period, (segments in) an adaptation set, (segments in) a media representation, one or more segments in a media representation. The depended content and dependent content may be in the same or different period. They are described by element ContentRange with attribute @dependency equal to “dependent” and “depended” respectively in MPD.
The EssentialProperty and/or SupplementalProperty descriptor with @schemeIdURI equal to "urn:mpeg:dash:cbc:2014" is used for client behavior control, It provides information on dependency relationship between the dependent content and depended content and the way how control is enforced. ContentRange element in the descriptor specifies a content part as depended content or dependent content.
The descriptor may be present at Period, AdaptationSet, Representation level. It indicates a content part consisting of consecutive segments, non-consecutive segments or a combination of the two.
If only depended content is specified in a client behavior descriptor, dependent content is not known.
If dependent content is specified in a descriptor for client behavior control, depended content on which the dependent content depends should also be specified in the same descriptor.
If dependent content and depended content are parts of the same content represented by a Period, Adaptation Set etc, EssentailProperty descriptor is used with ContentRange elements specifying dependent content and depended content.
If dependent content and depended content are contained in different Period, Adaptation Set etc., they can be specified by a EssentialProperty or SupplementalProperty descriptor respectively.
2.3 Semantics

Note that EssentialProperty and SupplementalProperty descriptors are defined in the namespace "urn:mpeg:dash:schema:mpd:2011" defined in ISO/IEC 23009-1, while the following extended attributes and element for client behavior control are declared in a namespace " urn:mpeg:dash:scheme:cbc:2014" as defined in section 2.4. To show distinction, they are prefixed with cbc:.
The @controllerURL provides an HTTP URL pointing to a controller that enforces client behavior control -- to verify if a client behaves as expected and allow access to the dependent content.
The @controlType attribute provides information on the way client how behavior is controlled, the role of the control server and client in the control process. If the value of controlType is ’strict’, the next segment allowed for access is controlled by the controller based on last segment that has been accessed. If the value of controlType is ’non-strict’, a client’s behavior is verified before it is granted access to dependent content on its request. In the latter case, a client stores access records containing information on a client’s access to the dependent content returned by a controller. The information may for example be when and which segments in the dependent content are requested, which client makes the request etc. To prevent tampering, the access record is digitally signed. The client is required to submit some of the access records to the control server which checks if the client behaves as expected and decides to grant the client access to dependent content or not.
ContentRange: Specifies a content part consisting of one or more segments as dependent content or depended content. Access to depended content, typically advertisement, is a precondition for access to dependent content.
If dependent content is specified in a descriptor for client behavior control, depended content on which the dependent content depends should also be specified in the same descriptor.
The @NumAccessRecordRequired indicates the number of access records to be required for verify the comformance of client behavior when it requests authorization to access the dependent content.

The @timeMargin attribute indicates an acceptable range of time deviation a segment is accessed. The reference time is calculated as the sum of access time of and segment duration of the current segment.
Table X -- Semantics of EssentialProperty/SupplementalProperty descriptor for Client Behavior Control
	Descriptor Name
	Use
	Description

	
	
	
	EssentialProperty/SupplementalProperty
	
	Specifies a descriptor for controlled playback

	
	
	
	
	@schemeIdUri
	M
	specifies a URI to identify the scheme for controlled playback.

	
	
	
	
	@value
	O
	specifies the value for the descriptor element. The value space and semantics must be defined by the owners of the scheme identified in the @schemeIdUri attribute.

	
	
	
	
	@controllerURL
	CM
	It is an URL which points to the server to perform the client behavior control.
It shall be present in EssentialProperty descriptor for dependent content.
(It shall be present if a content part is specified in the descriptor as dependent content, e.g. in a EssentialProperty descriptor containing a ContentRange element with value of attribute @dependency equal to “dependent” or in a in a EssentialProperty descriptor with no ContentRange element.)

	
	
	
	
	@id
	O
	specifies an identifier for the descriptor. Descriptors with identical values for this attribute shall be synonymous, i.e. the processing of one of the descriptors with an identical value is sufficient.

	
	
	
	
	@cbc:controlType
	CM
default: non-strict
	specifies the way how behavior is controlled and the roles of controller and client in the control process.
If controlType=’strict’, pacing control is enforced. Client behavior is tracked by server using cookie. Access to the dependent content is based on the validity of the token hold by a client.
If conrolType=’non-strict’, client is required to store access records returned by a content server and sent then the control server if it wants to access dependent content.
It shall be present in EssentialProperty descriptor for dependent content.

	
	
	
	
	@cbc:NumAccessRecordRequired
	O
	The number of Access Records that is required for verification of a client’s behavior when requesting access to the dependent content.
Note: It shall be present if controlType is not present, or controlType=’non-strict’.

	
	
	
	
	@cbc:timeMargin
	O
	specifies time tolerance in second a request for the subsequent segment relative to a reference time calculated as the sum of the time request for the preceding segment and the duration of the segment..

	
	
	
	
	cbc:ContentRange
	1 ... N
	Specifies a content part consisting of one or more segments as dependent content or depended content. Access to depended content, typically advertisement, is a precondition for access to dependent content.
It is of ContentRange type defined below.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Table X -- Semantics of ContentRange type
	Element or Attribute Name
	Use
	Description

	
	ContentRange Type
	
	defines a subset of content in the media presentation.

	
	
	@dependency
	M
	Indicates if the content part specified by the element is dependent content or depended content. As depended content (@cbc:dependency=”depended”) , its access is a precondition for access to other content part in the media presentation. A content part is dependent (@cbc:dependency=”dependent”) if access to which is conditional and depends on access to other content part in the media presentation, i.e. the content being depended.

	
	
	@period
	M
	specifies the Period in which the described content part in contained.

	
	
	@adaptationSet
	O
	specifies the AdaptationSet in which the described content part in contained.

	
	
	@representation
	O
	specifies the Representation in which the described content part in contained.

	
	
	Range
	0 ... N
	Specifies a group of consecutive segments

	
	
	
	@startNum
	M
	Specifies the segment number of the first segment for a group of consecutive segments

	
	
	
	@length
	O
	Specifies the number of segments contained in the group

	
	
	SegNumList
	0 ... N
	Specifies a non-consecutive segments

@startNum: indicates segment number of the first segment in a group of consecutive segments.
@length: indicates number of segments in the group of consecutive segments.
2.4 XML Syntax

	<xs:schema targetNamespace="urn:mpeg:dash:schema:cbc:2014"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:mpeg:dash:schema:cbc:2014">

<!--ContentRangeType definition -->

<xs:complexType name="ContentRangeType">
 <xs:sequence>
 <xs:element name="Range” minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="startNum" type="xs:unsignedInt" use="required"/>
 <xs:attribute name="length" type="xs:unsignedInt" default=1/>
 </xs:complexType>
 </xs:element>
 <xs:element name="SegNumList" minOccurs="0" maxOccurs="unbounded" >
 <xs:simpleType>
 <xs:list itemType="xs: unsignedInt "/>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="dependency” use="required">
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <enumeration value="dependent"/>
 <enumeration value="depended"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="period” type=" xs:string" use="required"/>
 <xs:attribute name="adaptationSet” type=" xs:unsignedInt" use="optional"/>
 <xs:attribute name="representation” type="StringNoWhitespaceType" use="optional"/>
</xs:complexType>

<!-- attributes that can be used in EssentialProperty and Supplemental Descriptor for Client Behavior Control-->
 <xs:attribute name="controlType”>
 <xs:simpleType>
 <xs:restriction base=”xs:string”>
 <enumeration value="strict"/>
 <enumeration value="non-strict"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="controllerURL" type="xs:anyURI"/>
 <xs:attribute name="NumAccessRecordRequired” type="xs:unsignedInt"/>
 <xs:attribute name="timeMargin” type="xs:unsignedInt"/>
</xs:schema>

2.5 Example

Example MPDs are provided in this section. In all cases, ad(depended content) is inserted in the middle of a media presentation. In the first example, ad(depended content) and dependent content are in the same period (content is spliced before representation is generated), each comprises several segments, An EssentialProperty descriptor at Period level signals what is the dependent content and depended content through ContentRange elements. In the second example, inserted ad content is a period which is depended by a following period. In the ad period, a SupplemetalProperty descriptor signals it is depended (by other content). In the main content period, an EssentialProperty descriptor signals this period is dependent content and it depends on its preceding period. In the third example, multiple ads are inserted in a presentation as period. Each ad period is depended by the main content period that immediately follows it.
2.5.1 Example MPD 1 (mid-roll ad spliced within a period)

In the first example, the depended content and dependent content are in the same period. The depended content comprising 5 segments is in the middle of the period, and the dependent content comprises subsequent 20 segments. The dependency exists in the adaptation set containing video component.
	<?xml version="1.0" encoding="UTF-8"?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 xmlns:cbc=" urn:mpeg:dash:schema:cbc:2014 cbc.xsd"
 type="dynamic"
 minimumUpdatePeriod="PT2S"
 timeShiftBufferDepth="PT30M"
 availabilityStartTime="2011-12-25T12:30:00"
 minBufferTime="PT4S"
 profiles="urn:mpeg:dash:profile:isoff-live:2011">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <Period id="OnlyOne">
 <!-- Video -->
 <AdaptationSet
 mimeType="video/mp4"
 codecs="avc1.4D401F"
 frameRate="30000/1001"
 segmentAlignment="true"
 startWithSAP="1">
 <BaseURL>video/</BaseURL>
 <SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v" media="$Bandwidth%/$Time$.mp4v">
 <SegmentTimeline>
 <S t="0" d="180180" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <EssentialProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 cbc:controllerURL="http://auth.example.com/"
 cbc:controlType="non-strict"
 cbc:numberAccessRecordRequired="5">
 <cbc:ContentRange dependency="dependent" period="OnlyOne" >
 <Range startNum="211" length="20" />
 </cbc:ContentRange>
 <cbc:ContentRange dependency="depended" period="OnlyOne" >
 <Range startNum="205" length="5" />
 </cbc:ContentRange>
 </EssentialProperty>
 <Representation id="v0" width="320" height="240" bandwidth="250000"/>
 <Representation id="v1" width="640" height="480" bandwidth="500000"/>
 <Representation id="v2" width="960" height="720" bandwidth="1000000"/>
 </AdaptationSet>
 <!-- English Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40" lang="en" segmentAlignment="0" startWithSAP="1">
 <SegmentTemplate timescale="48000" initialization="audio/en/init.mp4a" media="audio/en/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
 <!-- French Audio -->
 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40" lang="fr" segmentAlignment="0" startWithSAP="1">
 <SegmentTemplate timescale="48000" initialization="audio/fr/init.mp4a" media="audio/fr/$Time$.mp4a">
 <SegmentTimeline>
 <S t="0" d="96000" r="432"/>
 </SegmentTimeline>
 </SegmentTemplate>
 <Representation id="a0" bandwidth="64000" />
 </AdaptationSet>
 </Period>
</MPD>

2.5.2 Example MPD 2 (mid-roll)

In this example MPD, there are three periods. Period with label “42” is a piece of advertisement of 15 seconds in the presentation. The content in period labelled “43” depends on the content in period labeled “42”. The client behaviour control descriptor appears at period level.

	<?xml version="1.0" encoding="UTF-8"?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 xmlns:cbc=" urn:mpeg:dash:schema:cbc:2014 cbc.xsd"
 type="static"
 mediaPresentationDuration="PT1605S"
 availabilityStartTime="2011-05-10T06:16:42"
 minBufferTime="PT1.4S"
 profiles="urn:mpeg:dash:profile:mp2t-simple:2011"
 maxSegmentDuration="PT4S">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <Period id="41" duration="PT630S">
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <ContentComponent contentType="audio" id="483" lang="es"/>
 <BaseURL>SomeMovie/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>
 <Period id="42" duration="PT15S">
 <SupplementalProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 <cbc:ContentRange dependency="depended" period="42" />
 </SupplementalProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <BaseURL>Ad/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="5"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 </AdaptationSet>
 </Period>
 <Period id="43" duration="PT960S">
 <EssentialProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 cbc:controllerURL=" http://auth.example.com/"
 cbc:controlType="strict" timeMargin="2">
 <cbc:ContentRange dependency="dependent" period="43" />
 <cbc:ContentRange dependency="depended" period="42" />
 </EssentialProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <ContentComponent contentType="audio" id="483" lang="es"/>
 <BaseURL>SomeMovie/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>

</MPD>

2.5.3 Example MPD 3 (multiple mid-roll ads)

In this example MPD, there are multiple dependency relationships. Among the five periods, periods with label “ad1” and “ad2” are two pieces of advertisement inserted in the middle of periods “m0”, “m1” and “m2”. “m0” is the opening period, and the content in period “m1” and “m2” depend on the content in period “ad1” and “ad2” respectively. The client behaviour control descriptor appears at period level.

	<?xml version="1.0" encoding="UTF-8"?>
<MPD
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 xmlns:cbc="urn:mpeg:dash:schema:cbc:2014 cbc.xsd"
 type="static"
 mediaPresentationDuration="PT1980S"
 availabilityStartTime="2011-05-10T06:16:42"
 minBufferTime="PT1.4S"
 profiles="urn:mpeg:dash:profile:mp2t-simple:2011"
 maxSegmentDuration="PT4S">

 <BaseURL>http://cdn1.example.com/</BaseURL>
 <BaseURL>http://cdn2.example.com/</BaseURL>

 <Period id="m0" duration="PT628S">
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <ContentComponent contentType="audio" id="483" lang="es"/>
 <BaseURL>SomeMovie/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4"
 startNumber="1"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>

 <Period id="ad1" duration="PT15S">
 <SupplementalProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 <cbc:ContentRange dependency="depended" period="ad1" />
 </SupplementalProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <BaseURL>AD/COM1/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="5"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 </AdaptationSet>
 </Period>

 <Period id="m1" duration="PT620S">
 <EssentialProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 cbc:controllerURL=" http://auth.example.com/"
 cbc:controlType="strict" timeMargin="2">
 <cbc:ContentRange dependency="dependent" period="m1" />
 <cbc:ContentRange dependency="depended" period="ad1" />
 </EssentialProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <ContentComponent contentType="audio" id="483" lang="es"/>
 <BaseURL>SomeMovie/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4"
 startNumber="158"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>

 <Period id="ad2" duration="PT15S">
 <SupplementalProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 <cbc:ContentRange dependency="depended" period="ad2" />
 </SupplementalProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <BaseURL>AD/COM2/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="5"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 </AdaptationSet>
 </Period>

 <Period id="m2" duration="PT700S">
 <EssentialProperty
 schemeIdUri="urn:mpeg:dash:cbc:2014"
 cbc:controllerURL=" http://auth.example.com/"
 cbc:controlType="strict"
 cbc:timeMargin="2">
 <cbc:ContentRange dependency="dependent" period="m2" />
 <cbc:ContentRange dependency="depended" period="ad2" />
 </EssentialProperty>
 <AdaptationSet
 mimeType="video/mp2t"
 codecs="avc1.4D401F,mp4a"
 frameRate="24000/1001"
 segmentAlignment="true"
 subsegmentAlignment="true"
 bitstreamSwitching="true"
 startWithSAP="2"
 subsegmentStartsWithSAP="2">
 <ContentComponent contentType="video" id="481"/>
 <ContentComponent contentType="audio" id="482" lang="en"/>
 <ContentComponent contentType="audio" id="483" lang="es"/>
 <BaseURL>SomeMovie/</BaseURL>
 <SegmentTemplate
 media="$RepresentationID$_$Number%05d$.ts"
 index="$RepresentationID$.sidx"
 initialization="$RepresentationID$-init.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4"
 startNumber="313"/>
 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>

</MPD>

3 Descriptive information label for Adaptation set and Representation

3.1 Introduction

Web-based DASH players offer certain possibilities of interaction and configurations within the settings such as audio/video quality, language, subtitles etc. as shown in Figure 1 and Figure 2.

	[image: image1.png]
Figure 1. bitdash video quality selector (http://www.dash-player.com/demo/).

[image: image2.png]

	[image: image3.png]
Figure 2. YouTube HTML5 settings.

In the context of MPEG-DASH, this kind of information can be partially found in multiple places within the MPD at the level of the Period, AdaptationSet, and Representation. The usage for interaction and configuration settings (e.g., within a Web player) is not defined within the MPEG-DASH standard and can be either composed with information available within the MPD or provided by an external (mostly proprietary) description. Although both options are viable solutions they do not offer the desired level of interoperability and user experience. For example, using an external description is most likely not interoperable (only works if server/client comes from the same provider like in YouTube). Extracting the information from the MPD does not always deliver a nice user experience, e.g., if uncommon resolutions are used compared to those as shown in the figures above. Current solutions use the id attribute which is not the preferred way to do it, also using a Descriptor would require additional values to be defined and would produce unnecessary overhead. Hence, we propose a new attribute to be included at the level of the Period, AdaptationSet, and Representation which could be used for the purpose of interaction and configuration settings within Web players.

3.2 Proposed Solution: label

The proposed solution suggests a new attribute referred to as label with string data type that can be optionally included at the level of the Period, AdaptationSet, and Representation. An example showing the usage of label is shown in Listing 1.

Listing 1. Example MPD using label.

	<?xml version="1.0" encoding="utf-8" ?>

<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:mpeg:dash:schema:mpd:2011" xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-DASH_schema_files/DASH-MPD.xsd" type="dynamic" availabilityStartTime="2015-01-02T10:54:46Z" publishTime="2015-01-02T10:54:46Z" timeShiftBufferDepth="PT10S" minimumUpdatePeriod="PT50S" maxSegmentDuration="PT5S" minBufferTime="PT1S" profiles="urn:mpeg:dash:profile:isoff-live:2011,urn:com:dashif:dash264">

 <BaseURL>http://example.com/dash/</BaseURL>

 <Period id="1" start="PT0S" label="I am a Period">

 <AdaptationSet group="1" mimeType="audio/mp4" minBandwidth="128000" maxBandwidth="128000" segmentAlignment="true" label="English Audio Stereo">

 <Representation id="1" bandwidth="128000" codecs="mp4a.40.2" audioSamplingRate="44100" label="Example Representation #1">

 <AudioChannelConfiguration value="2" schemeIdUri="urn:mpeg:dash:23003:3:audio_channel_configuration:2011"/>

 <SegmentTemplate duration="4" media="128k/bitcodin-$Number$.m4a" initialization="128/bitcodin-init.m4a" startNumber="1"/>

 </Representation>

</AdaptationSet>

<AdaptationSet group="2" mimeType="audio/mp4" minBandwidth="128000" maxBandwidth="128000" segmentAlignment="true" label="English Audio Mono">

 <Representation id="1" bandwidth="64000" codecs="mp4a.40.2" audioSamplingRate="44100" label="Example Representation #1">

 <AudioChannelConfiguration value="1" schemeIdUri="urn:mpeg:dash:23003:3:audio_channel_configuration:2011"/>

 <SegmentTemplate duration="4" media="64k/bitcodin-$Number$.m4a" initialization="64k/bitcodin-init.m4a" startNumber="1"/>

 </Representation>

</AdaptationSet>

<AdaptationSet group="3" mimeType="video/mp4" segmentAlignment="true" label="Adaptation Set Video">

 <Representation id="1" frameRate="24" bandwidth="250000" codecs="avc1.42c00d" width="426" height="240" label="240p 250kbp">

 <SegmentTemplate duration="4" media="250k/bitcodin-$Number$.m4v" initialization="250k/bitcodin-init.m4v" startNumber="1"/>

 </Representation>

 <Representation id="2" frameRate="24" bandwidth="500000" codecs="avc1.42c00d" width="640" height="360" label="360p 500kbps">

 <SegmentTemplate duration="4" media="500k/bitcodin-$Number$.m4v" initialization="500k/bitcodin-init.m4v" startNumber="1"/>

 </Representation>

</AdaptationSet>

 </Period>

</MPD>

For MPEG-DASH it would require the following extensions:

In 5.3.2.2 (Semantics), Table 4 — Semantics of Period element, add the following attribute

	@label
	O
	specifies descriptive information for the Period.

NOTE This information may be used for the purpose of interaction and configuration settings within Web players.

In 5.3.2.3 (XML syntax), add the following attribute

<xs:attribute label="label" type="xs:string" />

In 5.3.3.2 (Semantics), Table 5 — Semantics of AdaptationSet element, add the following attribute

	@label
	O
	specifies descriptive information for the AdaptationSet.

NOTE This information may be used for the purpose of interaction and configuration settings within Web players.

In 5.3.3.3 (XML syntax), add the following attribute

<xs:attribute label="label" type="xs:string" />

In 5.3.5.2 (Semantics), Table 7 —Semantics of Representation element, add the following attribute

	@label
	O
	specifies descriptive information for the Representation.

NOTE This information may be used for the purpose of interaction and configuration settings within Web players.

In 5.3.5.3 (XML syntax), add the following attribute

<xs:attribute label="label" type="xs:string" />

4 Simplified On-Demand Multi-Period Content

4.1 Background and Overview

The issue with the On-Demand profile offering is that in order to do a Period construction for ad insertion, one has to physically modify the file. This has two consequences:

· The modifications require file level modifications and are relatively complex. This means that for ad insertion, the content has to be changed.

· If different ad splicing points are considered, then different content and different URLs needs to be used. This means that for the same content, storage is increased and especially caching efficiency is reduced.

Therefore, it is proposed in the following to enable Period and ad insertion based on MPD-level information only. This requires a few modifications in the MPD and these tools should be combined with the newly developed profiles that includes xlink.

4.2 Conversion to Multi-Period Content

Based on the format of Table 1 and the formats defined above, the following proposals are considered to enable Period Insertion into On-Demand content.

In the following we assume that the Presentation is

· split in two Period earliest at media presentation time tsplit expressed relative to the Period Start time

· in general this does not align with the subsegment boundary of the Adaptation Sets, but can be applied

· For simplicity of description, it assumed that there are two Adaptation Sets and each Adaptation Set does have one Representation.

The following information is assumed to be available for the single Period content.

Period@start ps
· MPD@mediaPresentationDuration mpDUR
· BaseURL bu1, bu2
· SegmentBase@indexRange ir1, ir2

· SegmentBase@timecale ts1, ts2

· presentationDuration pd1, pd2

· The Segment Index of the Representation
· Nsub1, Nsub2

· ept1, ept2

· fo1, fo2

· sdur1[i], sdur2[i]

· fo1[i], fo2[i]

· ssi1[i], ssi2[i]

In order to generate a new media presentation, the following information needs to be generated:

· Update of attributes and elements in the first Period for each Representation of each Adaptation Set:

· Period@start ps1
· add Period@duration pdur1 = tsplit
· SegmentBase@indexRange
· SegmentBase@presentationTimeOffset pto11, pto12

· presentationDuration pd11, pd12

· Update and addition of elements and attributes in the new second Period for each Representation:

· add Period@duration pdur2
· SegmentBase@indexRange
· SegmentBase@presentationTimeOffset pto21, pto22

· presentationDuration pd21, pd22

The above information for pto and pd is generated in the same way as for the On-Demand Profile. The only difference is that it is explicitly said in the Representation, that only the time between pto and pd is to be played for this Representation, using the information in the Segment Index. This is basically already possible today, but should be clarified in the details.

4.3 Proposed extensions

The following extensions are proposed:

· Define a new profile that includes these issues

· Add an attribute @presentationDuration to SegmentBase that provides the ability to signal the playout duration of this Representation in the current Period, i.e. the sum of presentationTimeOffset + presentationDuration is the last time to be presented.

· Add a statement that the presentation time offset may be significantly larger than the first presentation time of a Representation in a Period.

· Add a statement that in this case the period continuity should be signaled.

Summary: proposes a new attribute and some extension to allow breaking an on-demand period into two virtual periods

Disposition: Accepted in TuC. Note: the backward compatibility should be investigated.

5 m35917 On Use of HTTP Headers

5.1 Use Cases

5.1.1 Targeted ad insertion

Remote period is used for ad insertion purposes. The information regarding the placement opportunity is already encoded in it.

When resolving XLink for ad insertion purposes, we currently have a limited knowledge about the client – the only information we have is encoded in the XLink URL. It has been proposed to address the issue with cookies, however this mechanism is not entirely reliable: cookie usage is often frowned upon and there is no strict definition of how much time the generic HTTP client will keep the cookie.

5.1.2 Next segment identification

[note: the text below is due to Will Law (Akamai) and is taken from the DASH TuC w13976]

CDNs can optimize the delivery of DASH resources by pre-caching segments and subsegments into the cache. However, if each segment is named and treated independently, the dependency is not recognized by the network and prefetching from the origin is not possible.

This is issue is specifically relevant in the case of using segmented Representations in an On-Demand case. In case a single Representation is used, the use of byte ranges provides sufficient indication for the CDN to prefetch additional data.

One way to accelerate delivery of segmented content over a CDN is to have the edge server pre-fetch the next segment from origin at the same time as it retrieves the current segment. This means that the segment is ready and waiting when the next request arrives from the client.

To solve these problems above, w13976 propose that the client add a custom header to each GET request for a media segment (audio, video and text) to hint to the server what its next request will be.

5.1.3 Cache control

It may be desired that certain requests (e.g., XLink and MPD) will not be cached. Hence standard HTTP cache control mechanism can be used for the purpose, setting the Cache-Control header: cache-control: private, max-age=0, no-cache

We don’t have a mechanism in DASH to explicitly request this.

5.1.4 Advertisement behavior control

A desired behavior for ad insertion in VoD may be to distinguish between an ad period encountered during a fast forward or rewind (where a server-side policy may be to skip it) and a period encountered during normal playback.

5.2 Possible solution

5.2.1 Introduction

We can take a design approach similar to the one taken in AMD2 – namely, we can introduce a new element which will represent a single HTTP header. This element would be instantiated either at MPD parse time or in real time, and be included in outgoing HTTP GET requests issued by the client.

We can create a new XML element that can be embedded in MPD, Period, AdaptationSet, Representation, InbandEventStream or EventStream and contain (a) a name for a header variable, and any combination of (b) a value for the variable (which would be thus embedded in the MPD, either at MPD generation or XLink resolution time), (c) URL(s) that can be used for retrieving the value in real time, and (d) instruction on which HTTP request will carry the header.

5.2.2 Definition

Let us define an element HeaderParam the following way:

	Element or Attribute Name
	Use
	Description

	
	HeaderParam
	
	

	
	
	@name
	M
	String specifying a header name

	
	
	@value
	O
	Value

	
	
	@clientFunctionUrn
	O
	URN for a method to compute the value on client side.

The method can be applied to @value or value derived from @valueUrlTemplate.

	
	
	@valueUrlTemplate
	O
	HTTP request to this URL will return a response with header with the name specified in the @name attribute above. The @value attribute will be treated as if it contained the value returned for this header.

This can be a DASH URL template rather than a URL—a URL will be constructed as defined in 23009-1 for segment URLs.

	
	
	@useInUrl
	O
	Specify which URL requests should carry this header. Values can be a list of “segment” (all segment URLs)”, XLink (all XLink URLs), “MPD” (all MPD requests), “event” any combination of these.

By default all requests will carry this header/value pair

	
	
	@useInDomain
	
	List of domains to which this HTTP header can be sent (all by default).

	
	
	@xlink:href
	O
	specifies a reference to a remote HeaderParam element

	
	
	@xlink:actuate
	OD

default:
onRequest
	specifies the processing instructions, which can be either "onLoad" or "onRequest".

This attribute shall not be present if the @xlink:href attribute is not present.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

5.2.3 Instantiation methods

1. The parameter can be initialized at the MPD generation time if MPD contains the HeaderParam element with @value attribute specified. Same can be achieved at XLink resolution time, when XLink resolution occurs at a level higher than the level at which the HeaderInfo resides.

2. Alternatively the parameter can be initialized in real-time using either XLink (where the response will include a HeaderParam element with both @name and @value specified or @name and @valueUrlTemplate attributes present.

3. Alternatively or combined with (2) above the value can be retrieved using the @valueUrlTemplate attribute. If the latter is a template (as defined in ISO/IEC 23009-1), a URL will be constructed in a way specified in 23009-1.

The HTTP response to request to this URL will contain the header specified in @name and its value will be considered the value of the @value attribute.

4. If a clientFunctionUrn URN will be present, this will specify the way client computes the value. Examples would include playback information (e.g., whether play / stop / rewind is being used),
5.2.4 Use in DASH

By default, all headers instantiated from the HeaderParam element will be used in all requests to which it applies per instructions in the element.

We can limit its application to several types of HTTP GET requests issued by DASH clients (e.g., requests for MPD and XLink resolution will contain the headers, but not segment requests).

5.3 Examples

5.3.1 Cache control

<HeaderParam name="cache-control" value="private, max-age=0, no-cache" useInUrl="mpd xlink" />
5.3.2 Client identification for ad decision purposes

<HeaderParam name="x-dash-client-id" valueUrlTemplate="http://adserver.com/clientid" useInUrl="xlink" />

Lack of this header forces the XLink resolver to use different means of client identification (e.g., use cookies)
5.3.3 Player state identification

<HeaderParam name="x-playback-speed" clientFunctionUrn="urn:org:example:client-playback-speed" useInUrl="xlink" />

Lack of this header can imply normal speed, so the client behavior of a non-aware client stays the same.

6 Start-up representations

6.1 Introduction

Fast start-up of a media streaming session can be achieved by first downloading a low resolution video and then switching to a higher resolution after the buffer occupancy reaches a certain level. Rather than fast start-up through conventional representation switching on segment basis, this technology under consideration suggests specific representations that have the following characteristics:

· Each segment of a start-up representation starts with a low media bitrate (hence, low quality and/or resolution).

· The media bitrate is increased during each segment to reach a targeted quality and resolution.

· The quality and/or resolution may be increased within the segment in one or more steps.

As a consequence of the properties of the start-up representations, a shorter duration of buffering is required to obtain the same buffer occupancy in terms of media duration when receiving a segment a from the start-up representation compared to receiving a segment from a conventional representation of the targeted quality and resolution.

The start-up representations may be used in the following use cases:

· At the start of a session

· Random access (to non-live content)

· Tune-in to live content

· Representation up-switching with gradual quality / spatial change

6.2 Example of SHVC-coded fast start-up representations with resolution change

The scalable extension (SHVC) of HEVC allows prediction of a high resolution picture from a lower resolution picture. When a so-called Adaptive Resolution Change (ARC) feature of SHVC is used in encoding, the bitstream otherwise contains one picture per each access unit, but in an access unit that facilitates up-switching of the spatial resolution, the picture at the higher layer is not inter predicted. The decoding complexity of a bitstream where the ARC feature is used is close to that of a single-layer bitstream, because motion compensation is applied only once per access unit both for a single-layer bitstream and for a scalable bitstream using the ARC feature.
The figure below presents an illustrative example of a segment of a start-up representation, in which the ARC feature of SHVC is used for resolution up-switching.

[image: image4]
Figure 3 Illustration of a segment of a start-up representation that utilizes Adaptive Resolution Change
The figure below illustrates an adaptation set with two conventional representations (720p and 1080p) and a start-up representation (below called ARC representation) in which each segment starts with 720p resolutions and ends with 1080p resolution.

[image: image5.png]
Figure 4 Utilizing ARC within DASH
The DASH client can perform the following steps for resolution switching using the ARC representation (see the figure below for illustration):

· After the session is initiated or random access is performed, the client estimates the available bandwidth, analyzes the MPD and determines an optimal bitrate (and consequently resolution) for streaming.

· The client first requests a Segment from the ARC Representation to increase the buffer occupancy quickly.

· After the ARC Segment is requested and switching happens to higher resolution, client continues downloading higher resolution Segments.

[image: image6]
Figure 5 Using ARC Segments for DASH
6.3 Specification text

X.Y.Z
Fast start-up supplemental property descriptor

This clause specifies a fast start-up supplemental property descriptor. The descriptor shall not be present Adaptation Sets or Sub-Representations and may be present for Representations.

The value of @schemeIdURI for the fast start-up descriptor shall be equal to "urn:mpeg:dash:supplementalProperty:fastStartup:2015".

A client should use a Representation containing a fast start-up supplemental property descriptor only when it starts streaming, performs random access, or attempts to increase the buffer occupancy quickly. Each Segment of a Representation containing a fast start-up supplemental property descriptor may be coded with a lower quality or resolution for a first part of the Segment while a better quality or resolution is obtained by the end of the Segment (through one or more quality or resolution enhancement steps). Hence, playing more than one consecutive Segments from a Representation containing a fast start-up supplemental property descriptor may cause a perception of periodically fluctuating quality.

@value of this supplemental property descriptor shall contain a white-space separated list of one or two Representation@id values. The first Representation@id value indicates the Representation from which Segments should be obtained after obtaining one Segment from the Representation containing the fast start-up supplemental property descriptor. When the Representation containing the fast start-up supplemental property descriptor is used for switching to a higher Representation of a higher quality or resolution, the second Representation@id value, when present, indicates the Representation from which Segmentsare recommended to be received prior to the switching to a higher quality or resolution by obtaining one Segment from the Representation containing the fast start-up supplemental property descriptor. The Representation containing the fast start-up supplemental property descriptor and the Representation(s) identified by @value shall belong to the same Adaptation Set.

NOTE
The first Representation@id value usually indicates a representation with similar quality or resolution than what is obtained by the end of each Segment of a Representation containing a fast start-up supplemental property descriptor. The second Representation@id value, when present, usually indicates a representation with similar quality or resolution than what is obtained at the start of each Segment of a Representation containing a fast start-up supplemental property descriptor.

The value of @bandwidth for a Representation containing a fast start-up supplemental property descriptor shall be further constrained to be such that when any Segment of that Representation starting with a SAP followed by consecutive Segments of the Representation identified by the first Representation@id value included in the @value field of the a fast start-up supplemental property descriptor is continuously delivered at this bitrate, a client can be assured of having enough data for continuous playout providing playout begins after @minBufferTime * @bandwidth bits have been received (i.e. at time @minBufferTime after the first bit is received).

The attributes, such as @width and @height, of a Representation containing a fast start-up supplemental property should be set according to the lower quality or resolution that is obtained at the start of each Segment of the Representation.

NOTE
As a consequence of the requirement above and due to the fact that @bandwidth for a Representation a fast start-up supplemental property descriptor is likely to be higher than that for a conventional representation with the same values of @width and @height, a client that does not parse the fast start-up supplemental property descriptor is unlikely to select the Representation containing the fast start-up supplemental property descriptor and hence will not accidentally cause a periodically fluctuating quality.

7 Trick Mode Support

Trick Modes are used by DASH clients in order to support fast forward, seek, rewind and other operations in which typically the media, especially video, is displayed in a speed other than the normal playout speed. In order to support such operations, it is recommended that the content author adds Representations at lower frame rates in order to support faster playout with the same decoding and rendering capabilities.

However, Representations targeted for trick modes are typically not be suitable for regular playout. If the content author wants to explicitly signal that a Representation is only suitable for trick mode cases, but not for regular playout, it is recommended to add an Adaptation Set that that only contains trick mode Representations

· annotate the Adaptation Set with an EssentialProperty descriptor or SupplementalProperty descriptor with URI "urn:tbd:trickmode" and the @value the value of @id attribute of the Adaptation Set to which these trick mode Representations belong. The trick mode Representations must be time-aligned with the Representations in the main Adaptation Set. The value may also be a white-space separated list of @id values. In this case the trick mode Adaptation Set is associated to all Adaptation Sets with the values of the @id.

· signal the playout capabilities with the attribute @maxPlayoutRate for each Representation in order to indicate the accelerated playout that is enabled by the signaled codec profile and level.

If an Adaptation Set in annotated with the EssentialProperty descriptor with URI "http://dashif.org/guidelines/trickmode then the DASH client shall not select any of the contained Representations for regular playout.

8 Part 3: On HTTP caches, CDN and media origin

8.1 Introduction

At multiple occasions, MPEG experts discuss the integration of DASH on HTTP infrastructure. Whether this is the only suitable infrastructure for DASH deployment is not the topic of this document. But in light the amount of contributions assuming a HTTP-based delivery, this is de facto one of most relevant implementations of DASH to be considered.

That being said there seems to be a need to collect some basic facts about the various network elements, namely their roles and the way they can adapt to different situations.

8.2 Network architecture

We will consider the following architecture, as shown in Figure 6. Yet simple, it encompasses most of the use cases that expert discuss in DASH.

[image: image7.png]
Figure 6 - Standard HTTP infrastructure

8.3 Example scenario

Let's describe a simple scenario. A content owner has just released a new movie and he is going to release it for on-demand services. The movie is DASHed into segments and uploaded on the media origin which is a regular HTTP server. Now let's dissect what happens for user A, B,C, and D who share the same ISP and live nearby. In addition, user A and B use the same DASH client.

User A is the world first viewer of the new movie. He starts watching it.

1. The DASH client of user A sends an HTTP request for the first segment of the movie.

	GET /segment1.mp4 HTTP/1.1

Host: cdn.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

2. The HTTP cache of the ISP intercepts the request of user A but it does not possess the segment. Therefore the HTTP request hits the URL endpoint, the CDN.

3. The CDN does not have the content yet, since it is the very first request for it,

4. The CDN sends a HTTP request to the media origin to get the segment.

	GET /segment1.mp4 HTTP/1.1

Host: origin.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

5. The media origin serves the request and reply with the segment.

	HTTP/1.1 200 OK

Content-Length: 3458

Cache-Control: max-age=86400

Vary: DASH-specific-info

Note: The Vary field is very important and is explained further below.

6. The CDN stores the segment in its cache and sends a HTTP response to the DASH client.

7. The HTTP cache intercepts the HTTP response for the segment. Since it does not have it yet, it caches the response.

8. The DASH client receives the segment.

Next user B starts watching the same movie too.

9. Because user B uses the same DASH client as user A, its DASH client sends the same HTTP request as user A's DASH client did.

	GET /segment1.mp4 HTTP/1.1

Host: cdn.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

10. The HTTP cache intercepts the HTTP request and matches the URL with the request sent earlier by user A's DASH client.

11. The HTTP cache sends the cached HTTP response back to user B.

Now let's assume that a user C with a different DASH client starts watching the same movie.

12. The DASH client of user C sends an HTTP request for the first segment whose URL comprises query arguments inserted by user C's DASH client.

	GET /segment1.mp4?arg=abc HTTP/1.1

Host: cdn.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

13. The HTTP cache intercepts the request but can't match this request with any other. Therefore the HTTP requests hits the URL endpoint, the CDN.

14. The content owner has configured the CDN to discard query strings arguments when caching HTTP requests.

15. The CDN matches this HTTP request with the request from user A's DASH client. The CDN sends back the HTTP response with the cached response.

16. The HTTP cache intercepts the HTTP response for the segment. Since it does not have it yet, it caches the response.

17. The DASH client receives the segment

A fourth viewer, user D, starts watching the movie with yet another DASH client.

18. The DASH client of user D sends an HTTP request for the first segment whose request comprises specific HTTP headers inserted by user D's DASH client.

	GET /segment1.mp4?arg=abc HTTP/1.1

Host: cdn.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

DASH-specific-info: dash-rocks

19. The HTTP cache intercepts the request. It can' match this request with the one before but because of the Vary header, the header DASH-specific-info became part of the key cache. Therefore the HTTP cache concludes that it does not have the request in cache, the HTTP requests hits the CDN.

20. The CDN can't match this HTTP request with any other. It sends a HTTP request to the media origin, containing the specific HTTP headers.

21. The media origin serves the request.

	HTTP/1.1 200 OK

Content-Length: 3458

Cache-Control: max-age=86400

Vary: DASH-specific-info

Note : All the caches along the path will then cache this response with a cache key compose of the URL and this particular value of the HTTP header, "dash-rocks".

21. The CDN stores the segment in its cache and sends a HTTP response to the DASH client.

22. The HTTP cache intercepts the HTTP response for the segment. Since it does not have it yet, it caches the response.

23. The DASH client receives the segment.

8.4 Important facts

1. Caching

a. It boils down to build a map key-response.

b. The key can be defined based on the situation.

i. Transparent caches consider the complete URL including query string arguments simply because they can't make sense out of the arguments. In addition, they use the Vary header [4][5][6] in response for adding headers to the cache key.

ii. CDN are much more flexible for the key definition. The content owner can define the regex that the CDN must apply to the HTTP request to derive the key. For instance, the query string arguments may be discarded, or cherry-picked. CDN also take the Vary field into consideration for building the key.

2. Media origin

a. It is very important that the HTTP server is correctly configured, especially for HTTP headers like cache control of Vary [4][5][6]. It is indeed the only way to instruct HTTP caches that are not under the control of the content owner.

3. CDN

a. The rule to cache content may be significantly more complex for CDNs than for transparent caches. But this is precisely the raison d'être of CDNs and they do that very efficiently [1][2][3].

b. Example: "Caching rules — Programmatically define custom caching rules or allow the algorithmic deduction calculate the best values and other criteria. Trigger a response in the event of a cache hit or miss, override default headers, or specify content not to be cached at all." [3]

8.5 References

1. Configure the cache key : https://docs.fastly.com/guides/caching/how-do-i-change-what-the-cache-key-is-defined-as
2. Limelight Orchestrate™ - Content Delivery Configuration Manager, http://img03.en25.com/Web/LLNW/%7B653d96d3-89f3-4bab-8542-37a2389a2ea0%7D_LLNWOrchestFeaSpot.pdf
3. Akamai Property Manager Introduction, source: https://developer.akamai.com/stuff/Luna_Control_Center/OPEN_Property_Manager.html
4. Limelight Orchestrate TM Content Delivery - Technical Specifications, " Flexible cache key", "Vary header optimization", source : http://img03.en25.com/Web/LLNW/%7Bdd2f0358-6943-463f-8074-c1651915e785%7D_LLNWContentDeliveryTechSpec.pdf
5. Vary header definition : https://tools.ietf.org/html/rfc7231#section-7.1.4

6. Vary header usage : http://www.fastly.com/blog/best-practices-for-using-the-vary-header/
9 Part 4: Service-level Service Protection using Segment Encryption

9.1 Introduction

Service-level or transport-level security is a commonly used technique, with TLS being the most common example of it. While DRM takes care of rights management (i.e., is concerned with the rights of the user to consume the content), service protection can be used to prevent content modification, protect parts added by the operator (e.g. DASH events), etc. More advanced uses of service protection are enforcement of business policies, where service-level keys are provided if the client proves something regarding its identity or its actions (e.g., whether it has played out a certain piece of content).

Service protection works on full segments, and is completely independent of the DRM. Thus, after being decrypted by the service-level content protection module, the segment may be passed to the DRM engine for further decryption. Some of the reasons for doing this may be (a) protection of unencrypted parts of a segment (most content protection schemes use partial encryption), and (b) protection of operator-added items, such as DASH inband event message boxes, etc.

The simplest way of service protection is use of HTTP over TLS (HTTPS) for all segment transport. While covering all use cases, it suffers from several drawbacks:

(a) Delay: full handshake is required for every separate session. Full TLS handshake is longer and more expensive. Reuse of same session removes some of this cost, but when long segments and parallel connections are used, an HTTP server may not let a connection linger for the period between two requests.

(b) Caching: HTTPS cannot be cached. When same key will be used for a large group of clients, it is more scalable to store encrypted segments, than to encrypt in real time for each client;

(c) Scalability: encryption needs to be done at each CDN node, rather than at some headend from which segments are pushed to the CDN nodes.

9.2 Implementation

A DASH-level service protection is very similar to DASH Segment Encryption (ISO/IEC 23009-4), with one important difference: multiple ContentProtection descriptors imply same encryption and same keys, with different ways of receiving them. Service encryption is independent of the DRM, and should be used before DRM.

Thus, DASH Segment Encryption framework can be reused for service protection by use of the same framework outside the ContentProtection element. This can be achieved the following way:

(a) EssentialProperty descriptor is used to carry license and key derivation information;

(b) URN is defined for service protection and used in the EssentialProperty (e.g., @schemeIdUri = “urn:mpeg:dash:sea:service-protection”);

Signaling segment encryption for non-media segments can be done the same way it is done in ISO/IEC 23009-4 sec. 5.2.3 for segment authentication, with non-media segment URL being a parameter in a key/IV URL. The figure below illustrates this use.

	<?xml version=”1.0” encoding=”UTF-8”?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
 xmlns="urn:mpeg:dash:schema:mpd:2011"
 xmlns:sea="urn:mpeg:dash:schema:sea:2013 sea.xsd"
 id="a1fd4476-3523-4a1d-99e2-472ae55eb343"
 type="dynamic"
 availabilityStartTime="2012-07-07T07:07:07"
 minBufferTime="PT1.4S"
 profiles="urn:mpeg:dash:profile:mp2t-simple:2011"
 maxSegmentDuration="PT2S" minimumUpdatePeriod="PT3600S" timeShiftBufferDepth="PT240S">

 <BaseURL>http://cdn1.example.com/SomeMovie/</BaseURL>
 <BaseURL>http://cdn2.example.com/SomeMovie/</BaseURL>

 <Period id="42" >

 <AdaptationSet
 mimeType="video/mp2t"

 codecs="avc1.4D401F,mp4a" frameRate="24000/1001"
 segmentAlignment="true" bitstreamSwitching="true"
 startWithSAP="2" >

 <!-- Key/IV combination changes every 8 sec. during the broadcast -->
 <EssentialProperty schemeIdUri="urn:mpeg:dash:sea:service-protection:2013">

 <sea:SegmentEncryption schemeIdUri="urn:mpeg:dash:sea:aes128-cbc:2013" />

 <sea:CryptoTimeline
 numSegments="4"

 ivBase="3859301f1201262e0000000000000000"

 keyUriTemplate="https://example.com/key.cgi?sn=$Number%08d$" />

 </EssentialProperty>

 <SegmentTemplate
 media="$RepresentationID$_$Number%08d$.ts"
 bitstreamSwitching="$RepresentationID$-bssw.ts"
 duration="4" startNumber="1"/>

 <Representation id="720kbps" bandwidth="792000" width="640" height="368"/>
 <Representation id="1130kbps" bandwidth="1243000" width="704" height="400"/>
 <Representation id="1400kbps" bandwidth="1540000" width="960" height="544"/>
 <Representation id="2100kbps" bandwidth="2310000" width="1120" height="640"/>
 <Representation id="2700kbps" bandwidth="2970000" width="1280" height="720"/>
 <Representation id="3400kbps" bandwidth="3740000" width="1280" height="720"/>
 </AdaptationSet>
 </Period>
</MPD>

[image: image8.png][image: image9.png]