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5.1.7
Bandwidth decision
. . . 
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Figure 6: Increasing and decreasing of BW counters

The tests in the above diagram are performed sequentially from top to bottom. The BW counters are then used to decide the actual signal bandwidth, BW, according to the logic described in the following schematic diagram.
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Figure 7: BW selection logic

. . .
5.1.11.3.2
Features related to last correlation or harmonic event

Two related features are created which relate to the occurrence of frames where correlation or harmonic events are detected. The first is a counter, 
[image: image5.wmf]harm

c

, that keeps track of how many frames that have passed since the last frame where correlation or harmonic event has occurred. That is if a correlation or harmonic event is detected the counter is reset otherwise it is incremented by one, according to:
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where 
[image: image7.wmf][.]

norm
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 is the normalized correlation in the first or the second half-frame and 
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 is the result of the tonal detection in clause 5.1.11.2.5. If the counter 
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 is larger than 1 it is limited to 1 if
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is 1. Depending on the estimated short term variance of the input frame energy the current value of the counter 
[image: image13.wmf]harm
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 can be reduced to one quarter of its value (or 1 if it was less than 4). The reduction is made for frames where 
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 and the short therm variance estimate of the frame energy is larger than 8.0. The other feature is the long term measure of the relative occurrence of correlation or tonal frames. It is represented as a scalar value, 
[image: image16.wmf]ev

c

, which is updated using a first order AR-process with different time constants depending on if the current frame is classified as a correlation/tonal frame or not according to:
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where the test, 
[image: image18.wmf]0

==

harm

c

, represents a detection of a correlation/tonal event.

5.1.12.1.1
SNR outlier filtering

The average SNR per frame, 
[image: image19.wmf]av

SNR

, that is estimated as shown in equation (202) is updated such that any sudden instantaneous SNR variations in certain sub-bands do not cause spurious deviations in the average SNR from the long term behaviour. A set of bands and SNRs per band are determined and accumulated based on noise characteristics as shown in equations (209), (210). The critical band that contains the maximum average SNR is identified initially as the outlier band whose index is represented as, 
[image: image20.wmf]outlier

snr
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, and the outlier band SNR is given by,
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The background noise energy is accumulated in bands 
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 through 
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The average SNR, 
[image: image29.wmf]av

SNR

, is modified for WB and SWB signals through outlier filtering as follows,
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The outlier filtering parameters used in updating the average SNR are listed in the table below.

Table 8: SNR outlier filtering parameters

	Parameter
	value

	MAX_SNR_OUTLIER_1
	10

	MAX_SNR_OUTLIER_2
	25

	MAX_SNR_OUTLIER_3
	50

	SNR_OUTLIER_WGHT_1
	1.0

	SNR_OUTLIER_WGHT_2
	1.01

	SNR_OUTLIER_WGHT_3
	1.02

	OUTLIER_THR_1
	10

	OUTLIER_THR_2
	6

	Maximum outlier band index

(MAX_SNR_OUTLIER_IND)
	17

	TH_CLEAN
	35


Based on the outlier band estimated in equation (207), a weighting is determined as per equation (211) and applied to SNRs per band (through outlier filtering by subtracting the SNR in the outlier band) or on the average SNR. The threshold, 
[image: image31.wmf]SAD

th

, is updated based on the outlier filtering and further statistics from background noise level variations, previous frame coder type, and the weighting of SNR per band. The threshold update is not performed when the long-term SNR, 
[image: image32.wmf]LT

SNR

is below the clean speech threshold, TH_CLEAN = 35dB.

…

5.1.13.6.7
Context-based improvement of the classification for stable tonal signals
. . .
The following two independent state machines are used to correct errors in the previous stages of the speech/music classification. The are two state machines are called SPEECH_STATE and MUSIC_STATE. There are also two hangover variables denoted 
[image: image33.wmf]sp

hang

 and 
[image: image34.wmf]mus

hang

 which are initialized to the value of 6 frames. The following four conditions are evaluated to determine the transition of one state to another.

Condition A is defined as
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Condition B is then defined as
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Condition C is defined as
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and finally condition D is defined as
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Figure 19 : State machines for context-based speech/music correction

The decisions from the speech/music classifier, 
[image: image41.wmf]1

SM

f

 and 
[image: image42.wmf]2

SM
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 are changed to 0 (“speech”) if 
[image: image43.wmf]1

SM
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 was previously set to 1 (“music”) and if the context-based classifier is in SPEECH_STATE. Similarly, the decisions from the speech/music classifier, 
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SM
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 and 
[image: image45.wmf]2
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 are changed to 1 (“music”) if 
[image: image46.wmf]1

SM
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 was previously set to 0 (“speech”) and if the context-based classifier is in MUSIC_STATE.
5.1.14.1.3
Hysteresis and final decision
The ACELP technology is selected if
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otherwise the MDCT-based technology is selected.


[image: image48.wmf]dssnr

adds hysteresis in the decision, in order to avoid switching back and forth too often between the two coding technologies. 
[image: image49.wmf]dssnr

is computed as described below (
[image: image50.wmf]dssnr

 is 0 by default). Further, in 12.8 kHz core (i.e., 9.6 kbps and 13.2 kbps), the dssnr is updated as shown in equation (433a).
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where 
[image: image54.wmf]offset

 is described in clause 5.1.14.1.1.4, and 
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are described in clause 5.1.13.6, and 
[image: image56.wmf]nonstat

 is described in 5.1.11.2.1.
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with 
[image: image58.wmf]TFM

 is the temporal flatness measure described in clause 5.1.8, 
[image: image59.wmf]stabfac

 is a stability factor described in subclause 6.1.1.3.2 but using the unquantized LSF parameters estimated at 12.8kHz,
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is the number of consecutive previous ACELP frames (if the previous frame was not ACELP, 
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), 
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 is the long-term SNR as described in clause 5.1.12, 
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 is the SAD decision as described in clause 5.1.12, and 
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 indicates whether DTX is enabled or not.

…

5.1.14.3
TCX/HQ MDCT technology selection at 24.4 and 32 kbps
…

At 32kbps, further spectral analysis is needed. First, a noise-floor envelope 
[image: image65.wmf]()
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and a peak envelope 
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are calculated as
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and
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respectively, where the smoothing factors 
[image: image71.wmf]nf

a

 and 
[image: image72.wmf]p

a

depend on the instantaneous magnitude spectrum

…

5.2.2.1.5.1
Block-constrained trellis coded vector quantization (BC-TCVQ)

The VC mode operating at 16 kHz internal sampling frequency has two decoding rates: 31 bits per frame and 40 bits per frame.  The VC mode is quantized by a 16-state and 8 stage block-constrained trellis coded vector quantization (BC-TCVQ) scheme.
Trellis coded vector quantization (TCVQ) [4] generalizes trellis coded quantization (TCQ) to allow vector codebooks and branch labels.
…
5.2.2.1.5.4
31 bit LSF quantization by the predictive BC-TCVQ with safety-net
…
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and 
[image: image86.wmf]M

 is the LPC order.
Then
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…
5.2.6.1.15
Estimation of frame gain parameters

In addition to the gain shape parameter, an overall frame gain parameter [image: image90.wmf]GF

 is calculated. First the spectrally shaped excitation is scaled by the gain shape parameters.
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Samples with negative indices are obtained from the previous frame and
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The energies of the [image: image93.wmf]scaled
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 and [image: image94.wmf]Tar
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 for the entire duration of the frame and the overlaps is calculated using a window:
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where the negative samples are obtained from previous frames, and the window function [image: image97.wmf](
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where [image: image99.wmf](
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win

 is defined in table 60.

If the high band target energy as calculated in Equation (754) is saturated, then the target signal, [image: image100.wmf]Tar

HB

S

, is scaled based on the number of subframes that are saturated (from clause 5.2.6.1.14.2). Then the high band target energy is recalculated using the scaled target signal using Equation (754). Subsequently, the gain frame GF in Equation (757) is compensated for the scaling performed on the target signal.

The overall frame gain parameter [image: image101.wmf]GF

 is calculated as
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…

5.2.6.3.1
Coding in normal mode

. . .

The quantized spectrum envelope [image: image103.wmf])
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is used to further normalize the spectrum resulting in spectrum normalized per bands.
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Afterwards, the number of the bands to be quantized is calculated according to the total bits and the saturated threshold, and the bands are selected according to the quantized spectrum envelopes. Once the bands are selected, the first stage encoding is processed by means of AVQ. If there are at least 14 remaining bits after the first stage encoding and the first stage quantized spectrum is non-zero, a second stage encoding is employed also by means of AVQ.
. . .
5.3.4.1.3
Energy Envelope coding

Energy envelope coding module is applied for all types of signal i.e., from NB, WB, SWB and FB for various bitrates as described in table 101. In this module, the spectrum energy of a band is computed and the computed energy is coded using either a Large symbol coding method or a Small symbol coding method. The coding method is selected according to the range required to represent all the differential indices and the bit consumption. The encoding of band energies is detailed below
…
5.3.4.1.4.1.5.3.2
Envelope normalization
Similarly to G.718 Annex B, quantized low-frequency content is normalized with its envelope. However, the TCQ-quantized low-frequency content is a sparse pulse sequence, and a normalization process is therefore used to flatten the low-frequency content.
The low-frequency content is normalized by dividing it by the maximum amplitude value in each sub-band. Here, the sub-band configuration is special and used only for this normalization. Each sub-band consists of 12 MDCT coefficients. By performing this process, each sub-band will have the same maximum amplitude value, and the low-frequency content can therefore be converted to an MDCT coefficient sequence whose spectral characteristic is flat and smoothed.
The envelope normalization (or smoothing) process is separately performed on the TCQ-quantized low-frequency content and the filled low-frequency noise content, respectively. And the amplitude of the normalized noise content is adaptively scaled according to the sparseness of the TCQ-quantized low-frequency content. The sparseness is calculated by dividing the number of non-zero spectrum in the TCQ-quantized low-frequency content by the bandwidth of the low-frequency content. A threshold is calculated using the sparseness and used for removing low amplitude TCQ-quantized low-frequency content and for scaling the maximum amplitude of the noise content. The normalized TCQ-quantized low-frequency content is further modified so that its non-zero content has larger amplitude than the maximum amplitude of the normalized noise content thus dynamic range of the normalized TCQ-quantized low-frequency content is modified for better matching with a targeted high-frequency spectrum. Finally, the scaled low-frequency noise content and the modified TCQ-quantized low-frequency content are added for generating envelope normalized spectrum (MDCT coefficients). If the generated spectrum becomes zero, such spectrum component is replaced with a randomly generated noise whose maximum amplitude is limited to the half of the maximum amplitude of the scaled noise component.
A block diagram of this envelope normalization is shown in Figure 98 of subclause 6.2.3.1.3.1.4.3.3. In Figure 98, all processing blocks except ‘Lag info. decoding’ are common to the both sides of encoder and decoder.

5.3.4.1.4.1.5.3.3.3
Scaling and noise smoothing
Once the best match has been found through the matching process, scaling factors are calculated for the searched bands using the quantized band energies. Each scaling factor is calculated as the square root of the quotient of each quantized band energy divided by its corresponding band enegy of a generated high-frequency spectrum. The band energy of the generated high-frequency spectrum is equal to 
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 for the selected 
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 and is calculated according to equation (1109). The calculated scaling factors are attenuated by the scaling factor of 0.9.
Inter-frame smoothing process is applied on the generated high-frequency noise components. The generated MDCT coefficients whose amplitudes are below a threshold calculated using the sparseness of the TCQ-quantized low-frequency components are targeted for the smoothing process. When the energy of the targeted components in the previous frame is sufficiently less than current band energy, relatively strong smoothing is applied, while relatively weak smoothing is applied in other cases (i.e. current band energy is not sufficiently larger than the noise energy in the previous frame). The smoothing is performed on the energy of the targeted (noise) components.Then the smoothened energy of the noise components is divided by the energy of the noise components for calculating the final scaling factor in the smoothing process. The final scaling factor is applied to the noise components to obtain smoothened MDCT coefficients for the noise components.
Local decoding at the encoder side is necessary for switching between non-MDCT-based modes.
5.3.4.1.4.3.1
Energy envelope coding
Overall framework of the Harmonic mode is the same as the Normal mode as shown in Figure 66, but the PFSC block is called as PFSC-based gap filling in the Harmonic mode.

The energy envelope coding is performed as described in subclause 5.3.4.1.3.
5.3.4.1.4.3.2.1
Allocating bits for fine gain adjustment
Bit-allocation process is performed in the following manner when the signal is classified as harmonic. Firstly, two bits are reserved for transmitting the noise factor information (cf. Sec.5.3.4.1.4.3.3.6) followed by four bits are allocated for performing gap filling using PFSC based approach. Then some bits are reserved for applying fine gain quantization to the band energies that are larger than the others.

…
5.3.4.1.4.3.3.3.3
Band Search

…
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The start position [image: image109.wmf]i
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 of each sub-band are set as follows:
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…
5.3.4.1.4.3.3.3.5
Noise filling for the predicted spectrum

... 
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here lagsi is the number of search positions and it is according to equation (1149), lag index value 
[image: image119.wmf]i
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is obtained from subclause 5.3.4.1.4.3.3.3.3.

Estimate the position of harmonics for band i =0, 1 in the predicted spectrum, according to
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where [image: image124.wmf]tot

res

 represents pulse resolution for predicted spectrum and [image: image125.wmf]2
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 is obtained from subclause 5.3.4.1.4.3.3.3.4
…
5.3.4.1.4.3.3.3.6
Noise factor

…
From the input spectral coefficients, extract the high-frequency region [image: image126.wmf])
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where the starting position of high frequency is represented as[image: image128.wmf]start

hf

 and high frequency width is represented as[image: image129.wmf]width
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 . The corresponding values of [image: image130.wmf]width
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 is same as in table 123.

…
5.3.4.2.7.4.1 MPVQ modular leading sign recursion definition
The first codeword represents a leading sign, which is the sign of the first non-zero position in[image: image131.wmf]y

, the second codeword is a recursive representation of the amplitudes (including zeroes) and leading signs of the remaining vector [image: image132.wmf]z

 after the first occurring non-zero position sign in [image: image133.wmf]y

 has been extracted. The modular leading sign extraction is performed recursively until all amplitudes (including zeroes) and signs have been consumed.
…
5.3.4.2.7.4.2
Detailed MPVQ indexing approach

. . .


[image: image134]

Figure 84: Detailed MPVQ-indexing, leading sign index extraction and size calculation

…
6.1.5.3
Decoding of upper band at 64 kb/s

. . 

6.1.5.3.1
Decoding in normal mode
. . .
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and the 
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is saved to 
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If the number of the remaining bits
[image: image140.wmf]rem
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 after the first stage decoding is larger than 14 and the first stage quantized spectrum is non-zero, then the second stage decoding is performed. The second stage global gain
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. . .

The spectrum between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB is reconstructed by:
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where 
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is the number of the coefficients between 14.4 kHz and 16 kHz in SWB, resp. 20 kHz in FB:
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Then 
[image: image146.wmf]HIGHRATE

BW

SWB

M

if

extl

_

_

=

 or 
[image: image147.wmf](

)

(

)

,

4

0

,

2

.

2

)

(

ˆ

min

)

(

ˆ

max

_

_

<

£

>

j

j

f

j

f

band

env

band

env

the coefficients in the index range [576, 583] are smoothed by,
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where 
[image: image149.wmf]2
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 is defined as follows:
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and the spectrum is de-normalized using the spectral envelope by:
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Otherwise the spectrum is obtained as:
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where 
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Table 165: Overlap coefficients 
[image: image158.wmf])

(

_

k

f

coefs

overlap


	k
	0
	1
	2
	3
	4
	5
	6
	7

	
[image: image159.wmf])

(

_

k

f

coefs

overlap

, 32 kHz
	0.27
	0.306
	0.324
	0.351
	0.378
	0.396
	0.414
	0.4275

	
[image: image160.wmf])

(

_

k

f

coefs

overlap

, 48 kHz
	0.30
	0.34
	0.36
	0.39
	0.42
	0.44
	0.46
	0.475

	k
	8
	9
	10
	11
	12
	13
	14
	15

	
[image: image161.wmf])

(

_

k

f

coefs

overlap

, 32 kHz
	0.441
	0.459
	0.486
	0.513
	0.558
	0.648
	0.747
	0.855

	
[image: image162.wmf])

(

_

k

f

coefs

overlap

, 48 kHz
	0.49
	0.51
	0.54
	0.57
	0.62
	0.72
	0.83
	0.95


	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	
	

	

	
	
	
	
	
	


. . .
6.2.3.2.1.2.2
Fine gain prediction, inverse quantization and application

The bit allocation for the PVQ shape vector 
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are obtained as in subclause 5.3.4.2.1.3a.1. The quantized gain prediction error 
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with 
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. The gain of the synthesis is adjusted by scaling the decoded fine structure with the fine gain
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6.3.7.2.1
TBE mode

The following steps are performed when TBE mode is used to generate the SHB signal for wideband output:

1) Estimate the high band LSF, gain shape according to the corresponding parameters of the previous frame or by looking for the pre-determined tables

2) Reconstruct an initial SHB signal according to the TBE algorithm described in subclause 5.2.6.1.

3) Predict a global gain of the initial SHB signal according to the spectral tilt parameter of the current frame and the correlation of the low frequency signal between the current frame and the previous frame

4) Modify the initial SHB signal by the predicted global gain to obtain a final SHB signal

5) Finally, the final SHB signal and low frequency signal are combined to obtain the output signal.

The spectral tilt parameter can be calculated as described by the algorithm described in equations (800) and (801), and the correlation of the low frequency signals of the current frame and the previous frame can be the energy ratio between the current frame and the previous frame..

In detail, the algorithm of predicting the global gain is described as follows:

1) Classify the signal of the current frame to fricative signal 
[image: image177.wmf]1
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or non- fricative signal 
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 according to the spectral tilt parameter and the correlation of the low frequency signal between the current frame and the previous frame.


When the spectral tilt parameter of the current frame is larger than 5 and the FEC class of the low frequency signal is UNVOICED_CLAS, or the spectral  tilt parameter is larger than 10. If  the signal of the previous frame is non-fricative signal, and the correlation parameter is larger than a threshold, or if  the signal of the previous frame is fricative signal and the correlation parameter is less than a threshold, the current frame is classified as fricative signal
[image: image180.wmf]1
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2) For non-fricative signal, the spectral tilt parameter is limited to the range [0.5, 1.0]. For fricative signal, the spectral tilt parameter is limited to not larger than 8. The limited spectral tilt parameter is used as the global gain of the SHB signal.

3) If the energy of the SHB signal is larger than the energy of the signal with the frequency range in [3200, 6400] 
[image: image181.wmf]LH
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where 
[image: image183.wmf]SHB
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is the energy of the initial SHB signal.
If the energy of the SHB signal is less than 0.05 times of the energy of the signal with the frequency range in [3200, 6400] 
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, the global gain of the SHB signal is calculated as follows:
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4) For non-fricative signal, the global gain is multiplied by 8; and for fricative signal, the global gain is multiplied by 2.  And then the global gain of the SHB signal 
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 will be smoothed further as follows:

· If the signal of the current frame and the previous frame are both fricative signal and 
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…

6.5
Resampling to the output sampling frequency

The CELP and MDCT decoder output signals are sample rate converted, depending on the selected output sample rate, i.e. 8 kHz, 16 kHz, 32 kHz or 48 kHz. The CELP signal is resampled by the CLDFB, while the MDCT part is resampled by its frequency to time transformation.
. . . 
6.7.2.1.2
DTX-hangover based parameter analysis in LP-CNG mode

…
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The energy step is detected if it is the first CN frame after an active frame and the energy quantization index
[image: image191.wmf]q
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 decoded from the current SID frame is greater than the previous energy quantization index
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. Additionally, if there were past CN-parameters, an energy step is detected if the most recent energy value in 
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 is more than four times larger than the smoothed quantized excitation energy 
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6.8.1.3
Synthesis filtering
Once the excitation post-processing is done, the modified excitation is passed through the synthesis filter, as described in subclause 6.1.3, to obtain the decoded synthesis for the current frame. Based on the content bandwidth in the decoded synthesis signal, an output mode is determined (e.g., NB or WB). If the output mode is determined to be NB, then the content above 4 kHz is attenuated using CLDFB synthesis (e.g., as described in clause 6.9.3) and, subsequently, high frequency synthesis (6.8.3) is not performed on the bandlimited content.
…
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6.8.3.1.2
Estimation of sub-frame gains based on LP spectral envelopes
…
A.3.3.1
Offer-Answer Model Considerations

The following considerations apply when using SDP Offer-Answer procedures to negotiate the use of EVS payload in RTP:
dtx:
When dtx is not offered, i.e., not included, for a payload type, the answerer may include dtx for the payload type in the SDP answer. When dtx is offered for a payload type and the payload type is accepted, the answerer shall not modify or remove dtx for the payload type in the SDP answer.
…
*** End of changes ***
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