Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4#71
S4-121446
November 5-9, 2012
Bratislava, Slovakia
Agenda item:
7
Source:
Qualcomm Incorporated
Title:
On-demand recovery of eMBMS delivered media content
Document for
Information
1 Introduction
One interesting eMBMS download delivery use case is when media files are delivered via eMBMS for later playback by end users. Because of the nature of the eMBMS download broadcast service, it makes sense to proactively deliver to media content to UEs, even in the case that each end user of each UE may not completely play back each media content so delivered.

This document provides an informative description of “on-demand recovery” of media content. This can be described in the context of the device download evaluation.
The first stage of the two stage device download delivery is the same for “on-demand recovery” as usual: the network2sd process is used to receive and write to the SD card the encoded and interleaved data for the media content, which emulates the reception of the data over eMBMS.
The second stage of the usual download delivery is to run the ld_decoder as a post-processing step to read in the received data for the media content, FEC decode, and write the entire recovered entire media content back to the SD card. It is this second stage that is different for “on-demand recovery”: the ld_decoder is not run as a post-processing step, but instead only when the end user decides to view the media content is the ld_decoder executed to read the relevant portions of the stored data from the SD card, FEC decode, and provide the relevant portions of the media content directly to the media player for playback. Furthermore, the ld_decoder only reads and decodes the relevant portions of the data that correspond to portions of the media content that are being viewed at any time by the end user.

Some advantages of the “on-demand recovery” of media content approach are:

(1) Progressive MBMS Download: Once enough data has been received to recover the media content from the eMBMS broadcast session, the media content can be immediately be played back by the end user, i.e., there is no additional delay that is introduced by the usual post-processing step to recover the entire media content before the media content is available to the end user for playback. This emulates the well-known progressive download feature from HTTP-based delivery also for MBMS download delivery services.
(2) Reactive recovery: Only media content that is actually played back is ever read in from the SD card and recovered. If media content for which data is delivered over eMBMS is never accessed by the end user, no additional UE resources are wasted to recover and write the recovered media content back to the SD card. Additionally, even in the case of content that is played back, there is not an additional write of the recovered content to the SD card.
(3) Storage Efficiency: The amount of data ever stored on the SD card for the media content is essentially the size of the media content. With the usual post-processing approach to recover the media content, both the received data for the media content and the recovered media content are stored on the SD card, doubling the amount of storage used for downloading the media content.

Thus, for “on-demand recovery” there is no separate recovery process, but recovery is seamlessly integrated into the media playback process. “On-demand recovery” is essentially ideal if it has the same resource usage of the UE and provides the same user experience as if though the original media content were delivered directly without any loss of data during the delivery. This ideal property can be well-approximated if the FEC decoding is very efficient, and if the user experience it provides, and especially the reaction time to user trick play while browsing this content, is essentially the same as if the original media content were stored on the SD card instead of FEC encoded and interleaved data for the media content.

To provide a reactive user experience, it is essential that the amount of data that “on-demand recovery” needs to read in and FEC decode before playback can commence be relatively small. On the other hand, from the network perspective, it is essential that the FEC be applied over large source blocks of data. Thus, it turns out that sub-blocking is an essential ingredient for providing an excellent “on-demand recovery” user experience, where the sub-block size is the amount of data that needs to be read in and FEC decoded before playback can commence, and the source block size is the amount of data over which FEC protection can be provided from a network perspective.
2 Demo
We have put together a simple demo that illustrates how “on-demand recovery” can work. For this demo, PCAP files for the 6330 code in exactly the same format as used in the download delivery have been formed for delivering a 95 Megabyte media content. In this example, the payload size for the symbol within each packet is 1288 bytes, and the FEC Object Transmission Parameters have been set so that each source block has around 15,000 source symbols so that each source block is just over 18 Megabytes. Each source block has been partitioned into 11 sub-blocks (7 sub-blocks use 120 byte sub-symbols, 4 sub-blocks use 112 byte sub-symbols), so that each sub-block is around 1.7 Megabytes). When delivering the packets to the device, 20% loss was applied according to the agreed upon Markov models, and then the network2sd was used to receive the packets and write the data to the SD card in exactly the same format as used in the device download simulations. Thus, what is stored on the device SD card is the FEC encoded and interleaved data as received and written by network2sd, and the original media content is not stored on the device.
For the demo itself, a modified version of the ld_decoder is interfaced with a standard media player through an HTTP interface. The modified ld_decoder is almost the same as the ld_decoder used in the device download evaluations for the 6330 code: the modification is that the ld_decoder has been enhanced to understand how to translate HTTP requests for arbitrary portions of the media content into requests for the interleaved and FEC encoded data of the sub-block corresponding to the request, FEC decode, and provide the appropriate portions of the sub-block in response to the HTTP request from the media player.

For the “on-demand recovery” to be able to provide a quick response to user seeking to different points in the content, and for starting playback of the content from the beginning quickly, it is crucial that the sub-block size not be too large: the response time is a function of how fast the data for the sub-block can be read from the SD card into RAM, and also a function of how fast the FEC decoder can decode the sub-block and provide the recovered sub-block to the media player for playback. In the example, reading in and decoding a 1.7 Megabyte sub-block is relatively quick, whereas without sub-blocking, reading in and decoding an 18 Megabyte source block would provide a much more sluggish end user experience.
3 Proposal
Consider the information provided as relevant to the usage of FEC for eMBMS download delivery services. We consider to add some information on this in the deployment guidelines for the Technical Report.
- 1/3 -

