Page 1

3GPP TSG-SA4 Meeting #70
(
S4-121137
Chichago, Il., USA, 13-17 August 2012
	CR-Form-v10

	CHANGE REQUEST

	

	(

	26.132
	CR
	CRNum
	(

rev
	-
	(

Current version:
	10.4.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/Change-Requests.

	

	Proposed change affects: (

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Echo control characteristics

	
	

	Source to WG:
(

	Telefon AB LM Ericsson, ST-Ericsson SA, Sony Europe Limited, Sony Mobile Communications

	Source to TSG:
(

	SA4

	
	

	Work item code:
(

	Ext_ATS
	
	Date: (

	2012-08-14

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-11

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	Current mobile terminals include echo control techniques that is not adequately captured with existing test methods.

	
	

	Summary of change:
(

	Add test method for characterizing the echo performance in the presence of double-talk.

	
	

	Consequences if
(

not approved:
	The performance of terminals with respect to echo control is not adequately assessed.

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	

-------------------------------------START OF MODIFIED CLAUSE--------------------------------
7.10
Echo control characteristics

7.10.1
Test set-up and test signals
The device is set up according to Clause 5. The ambient noise level shall be ≤ ‑64 dBPa(A).

The test shall be performed with the British-English “long” double-talk and conditioning speech sequences from ITU-T Recommendation P.501, with the signals in the receiving direction band limited according to Clause 5.4.

A description of the test stimuli is presented in Table 1 and Table 2. The test sequence is composed of an initial conditioning sequence of 23.5s and a double talk sequence of 35 s. For the analysis, the double talk sequence is divided into two segments, a first double-talk sequence with single short near-end words (0 - 20s), and a second double-talk sequence with continuous double talk (20-35s).
The up-link speech during double-talk and the “near-end speech only” are recorded individually, with the “near-end speech only” sequence recorded with silence in the down-link. The time-alignment of the two recorded sequences is performed off-line during the analysis.
Table 1: Test stimuli for recording of Echo Canceller operation

	
	Conditioning
	Single words (segment 1) and full sentence (segment 2) double talk

	Down-link
	FB_female_conditioning_seq_long.wav
	FB_male_female_single-talk_seq.wav

	Artificial mouth
	FB_male_conditioning_seq_long.wav
	FB_male_female_double-talk_seq.wav

Table 2: Test stimuli for reference "near-end speech only" recording.

	
	Conditioning
	Single words (segment 1) and full sentence (segment 2) double talk

	Down-link
	FB_female_conditioning_seq_long.wav
	silence

	Artificial mouth
	FB_male_conditioning_seq_long.wav
	FB_male_female_double-talk_seq.wav

The level of the signal of the artificial mouth shall be -4.7 dBPa measured at the MRP. The signal level is averaged over the complete test signal sequence. In order to obtain a reproducible time alignment as seen by the UE, the artificial mouth signal shall be delayed by the amount of downlink delay. For the purpose of this alignment, the downlink delay for handset and headset modes is is defined from the system simulator input to the artificial ear. For handsfree modes, the downlink delay is defined from the system simulator input to the acoustic output from the UE loudspeaker.
The level of the down-link signal shall be -16 dBm0 measured at the digital reference point or the equivalent analogue point. The signal level is averaged over the complete test signal sequence.
7.10.2

Test method

The test method measures the duration of any level difference between the send signal a double-talk sequence (where the echo canceller has been exposed to simultaneous echo and near-end speech) and the send signal of the same near-end speech only. The level difference is classified into eight categories according to Figure 1 and Table 3, representing various degrees of “Full duplex operation”, “Near-end clipping”, and “Residual echo”.
NOTE:
The limits for specifying the categories in Figure 1 and Table 3 are provisional pending further analysis and validation.
NOTE:
The categories in Figure 2 and Table 2 are labelled in a functional order and the subjective impression of the respective categories is for further study.

[image: image1.emf]Level

difference

[dB]

Duration [ms]

4

-4

-15

25

25

150

150

A1

A2

C B D

E F G

Figure 1: Classification of echo canceller performance

Table 3: Categories for echo canceller performance classification

	Category
	Level difference (ΔL)
	Duration (D)
	Description

	A1
	-4 dB ≤ ΔL < 4 dB
	
	Full-duplex and full transparency

	A2
	-15 dB ≤ ΔL < -4 dB
	
	Full-duplex with level loss in Tx

	B
	ΔL < -15 dB
	D < 25 ms
	Very short clipping

	C
	ΔL < -15 dB
	25 ms ≤ D < 150 ms
	Short clipping resulting in loss of syllables

	D
	ΔL < -15 dB
	D ≥ 150 ms
	Clipping resulting in loss of words

	E
	ΔL ≥ 4 dB
	D < 25 ms
	Very short residual echo

	F
	ΔL ≥ 4 dB
	25 ms ≤ D < 150 ms
	Echo bursts

	G
	ΔL ≥ 4 dB
	D ≥ 150 ms
	Continuous echo

A pseudo-code reference of the test method including test scripts and test-vectors is presented in Clause C.3 and outlined in the following sub clauses.

7.10.2.1
Signal alignment

For the analysis of the signal level difference, the send signal during double-talk and the near-end only signal is aligned using a correlation analysis as dexribed in Clause C.3.2.
7.10.2.2
Signal level computation and frame classification
The analysis is based on the digital level measured with a meter according to IEC 651 with a time constant of 12.5 ms, sampled at 5 ms intervals corresponding to the evaluated frames.

The “double-talk” frames are defined as the frames were both the down-link includes active speech (extended with a hang-over period of 200 ms) and the near-end signal is composed of active speech. Active speech is defined to be detected using a speech level meter according to ITU-T P.56, and frames within a certain -15.9 dB from the active speech level is classified as active speech frames.

The “far-end single-talk adjacent to double-talk” frames are similarly defined using a speech level meter according to ITU-T P.56 as the frames with active down-link speech (extended with a hang-over period of 200 ms) and no active near-end speech (extended with a hang-over period of 200 ms).

A reference implementation of the signal level computation and frame classification is presented in Clause C.3.3.

7.10.2.3
Classification into categories

The analysis and classification into the categories according to Figure 3 and Table 3 is performed according to the reference implementation described in Clause C.3.4 and C.3.4.
The frames are first categorized according to the level categories defined in Table 3. To determine the durations, the amount of adjacent frames falling into the same level category is determined.

The classification is then performed individually for the following situations:

· frames classified as “double-talk” from segment 1 of the double-talk sequence (see 7.10.1)

· frames classified as “far-end single-talk adjacent to double-talk” from segment 1 of the double-talk sequence

· frames classified as “double-talk” from segment 2 of the double-talk sequence

· frames classified as “far-end single-talk adjacent to double-talk” from segment 2 of the double-talk sequence

To determine the percentage values for each category (A1, A2, B, C, D, E, F, G) within each situation, the number of frames falling into the respective category is divided by the total number of frames within the situation in question.

-------------------------------------END OF MODIFIED CLAUSE--------------------------------
-------------------------------------START OF MODIFIED CLAUSE--------------------------------
Annex C (informative):
Reference algorithm for echo control characteristics evaluation.

C.1
General

In this annex, a reference algorithm for evaluation of the echo control characteristics is described in pseudo code. The output of an implementation of the test method with the stimuli from the file “echo_control_reference_files.zip” shall equal the results prented in Table 4 and Table 5.

Table 4: Characterization of segment 1.

	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	60,7%
	-1,2
	94,9%
	0,2

	A2
	39,3%
	-5,1
	1,3%
	-4,8

	B
	0,0%
	0
	0,0%
	0

	C
	0,0%
	0
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	0
	0,4%
	9,3

	F
	0,0%
	0
	3,4%
	8,6

	G
	60,7%
	-1,2
	94,9%
	0,2

Table 5: Characterization of segment 2.
	
	Double talk
	Single talk

	Category
	Activity
	Av. Level [dB]
	Activity
	Av. Level [dB]

	A1
	55,8%
	-1,1
	93,8%
	0,2

	A2
	36,3%
	-7,0
	0,3%
	-6,1

	B
	1,0%
	-16,9
	0,0%
	0

	C
	6,3%
	-17,2
	0,0%
	0

	D
	0,0%
	0
	0,0%
	0

	E
	0,0%
	5,2
	0,5%
	9,5

	F
	0,6%
	4,0
	5,4%
	6,2

	G
	0,0%
	0
	0,0%
	0

The pseudo-code reference algorithm produces a text file output, and the implementation of the test method may be tested with the test script on the data in the file “echo_control_reference_files.zip” for which the result shall equal

ms01-rec2; segm. 1; Processed signal;
active speech level [dBovl]; -45.8; RMS level [dBovl]; -51.5; speech activity; 0.269

ms01-rec2; segm. 1; Near end signal;
active speech level [dBovl]; -42.6; RMS level [dBovl]; -49.1; speech activity; 0.225

ms01-rec2; segm. 1; Downlink signal;
active speech level [dBovl]; -26.4; RMS level [dBovl]; -27.2; speech activity; 0.833

ms01-rec2; segm. 1; delay 0; DL delay 0;
DT activity 0.101; 0.607; 0.393; 0.000; 0.000; 0.000; 0.000; 0.000; 0.000;

ms01-rec2; segm. 1; delay 0; DL delay 0;
DT level diff; -1.2; -5.1; 0.0; 0.0; 0.0; 0.0; 0.0; 0.0;

ms01-rec2; segm. 1; delay 0; DL delay 0;
ST activity 0.671; 0.949; 0.013; 0.000; 0.000; 0.000; 0.004; 0.034; 0.000;

ms01-rec2; segm. 1; delay 0; DL delay 0;
ST level diff; 0.2; -4.8; 0.0; 0.0; 0.0; 9.3; 8.6; 0.0;

ms01-rec2; segm. 2; Processed signal;
active speech level [dBovl]; -42.0; RMS level [dBovl]; -44.4; speech activity; 0.581

ms01-rec2; segm. 2; Near end signal;
active speech level [dBovl]; -40.6; RMS level [dBovl]; -42.7; speech activity; 0.625

ms01-rec2; segm. 2; Downlink signal;
active speech level [dBovl]; -26.3; RMS level [dBovl]; -27.0; speech activity; 0.860

ms01-rec2; segm. 2; delay -1; DL delay 0;
DT activity 0.397; 0.558; 0.363; 0.010; 0.063; 0.000; 0.000; 0.006; 0.000;

ms01-rec2; segm. 2; delay -1; DL delay 0;
DT level diff; -1.1; -7.0; -16.9; -17.2; 0.0; 5.2; 4.0; 0.0;

ms01-rec2; segm. 2; delay -1; DL delay 0;
ST activity 0.365; 0.938; 0.003; 0.000; 0.000; 0.000; 0.005; 0.054; 0.000;

ms01-rec2; segm. 2; delay -1; DL delay 0;
ST level diff; 0.2; -6.1; 0.0; 0.0; 0.0; 9.5; 6.2; 0.0;

C.2
Test script
%

% Set data format

%

fs = 16000;

conditioningTime = 23.5;

downlinkSystemDelay = 0;

%

% Segment the data

%

offsetDoubleTalk = conditioningTime;

offsetNearEnd = conditioningTime;

segmentDoubleTalkIndex(1) = {[0, 20]};

segmentNearEndIndex(1) = {[0, 20]};

segmentDoubleTalkIndex(2) = {[20, 35]};

segmentNearEndIndex(2) = {[20, 35]};

lengthDoubleTalk = max(cell2mat(segmentDoubleTalkIndex(end)));

lengthNearEnd = max(cell2mat(segmentNearEndIndex(end)));

firstSampleDoubleTalk = round(fs*offsetDoubleTalk) + 1;

firstSampleNearEnd = round(fs*offsetNearEnd) + 1;

lastSampleDoubleTalk = round(fs*(offsetDoubleTalk+lengthDoubleTalk));

lastSampleNearEnd = round(fs*(offsetNearEnd+lengthNearEnd));

indexDoubleTalk = [firstSampleDoubleTalk, lastSampleDoubleTalk];

indexNearEnd = [firstSampleNearEnd, lastSampleNearEnd];

%

% Read data from file

%

fid = fopen('ms01_WB_rec2.pcm', 'r');

fseek(fid, 2*round(fs*offsetDoubleTalk), 'bof');

processedData = fread(fid, round(fs*lengthDoubleTalk), 'int16');

fclose(fid);

fid = fopen('ms01_WB_ref.pcm', 'r');

fseek(fid, 2*round(fs*offsetNearEnd), 'bof');

nearendData = fread(fid, round(fs*lengthNearEnd), 'int16');

fclose(fid);

fid = fopen('p501-downlink_WB.pcm', 'r');

fseek(fid, 2*round(fs*offsetDoubleTalk), 'bof');

downlinkData = fread(fid, round(fs*lengthDoubleTalk), 'int16');

fclose(fid);

%

% Evaluate

%

ecEvaluation(processedData, nearendData, downlinkData, ...

 segmentDoubleTalkIndex, segmentNearEndIndex, ...

 'ms01-rec2', downlinkSystemDelay, ...

 fs, 'bitExactTest.txt');

C.3
Reference algorithm

C.3.1
Main algorithm
%%

%

% processedData: processed samples

% originalData: near-end-only samples

% downlinkData: down-link (loudspeaker) samples

% processedSegmentSet: set of indices to processed data segments

% originalSegmentSet: set of indices to original data segments

% PROC_FILE: name shown in diagrams

% downlinkSystemDelayInMs: delay in DL signal from data to acoustic out

% sampleRate: sampling frequency of the data

% resultsFile: output file

%

%%

%%

function ecEvaluation(...

 processedData, ...

 nearendData, ...

 downlinkData, ...

 indexProcessed, ...

 indexNearend, ...

 PROC_FILE, ...

 downlinkSystemDelayInMs, ...

 sampleRate, ...

 resultFile)

fid = fopen(resultFile, 'a');

% Define the categories

global D1 D2 D3 D4 L1 L2 L3;

D1 = 25;

D2 = 150;

D3 = 25;

D4 = 150;

L1 = 4;

L2 = -4;

L3 = -15;

global FRAME_LENGTH_MS ...

 MAX_DURATION_MS ...

 MAX_DURATION_FRAMES ...

 MAX_LEVEL_DIFFERENCE ...

 MIN_LEVEL_DIFFERENCE ...

 HISTOGRAM_RESOLUTION_MS

FRAME_LENGTH_MS = 5;

MAX_DURATION_MS = 200;

MAX_DURATION_FRAMES = MAX_DURATION_MS/FRAME_LENGTH_MS;

MAX_LEVEL_DIFFERENCE = 40;

MIN_LEVEL_DIFFERENCE = -40;

HISTOGRAM_RESOLUTION_MS = FRAME_LENGTH_MS;

% Main processing loop

frameLengthInSamples = FRAME_LENGTH_MS*sampleRate/1000; % 5ms frames

for segment = 1:length(indexProcessed)

 % Get the data samples for the segment

 segmentDataProcessed = cell2mat(indexProcessed(segment));

 segmentDataNearend = cell2mat(indexNearend(segment));

 index = (sampleRate*segmentDataProcessed(1)+1):sampleRate*segmentDataProcessed(2);

 x = processedData(index);

 z = downlinkData(index);

 index = (sampleRate*segmentDataNearend(1)+1):sampleRate*segmentDataNearend(2);

 y = nearendData(index);

 % Estimate and compensate for delay between processed and near end

 [x, y, z, delay] = compensateDelay(x, y, z, 0.5*sampleRate);

 % Compute the signal levels and classify the frames

 [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

 computeSignalLevels(x, y, z, ...

 sampleRate, frameLengthInSamples, ...

 downlinkSystemDelayInMs, ...

 PROC_FILE, segment, fid);

 % Evaluate double-talk performance

 numberOfDoubleTalkFrames = length(doubleTalkFrames);

 [H_dt, ld_ax_dt, dur_ax_dt] = ...

 levelTimeStatistics(Rx(doubleTalkFrames), Ry(doubleTalkFrames));

 [C_dt, L_dt] = evaluateHistogram(H_dt, ld_ax_dt, dur_ax_dt, ...

 numberOfDoubleTalkFrames);

 activityFactorDoubleTalk = numberOfDoubleTalkFrames/length(Rx);

 % Evaluate single-talk performance

 numberOfSingleTalkFrames = length(singleTalkFrames);

 [H_st, ld_ax_st, dur_ax_st] = ...

 levelTimeStatistics(Rx(singleTalkFrames), Ry(singleTalkFrames));

 [C_st, L_st] = evaluateHistogram(H_st, ld_ax_st, dur_ax_st, ...

 numberOfSingleTalkFrames);

 activityFactorSingleTalk = numberOfSingleTalkFrames/length(Rx);

 % Save to result file

 writeResultsToFile(fid, ...

 PROC_FILE, ...

 segment, ...

 delay, ...

 round(downlinkSystemDelayInMs), ...

 activityFactorDoubleTalk, ...

 activityFactorSingleTalk, ...

 C_dt, ...

 C_st, ...

 L_dt, ...

 L_st);

end

fclose(fid);

C.3.2
Delay compensation

%%

%%

%

% Compensate for delay in processed file

%

%%

%%

function [x, y, z, delay] = ...

compensateDelay(...

 x, ...

 y, ...

 z, ...

 maxLag)

ii = 1:min(1000000, length(x));

r = xcorr(x(ii), y(ii), maxLag);

[~, delay] = max(abs(r));

delay = delay-maxLag-1;

if (delay > 0)

 x = x((delay+1):end);

 z = z((delay+1):end);

 y = y(1:(end-delay));

elseif (delay < 0)

 y = y((-delay+1):end);

 x = x(1:(end+delay));

 z = z(1:(end+delay));

end;

C.3.3
Signal level computation and frame classification

%%

%%

%

% Determine speech activity and signal levels

%

%%

%%

function [Rx, Ry, Rz, doubleTalkFrames, singleTalkFrames] = ...

computeSignalLevels(x, y, z, ...

 sampleRate, frameLengthInSamples, ...

 downlinkSystemDelayInMs, ...

 PROC_FILE, segment, fid)

LEVEL_METER_INIT_TIME_MS = 100;

DOWNLINK_HANGOVER_FRAMES = 40;

NEAREND_HANGOVER_FRAMES = 40;

levelMeterInitTime = LEVEL_METER_INIT_TIME_MS*sampleRate/1000;

% Level according to IEC651

Rx = IEC651(x, sampleRate, 12.5);

Ry = IEC651(y, sampleRate, 12.5);

Rz = IEC651(z, sampleRate, 12.5);

% Correct for system delay

nRz = length(Rz);

minRz = min(Rz(levelMeterInitTime:end));

Rz = [minRz*ones(floor(downlinkSystemDelayInMs*sampleRate/1000), 1); Rz];

Rz = Rz(1:nRz);

% Sub-sample and avoid initialization period of level meter

Rx = Rx(levelMeterInitTime:frameLengthInSamples:end);

Ry = Ry(levelMeterInitTime:frameLengthInSamples:end);

Rz = Rz(levelMeterInitTime:frameLengthInSamples:end);

% Active speech level according to P.56

[activeSpeechLevelProcessed, ...

 longTermLevelProcessed, ...

 activityFactorProcessed] = ...

speechLevelMeter(x, sampleRate);

[activeSpeechLevelNearend, ...

 longTermLevelNearend, ...

 activityFactorNearend] = ...

speechLevelMeter(y, sampleRate);

[activeSpeechLevelDownlink, ...

 longTermLevelDownlink, ...

 activityFactorDownlink] = ...

speechLevelMeter(z, sampleRate);

% Write active speech levels to file

writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

 activeSpeechLevelProcessed, ...

 activeSpeechLevelNearend, ...

 activeSpeechLevelDownlink, ...

 longTermLevelProcessed, ...

 longTermLevelNearend, ...

 longTermLevelDownlink, ...

 activityFactorProcessed, ...

 activityFactorNearend, ...

 activityFactorDownlink);

%

% Only evaluate for active downlink/near-end speech including hang-over

%

activeRyFrames = find(Ry > activeSpeechLevelNearend-15.9);

activeRzFrames = find(Rz > activeSpeechLevelDownlink-15.9);

% Downlink with added hangover

activeDownlinkSpeechFrames = zeros(size(Rz));

activeDownlinkSpeechFrames(activeRzFrames) = ones(size(activeRzFrames));

activeDownlinkSpeechFrames = conv(activeDownlinkSpeechFrames, ...

 ones(DOWNLINK_HANGOVER_FRAMES, 1));

activeDownlinkSpeechFrames = activeDownlinkSpeechFrames(1:length(Rz));

% Near-end

activeNearEndSpeechFrames = zeros(size(Ry));

activeNearEndSpeechFrames(activeRyFrames) = ones(size(activeRyFrames));

activeNearEndSpeechHtFrames = conv(activeNearEndSpeechFrames, ...

 ones(NEAREND_HANGOVER_FRAMES, 1));

activeNearEndSpeechHtFrames = activeNearEndSpeechHtFrames(1:length(Rz));

% Only evaluate double talk when both rx+hangover and near-end

doubleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

 activeNearEndSpeechFrames);

doubleTalkFrames = find(doubleTalkSpeechFrames > 0);

% Single talk defined as rx and no near-end including 200 ms hangover

singleTalkSpeechFrames = (activeDownlinkSpeechFrames & ...

 ~activeNearEndSpeechHtFrames);

singleTalkFrames = find(singleTalkSpeechFrames > 0);

%%

%%

%

% Average speech and noise levels

%

%%

%%

function [...

 activeSpeechLevel, ...

 longTermLevel, ...

 activityFactor ...

] = ...

speechLevelMeter(x, sampleRate)

SPEECH_LEVEL_HANGOVER_TIME_IN_MS = 200;

% Filter data

g = exp(-1/(0.03*sampleRate));

p = filter((1-g), [1, -g], abs(x));

q = filter((1-g), [1, -g], abs(p));

% Add 200ms hangover

hTimeInSamples = SPEECH_LEVEL_HANGOVER_TIME_IN_MS*sampleRate/1000;

qht = q;

for loop = 1:hTimeInSamples

 qht = max(qht, [zeros(loop, 1); q(1:end-loop)]);

end

% Compute cumulative histogram of signal power with hangover

nData = length(x);

cBins = 2.0.^(0:14)';

histogramCsum = zeros(size(cBins));

for loop = 1:length(cBins)

 histogramCsum(loop) = length(find(qht>cBins(loop)));

end

% Get the levels

sumSquare = sum(x.^2);

refdB = 20*log10(32768);

longTermLevel = 10*log10(sumSquare/nData) - refdB;

A = 10*log10(sumSquare./histogramCsum) - refdB;

C = 20*log10(cBins) - refdB;

Diff = A-C;

if ((A(1) == 0) || ((A(1) - C(1)) <= 15.9))

 activeSpeechLevel = -100;

else

 index = find(Diff <= 15.9, 1, 'first');

 if (Diff(index) == 15.9)

 activeSpeechLevel = A(index);

 else

 C_level = C(index) + ...

 (15.9 - Diff(index))* ...

 (C(index)-C(index-1))/(Diff(index)-Diff(index-1));

 activeSpeechLevel = A(index) + ...

 (C_level - C(index))* ...

 (A(index)-A(index-1))/(C(index)-C(index-1));

 end

end

activityFactor = 10.0^((longTermLevel-activeSpeechLevel)/10);

%%

%%

%

% Speech level meter according to IEC651

%

%%

%%

function Rx = IEC651(x, sampleRate, tc)

%

%

% This functions computes the power of a sampled signal

% using a discrete filter with time constant equivalent to a first order

% continous time exponential averaging circuit,

%

% 1/tc

% Rx = ---------- x^2

% s + 1/tc

%

% according to IEC 651 (1993, section 7.2).

%

T = 1/sampleRate;

tc = tc/1000;

%

% Design H by sampling of Hc

%

la = exp(-T/tc);

B = 1-la;

A = [1, -la];

Rx = filter(B, A, x.^2);

%

% Transform Rx to dBov (square wave),

%

% 0 dBov <=> power of maximum square wave signal, 32768

%

% 10^0 = 32768^2/X => X = 32768^2

%

% Avoid log(0) by using log(max(eps, Rx))

%

Rx = 10*log10(max(eps, Rx)/32768/32768);

C.3.4
Level vs time computation

%%

%%

%

% Computation of level and time statistics

%

%%

%%

function [...

 levelVsDurationHistogram, ...

 levelDifferenceAxis, ...

 durationAxis] = ...

levelTimeStatistics(processedLevel, nearEndLevel)

global MAX_DURATION_FRAMES MAX_LEVEL_DIFFERENCE MIN_LEVEL_DIFFERENCE

FIRST_OCCURENCE = 1;

%

% Compute level difference

%

levelDifference = processedLevel - nearEndLevel;

%

% Only evaluate in integers (rounded towards 0) of dB and limit to max/min difference

%

levelDifference = fix(levelDifference);

levelDifference = min(levelDifference, MAX_LEVEL_DIFFERENCE);

levelDifference = max(levelDifference, MIN_LEVEL_DIFFERENCE);

%

% Produce axis

%

levelDifferenceAxis = MIN_LEVEL_DIFFERENCE:MAX_LEVEL_DIFFERENCE;

durationAxis = 1:(MAX_DURATION_FRAMES+1);

%

% Set initial values for computations and loop through all frames

%

numberOfEvaluatedFrames = length(levelDifference);

levelIncludedInEvaluation = (MAX_LEVEL_DIFFERENCE+1)*...

 ones(numberOfEvaluatedFrames, 1);

levelAndRunLength = zeros(numberOfEvaluatedFrames, 4);

levelVsDurationHistogram = zeros(MAX_LEVEL_DIFFERENCE+ ...

 (-MIN_LEVEL_DIFFERENCE)+1, ...

 MAX_DURATION_FRAMES+1);

previousLevelDifference = 0;

for frame = 1:numberOfEvaluatedFrames-1;

 currentLevelDifference = levelDifference(frame);

 %

 % Evaluate all levels from the previous level up to the current level

 %

 if currentLevelDifference <= 0

 firstEvaluatedLevelDifference = max(min(0, previousLevelDifference), ...

 currentLevelDifference);

 step = -1;

 else

 firstEvaluatedLevelDifference = min(max(0, previousLevelDifference), ...

 currentLevelDifference);

 step = 1;

 end

 %

 % Loop the levels to be evaluated

 %

 for evaluatedLevelDifference = ...

 firstEvaluatedLevelDifference:step:currentLevelDifference

 %

 % Check that the current frame is not already included

 % in evaluation for earlier frames

 %

 if (evaluatedLevelDifference ~= levelIncludedInEvaluation(frame))

 if (evaluatedLevelDifference > 0)

 duration = find(levelDifference(frame+1:end) < ...

 evaluatedLevelDifference, FIRST_OCCURENCE);

 else

 duration = find(levelDifference(frame+1:end) > ...

 evaluatedLevelDifference, FIRST_OCCURENCE);

 end

 if (isempty(duration))

 duration = numberOfEvaluatedFrames-frame+1;

 end

 %

 % Set the frames during duration of the level difference

 % as being evaluated

 %

 if (duration > 1)

 levelIncludedInEvaluation(frame:(frame+duration-1)) = ...

 evaluatedLevelDifference*ones(duration, 1);

 end;

 %

 % Add the number of frames in the duration that have

 % absolute level diff greater or equal to evalutedLevel

 %

 durationIndex = min(duration, MAX_DURATION_FRAMES);

 levelIndex = evaluatedLevelDifference+(-MIN_LEVEL_DIFFERENCE)+1;

 levelVsDurationHistogram(levelIndex, durationIndex) = ...

 levelVsDurationHistogram(levelIndex, durationIndex) + duration;

 end

 end

 previousLevelDifference = currentLevelDifference;

end

C.3.5
Categorization

%%

%%

%

% Evaluate the histogram data

%

%%

%%

function [categories, averageLevelsInCategories] = ...

evaluateHistogram(...

 histogramData, ...

 levelDiff_ax, ...

 duration_ax, ...

 numberOfFrames)

global D1 D2 D3 D4 L1 L2 L3 HISTOGRAM_RESOLUTION_MS;

D1_scaled = D1/HISTOGRAM_RESOLUTION_MS;

D2_scaled = D2/HISTOGRAM_RESOLUTION_MS;

D3_scaled = D3/HISTOGRAM_RESOLUTION_MS;

D4_scaled = D4/HISTOGRAM_RESOLUTION_MS;

levelIndex_L1 = find(levelDiff_ax == L1);

levelIndex_L2 = levelDiff_ax == L2;

levelIndex_L3 = find(levelDiff_ax == L3);

duration_A2 = duration_ax;

duration_B = duration_ax<=D1_scaled;

duration_C = (D1_scaled<duration_ax)&(duration_ax<=D2_scaled);

duration_D = duration_ax>D2_scaled;

duration_E = duration_ax<=D3_scaled;

duration_F = (D3_scaled<duration_ax)&(duration_ax<=D4_scaled);

duration_G = duration_ax>D4_scaled;

framesInCategoryB = sum(histogramData(levelIndex_L3, duration_B));

framesInCategoryC = sum(histogramData(levelIndex_L3, duration_C));

framesInCategoryD = sum(histogramData(levelIndex_L3, duration_D));

framesInCategoryE = sum(histogramData(levelIndex_L1, duration_E));

framesInCategoryF = sum(histogramData(levelIndex_L1, duration_F));

framesInCategoryG = sum(histogramData(levelIndex_L1, duration_G));

framesInCategoryA2 = sum(histogramData(levelIndex_L2, duration_A2));

framesInCategoryA2 = framesInCategoryA2 - ...

 framesInCategoryB - ...

 framesInCategoryC - ...

 framesInCategoryD;

framesInCategoryA1 = numberOfFrames - ...

 framesInCategoryA2 - ...

 framesInCategoryB - ...

 framesInCategoryC - ...

 framesInCategoryD - ...

 framesInCategoryE - ...

 framesInCategoryF - ...

 framesInCategoryG;

categories = [framesInCategoryA1;

 framesInCategoryA2;

 framesInCategoryB;

 framesInCategoryC;

 framesInCategoryD;

 framesInCategoryE;

 framesInCategoryF;

 framesInCategoryG]/numberOfFrames;

averageLevelsInCategories = zeros(8, 1);

% Category A1

index = levelDiff_ax < L1;

index = levelDiff_ax(index) > L2;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (nData > 0)

 averageLevelsInCategories(1) = sum(levelTimesDuration)/nData;

end

% Category A2

index = levelDiff_ax <= L2;

index = levelDiff_ax(index) > L3;

weight = levelDiff_ax(index);

duration = duration_ax;

levelTimesDuration = (weight*histogramData(index, duration)).*duration;

nData = sum(histogramData(index, duration)*duration');

if (nData > 0)

 averageLevelsInCategories(2) = sum(levelTimesDuration)/nData;

end

% Category B, C, D

index = find(levelDiff_ax <= L3);

weight = levelDiff_ax(index);

duration = duration_ax(duration_B);

levelTimesDuration = (weight*histogramData(index, duration_B)).*duration;

nData = sum(histogramData(index, duration_B)*duration');

if (nData > 0)

 averageLevelsInCategories(3) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_C);

levelTimesDuration = (weight*histogramData(index, duration_C)).*duration;

nData = sum(histogramData(index, duration_C)*duration');

if (nData > 0)

 averageLevelsInCategories(4) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_D);

levelTimesDuration = (weight*histogramData(index, duration_D)).*duration;

nData = sum(histogramData(index, duration_D)*duration');

if (nData > 0)

 averageLevelsInCategories(5) = sum(levelTimesDuration)/nData;

end

% Category E, F, G

index = find(levelDiff_ax >= L1);

weight = levelDiff_ax(index);

duration = duration_ax(duration_E);

levelTimesDuration = (weight*histogramData(index, duration_E)).*duration;

nData = sum(histogramData(index, duration_E)*duration');

if (nData > 0)

 averageLevelsInCategories(6) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_F);

levelTimesDuration = (weight*histogramData(index, duration_F)).*duration;

nData = sum(histogramData(index, duration_F)*duration');

if (nData > 0)

 averageLevelsInCategories(7) = sum(levelTimesDuration)/nData;

end

duration = duration_ax(duration_G);

levelTimesDuration = (weight*histogramData(index, duration_G)).*duration;

nData = sum(histogramData(index, duration_G)*duration');

if (nData > 0)

 averageLevelsInCategories(8) = sum(levelTimesDuration)/nData;

end

C.3.5
Axillary functions for reporting data

%%

%%

%

% Write the classification to file

%

%%

%%

function writeResultsToFile(fid, ...

 PROC_FILE, ...

 segment, ...

 delay, ...

 downlinkSystemDelay, ...

 activityFactorDoubleTalk, ...

 activityFactorSingleTalk, ...

 C_dt, ...

 C_st, ...

 L_dt, ...

 L_st)

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorDoubleTalk, ...

 C_dt(1), C_dt(2), C_dt(3), C_dt(4), ...

 C_dt(5), C_dt(6), C_dt(7), C_dt(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; DT level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, ...

 L_dt(1), L_dt(2), L_dt(3), L_dt(4), L_dt(5), L_dt(6), L_dt(7), L_dt(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST activity %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f; %1.3f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, activityFactorSingleTalk, ...

 C_st(1), C_st(2), C_st(3), C_st(4), ...

 C_st(5), C_st(6), C_st(7), C_st(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; delay %d; DL delay %d; ST level diff; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f; %1.1f;', ...

 PROC_FILE, segment, delay, downlinkSystemDelay, ...

 L_st(1), L_st(2), L_st(3), L_st(4), L_st(5), L_st(6), L_st(7), L_st(8));

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

%%

%%

%

% Write the signal levels to file

%

%%

%%

function writeSpeechLevelsToFile(PROC_FILE, segment, fid, ...

 activeSpeechLevelProcessed, ...

 activeSpeechLevelNearend, ...

 activeSpeechLevelDownlink, ...

 longTermLevelProcessed, ...

 longTermLevelNearend, ...

 longTermLevelDownlink, ...

 activityFactorProcessed, ...

 activityFactorNearend, ...

 activityFactorDownlink)

str = sprintf('%s; segm. %d; Processed signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelProcessed, ...

 longTermLevelProcessed, activityFactorProcessed);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Near end signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelNearend, ...

 longTermLevelNearend, activityFactorNearend);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

str = sprintf('%s; segm. %d; Downlink signal; active speech level [dBovl]; %3.1f; RMS level [dBovl]; %3.1f; speech activity; %1.3f', ...

 PROC_FILE, segment, activeSpeechLevelDownlink, ...

 longTermLevelDownlink, activityFactorDownlink);

disp(str);

if (fid > -1)

 fprintf(fid, [str, '\n']);

end;

-------------------------------------END OF MODIFIED CLAUSE--------------------------------
�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark appropriate boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Office® 2003 applications. Prefered format is ISO standard yyyy-MM-dd.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1402827700.doc

[image: image1.emf]Level

difference

[dB]

Duration [ms]

4

-4

-15

25

25

150

150

A1

A2

C B D

E F G

_1402827703.doc

 SHAPE * MERGEFORMAT

[image: image1]

Level difference

Level difference�[dB]

Duration [ms]

4

-4

-15

25

25

150

150

A1

A2

C

B

D

E

F

F

E

D

B

C

A2

A1

150

150

25

25

-15

-4

4

Duration [ms]

Level difference�[dB]

G

