(3GPP SA4-EVS SWG Ad-hoc Meeting #7)/TSG-SA4#70 meeting
Tdoc S4-121008
(11-12 Aug) /13th – 17th Aug, 2012, Chicago, USA

Source:
Fraunhofer IIS

Title:
Trace File Support for the EVS JBM network simulator
Document for:
Discussion and Approval
Agenda Item:
8
Overview

This contribution is provided to the EVS SWG to propose a trace file format for the EVS network simulator for JBM tests. It is also a cross-check report, an alternative implementation, and an implementation of the trace file support.
Discussion

The source already provided a contribution that addresses the need for a trace file [1], written by the EVS candidate decoders in case of JBM operation. Input contribution [2] extends the proposal by providing source code for an astrip value conversion tool, as well as details on the trace format that needs to be implemented by the proponents. The additional input contribution [3] provides a tool for measurement of objective JBM performance, i.e. the percentage of jitter-induced concealment operations (JICOs) as well as the plotting of a delay CDF. Both are needed to check fulfilment of the JBM design constraint, which requires conformance to the MTSI specification TS 26.114 [4].

Network Simulator Trace File

When [1] was written, the source thought it might be sufficient to only have the decoder trace files and the delay-and-error profiles. Later it became evident that additional info, that can not be written by the decoder, and is not available from the delay-and-error profiles is needed, and the most logical place where this information could be generated is the network simulator. Other solutions would have implied a second network simulator functionality in the objective evaluation tool, which still would have required additional info in the network simulation if e.g. random offsets are applied.
Therefore an additional trace format is proposed that is written by the network simulator. The format is a simple CSV file, with semi-colons as separators. Each line contains the entries for one transmitted input speech frame.

frameId;rtpSeqNo;rtpTs;rcvTime;size
The values are defined as follows:

	
	Unit
	Description

	frameId
	1
	Counter for the frames, starting from 0. Increases with each G.192 frame, also NO_DATA frames.

	rtpSeqNo
	1
	RTP sequence number of the RTP packet the speech frame is transported in.

	rtpTs
	ms
	RTP time stamp of the RTP packet the speech frame is transported in.

	rcvTime
	ms
	Absolute reception time of the RTP packet that corresponds to the speech frame. -1 if the packet was dropped by the network simulator.

	size
	bytes
	Size of the speech frame in bytes

Lines that start with an # are ignored by the objective performance evaluation tool and are allowed to be written by the network simulator.
The processing flow-chart for the network simulator with trace file support is depicted in Figure 1.

[image: image1.emf]CuT

Encoder

Network

simulator

CuT

Decoder

Decoder

JBM trace

file

NetworkSim

JBM trace

file

pcm pcm g192

rtp+

g192

csv

csv

Figure 1: Processing and associated trace files for JBM simulations
Network Simulator
The source considered it essential to also provide a tool implementing a proposed functionality. Although a proposal for a network simulator already exists, the source decided to implement the functionality into a newly written tool, which is compatible with [5] and also addresses the concerns of [1]. In addition, some features that will be needed have been added. The source wants to emphasize that it does not insist on the usage of this network simulator, but rather sees it as additional choice for the EVS SWG and as a cross-check of the existing network simulator, if it is extended with the additional features needed. The source code, written in C++, is attached in Annex A; a pre-compiled binary is attached for convenience.
The differences to [5] can be summarized as follows:

· support for variable offsets of the delay and error profiles

· support for operation longer than the profile, i.e. the delay and error profile is looped

· fixed timescale of 1000 for RTP, i.e. ms granularity, to remove need for decoder command line parameter

· DTX handling was simplified

· RTP timestamp increased for each speech frame, as in reality done by a payload format, as a compromise the sequence number is not increased, in contrast to what has been proposed in [1]

· Trace file support for checking the objective requirements
Summary and Proposal

This proposal introduced an alternative network simulator that is sufficiently similar to the previously available network simulator [5] and has no functional differences except a different handling of timestamps, to address the concerns raised in [1]. It adds support for a trace file, which is needed for the evaluation of objective JBM performance, as outlined in [3].

The source proposes to adopt the trace file format for objective evaluation. Furthermore, the source proposes to either adapt the existing network simulator [5] with this functionality or to adopt the network simulator that is provided as part of this contribution.

References:

[1] AHEVS-159 – Processing functions for Jitter Buffer Management
[2] S4-12XXXX – Trace file support for the EVS Network Simulator for JBM
[3] S4-12XXXX – Objective Performance Evaluation for JBM
[4] ETSI TS26.114 - MTSI

[5] S4-120595 – Network Simulator for EVS

Appendix A – networksimulator_g192.cpp:

/*---*
 * Network simulator tool for JBM tests, V1.0 *
 * -- *
 * (C) 2012 Fraunhofer IIS. All rights reserved. Provided by Fraunhofer IIS *
 * for exclusive use of the network simulation for the CuT codecs for JBM *
 * tests in the 3GPP SA WG4 EVS codec standardization. *
 * Any other use is not permitted. *
 * *
 * Fraunhofer IIS makes no representation nor warranty in regard to *
 * the accuracy, completeness or sufficiency of The Software, nor *
 * shall Fraunhofer IIS be held liable for any damages whatsoever *
 * relating to use of said Software. *
 ---/
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#ifndef WIN32
#include <netinet/in.h>
#include <stdint.h>
#else
#include <Winsock2.h>
typedef unsigned short uint16_t;
typedef signed short int16_t;
typedef unsigned int uint32_t;
typedef signed int int32_t;
typedef unsigned __int64 uint64_t;
typedef signed __int64 int64_t;
#endif
using namespace std;
#define MAX_FRAME_SIZE 10000
static const uint16_t G192_SYNC_GOOD_FRAME = 0x6B21;
struct SFrame {
 int16_t data[MAX_FRAME_SIZE];
 uint16_t size;
};
struct SRtpPacket {
 uint32_t arrivalTime;
 uint16_t seqNo;
 uint32_t timeStamp;
 SFrame *frame;
};
bool compareRtpPackets(const SRtpPacket &a, const SRtpPacket &b)
{
 return a.arrivalTime < b.arrivalTime;
}
// Reads a delay and error profile and store in memory.
bool readDelayAndErrorProfile(const char *fileName, vector<unsigned int> &profile) {
 FILE *profileFile = fopen(fileName, "r");
 if(!profileFile) {
 fprintf(stderr, "Failed to open delay and error profile: %s\n", fileName);
 return false;
 }
 while(true) {
 int delay;
 int result = fscanf(profileFile, "%d", &delay);
 if(result == EOF)
 break;
 else if(result != 1) {
 fprintf(stderr, "Failed to parse delay and error profile: %s\n", fileName);
 return false;
 }
 profile.push_back(delay);
 }
 if(profile.empty()) {
 fprintf(stderr, "Failed to parse delay and error profile - file empty: %s\n", fileName);
 return false;
 }
 fclose(profileFile);
 return true;
}
// Reads a G.192 input file and store in memory.
bool readInputBitreamFile(const char *fileName, vector<SFrame> &frames) {
 FILE *inputFile = fopen(fileName, "rb");
 if(!inputFile) {
 fprintf(stderr, "Failed to open G.192 input bitstream: %s\n", fileName);
 return false;
 }
 while(true) {
 SFrame frame;
 /* read G192 sync word */
 unsigned short syncWord;
 if(fread(&syncWord, sizeof(unsigned short), 1, inputFile) == 0)
 break; /* EOF */
 if(syncWord != G192_SYNC_GOOD_FRAME) {
 fprintf(stderr, "Invalid input bitstream: wrong G192 sync word\n");
 return false;
 }
 /* read frame size */
 if(fread(&frame.size, sizeof(unsigned short), 1, inputFile) != 1) {
 fprintf(stderr, "Premature end of input file: cannot read frame size\n");
 return false;
 }
 if(frame.size > MAX_FRAME_SIZE) {
 fprintf(stderr, "Frame is too large: size=%d\n", frame.size);
 return false;
 }
 /* read data */
 if(fread(frame.data, sizeof(short), frame.size, inputFile) != frame.size) {
 fprintf(stderr, "Premature end of input file: cannot read frame\n");
 return false;
 }
 /* store frame */
 frames.push_back(frame);
 }
 fclose(inputFile);
 return true;
}
// Writes the RTP/G.192 output file.
bool writeRtpPackets(const vector<SRtpPacket> &rtpPackets, const char *outputFileName) {
 FILE *outputFile = fopen(outputFileName, "wb");
 if(!outputFile) {
 fprintf(stderr, "Failed to open RTP/G.192 output bitstream: %s\n", outputFileName);
 return false;
 }
 for(unsigned int iPacket = 0; iPacket != rtpPackets.size(); ++iPacket) {
 const SRtpPacket &packet = rtpPackets[iPacket];
 // G192 packet header: RTP packet size and arrival time
 uint32_t packetSize = 12 + packet.frame->size + 2;
 fwrite(&packetSize, sizeof(uint32_t), 1, outputFile);
 fwrite(&packet.arrivalTime, sizeof(uint32_t), 1, outputFile);
 // RTP header: version, padding, extension, marker, payload type
 uint16_t rtpHeaderField1 = 22;
 fwrite(&rtpHeaderField1, sizeof(uint16_t), 1, outputFile);
 // RTP header: sequence number
 uint16_t seqNoN = htons(packet.seqNo);
 fwrite(&seqNoN, sizeof(uint16_t), 1, outputFile);
 // RTP header: timestamp
 uint32_t timeStampN = htonl(packet.timeStamp);
 fwrite(&timeStampN, sizeof(uint32_t), 1, outputFile);
 // RTP header: SSRC
 uint32_t ssrc = 0;
 fwrite(&ssrc, sizeof(uint32_t), 1, outputFile);
 // RTP Payload: G.192 sync word, frame size and frame
 fwrite(&G192_SYNC_GOOD_FRAME, sizeof(uint16_t), 1, outputFile);
 uint16_t g192frameSize = packet.frame->size;
 fwrite(&g192frameSize, sizeof(uint16_t), 1, outputFile);
 fwrite(packet.frame->data, sizeof(uint16_t), packet.frame->size, outputFile);
 }
 if(fclose(outputFile) != 0) {
 fprintf(stderr, "Failed to write output file: %s\n", outputFileName);
 return false;
 }
 return true;
}
int main(int argc, char **argv) {
 // parse command line parameters
 if(argc < 6 || argc > 7) {
 fprintf(stderr, "Usage: %s profile input output trace nFramesPerPacket [offset]\n", argv[0]);
 fprintf(stderr, " profile: delay and error profile\n");
 fprintf(stderr, " input: G.192 input bitstream file name\n");
 fprintf(stderr, " output: RTP/G.192 output file name\n");
 fprintf(stderr, " trace: trace output file name\n");
 fprintf(stderr, " nFramesPerPacket: number of frames per packet (1, 2)\n");
 fprintf(stderr, " offset: shift/offset in delay and error profile in frames (default: 0)\n");
 return -1;
 }
 const char *profileFileName = argv[1];
 const char *inputFileName = argv[2];
 const char *outputFileName = argv[3];
 const char *traceFileName = argv[4];
 unsigned int nFramesPerPacket = atoi(argv[5]);
 unsigned int offset = argc == 7 ? atoi(argv[6]) : 0;
 if(nFramesPerPacket < 1U || nFramesPerPacket > 2U) {
 fprintf(stderr, "Unexpected number of frames per packet: %d\n", nFramesPerPacket);
 return -1;
 }
 // reads the delay and error profile and store in memory
 vector<unsigned int> profile;
 if(!readDelayAndErrorProfile(profileFileName, profile))
 return -1;
 // read the G.192 input file and store in memory
 vector<SFrame> frames;
 if(!readInputBitreamFile(inputFileName, frames))
 return -1;
 // create trace file
 FILE *traceFile = fopen(traceFileName, "w");
 if(!traceFile) {
 fprintf(stderr, "Failed to open trace file: %s\n", traceFileName);
 return -1;
 }
 fprintf(traceFile, "# frameId;rtpSeqNo;rtpTs;rcvTime;size\n");
 // create RTP packets and store in memory
 vector<SRtpPacket> rtpPackets;
 uint16_t rtpSeqNo = 0;
 uint32_t rtpTsOffset = 0;
 unsigned int nActiveFramesInCurrentPacket = 0;
 unsigned int iDelay = 0;
 for(unsigned int iFrame = 0; iFrame != frames.size(); ++iFrame) {
 // do not pack empty frames (no-data)
 if(frames[iFrame].size != 0U) {
 SRtpPacket packet;
 packet.seqNo = rtpSeqNo;
 packet.timeStamp = rtpTsOffset + iFrame * 20;
 packet.frame = &frames[iFrame];
 ++nActiveFramesInCurrentPacket;
 // assign delay value
 int delay = profile[(iDelay + offset) % profile.size()];
 // store packet if not lost on network
 if(delay >= 0) {
 packet.arrivalTime = (iFrame / nFramesPerPacket) * nFramesPerPacket * 20 + delay;
 rtpPackets.push_back(packet);
 }
 else
 packet.arrivalTime = -1;
 fprintf(traceFile, "%u;%u;%u;%d;%u\n",
 iFrame, packet.seqNo, packet.timeStamp, (int32_t)(packet.arrivalTime), packet.frame->size / 8);
 }
 // check if next RTP packet should be created and next delay value from profile be used
 if((iFrame + 1) % nFramesPerPacket == 0) {
 // increment RTP sequence number only if RTP packet is actually sent
 if(nActiveFramesInCurrentPacket != 0U)
 ++rtpSeqNo;
 nActiveFramesInCurrentPacket = 0;
 ++iDelay;
 }
 }
 // close trace file
 if(fclose(traceFile) != 0) {
 fprintf(stderr, "Failed to write trace file: %s\n", traceFileName);
 return false;
 }
 // sort RTP packets using the arrival time
 stable_sort(rtpPackets.begin(), rtpPackets.end(), &compareRtpPackets);
 // write the RTP/G.192 output file
 if(!writeRtpPackets(rtpPackets, outputFileName))
 return -1;
 return 0;
}

Page: 1/6

Page: 2/6

_1405715121.vsd
CuT Encoder

Network simulator

