TSG-SA4#68 meeting
Tdoc S4 (12)0347
16-20 April, 2012, Kyoto, Japan

Source:
ORANGE SA, HEAD acoustics GmbH
Title:
About normalization procedure for P.835 subjective tests
Document for:
Discussion, Approval
Agenda Item:
8
1 Introduction
This contribution highlights some issues with the current normalization procedure described in sections 2.5 and 2.6 of document “S4-120274 - EATS-3 Common subjective testing framework for validation of P.835 test predictors (v. 1.0.0)”. A solution is provided as well as the update of relevant sections in S4-120274.
2 Post-processing of uplink recordings
Section 2.6 of S4-120274 currently states: “The uplink recordings of processed speech materials shall be normalized for use in the subjective test. For the test conditions, the normalization gain is the gain necessary to obtain a recorded active speech level of -26dBov with a clean speech condition (no noise applied in the room). This normalization gain shall then be applied to all other test conditions for the same device (noise suppressed speech signals). In this way, the effect of level changes introduced by terminals in the presence of noise shall be part of the quality measurement.”
Many studies proved that listening level influences the overall perceived quality. In case of modern telecommunications, especially mobile communications, listeners always have the ability to adjust their listening level to their optimum comfort listening level. This is not the case in listening tests (such as P.835) where listeners use handsets/headsets at a nominal predefined level (e.g. for wideband samples, 79 dB SPL in case of monaural presentation).

The current normalization procedure of uplink recordings in document S4-120274 consists in normalizing the uplink recordings of processed speech materials based on the normalization factor obtained from clean speech. This means that each device will get a unique normalization factor whatever the noise condition. Analysis of wideband uplink recordings from Orange yields differences up to 5 dB in the level of the presented speech when using this normalization procedure. As a result, subjective judgment of P.835 test listeners will be biased whereas in real life conditions this bias would not exist because listeners would have for sure adjusted the listening level.
A straightforward solution is to normalize speech material from each test condition to -26dBov. This would be more realistic as when a user gets a too low (or too high) level from his device loudspeaker he will naturally modify it in order to get a comfortable listening level. This normalization must be performed on active speech only which means a VAD has to be determined first from clean speech material. It should also be noted that the chosen ITU-T P.56 implementation (activlev.m [1]) includes a high pass pre-filter in order to decrease the impact of bass-heavy noises in the speech level determination. The MatLab code of activlev.m is available in Appendix.
Another motivation for the proposed normalization comes from EG 202 396-3 model itself. In this model the normalization procedure is not fully described, however, in practice all needed signals (clean, noisy and processed) are equalized to a predefined level. In other words the implementation of the algorithm does not consider level differences as a degradation. So, if the normalization procedure as proposed in S4-120274 is used, all P.835 subjective tests would introduce a quality dimension which is not taken into account by the EG 202 396-3 model.
Proposal 1:

Section 2.6 of S4-120274 may be reworded as: “The uplink recordings of processed speech materials should be normalized for use in the subjective test to obtain a recorded active speech level of -26dBov. The level equalization is performed only for those sections where speech plus noise are present. Sections with only noise present are excluded from the level equalization process. A high pass pre-filter should be applied before level determination in order to decrease the impact of bass-heavy noises.”
3 Post-processing of reference conditions
3.1 Inconsistency between the proposed processing test plan and the provided batch
There is an inconsistency between the processing test plan described in Figure 2 and 3 of document S4-120274 and the associated batch processing described in section 8.3 of the same document. Reference conditions i06, i07, i08 and i09 (see Table 1 from S4-120274) must be re-normalized to -26dBov after spectral subtraction algorithm as documented in section 5 of the batch. As a result, Figure 2 (wideband case) and Figure 3 (narrowband case) of document S4-120274 should be modified as follows in Fig. 1 and 2 below.
[image: image1.png]
Figure 1. Update for Fig. 2 of document S4-120274 (wideband case).
[image: image2.png]
Figure 2. Update for Fig. 3 of document S4-120274 (narrowband case).

We also noticed a difference between the A-weighting law (in wideband case) provided with the batch processing (see section 8.3) and the one we used. The one provided with the batch seems to include an additional low pass filter (after 4kHz) and differs from the usual A-weighting law as shown in Fig. 3.
[image: image3.emf]10

0

10

1

10

2

10

3

10

4

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

Gain (dB)

A-weighting law

provided batch

Orange SA

Figure 3. A-weighting law, in wideband case, from the provided batch (black) and used by Orange SA (red).

3.2 Proposal to avoid clipping of reference conditions
Document Tdoc S4-120310 “Draft report of the SQ SWG telco on Acoustic Aspects (15 March 2012, Host : Qualcomm Incorporated)” underlined the following issue: “On the WB reference conditions, an issue was mentioned by Qualcomm Incorporated about too much "low frequency noise" audible with the new filter (50 Hz up to 7.8 KHz bandwidth), which caused the inconvenience that the level normalization had to be done at -36 dB ovl instead of -26 dB ovl (to avoid "clipping"). Qualcomm Incorporated would prefer to use the filtering starting at 150 Hz and normalize the level at -26 dB ovl. Qualcomm Incorporated commented that a 150Hz high pass filter better aligns with the current 3GPP TS 26.131 WB SND mask requirements,”
Orange confirms this issue for reference conditions when applying the current normalization described in section 2.5 of S4-120274 document. More precisely, clipping occurs for i02 and i12 reference conditions (see Table 1 from S4-120274) as shown in Fig. 4 below. To create these references, the clean speech is first degraded using the provided spectral subtraction algorithm, then the degraded speech is re-normalized to -26dBov and finally the noise is added at the desired SNR. In case of 0dB SNR, as in conditions i02 and i12, we get clipping as shown in Fig. 4. This issue arises when the power of the noise becomes comparable to the power of the speech. For higher SNR values, there is no problem.
[image: image4.png]

Figure 4. Clipping in i02 reference condition (named B09_SNR0 in CoolEdit) using normalization described in section 2.5 from S4-120274.
To solve this clipping issue, the proposal is to re-normalize all the reference conditions to -26dBov, including noisy conditions. The update processing test plan for reference conditions is shown in Fig. 5 (wideband case) and Fig. 6 (narrowband case) below.
[image: image5.png]
Figure 5. Proposed normalization for wideband reference conditions.

[image: image6.png]
Figure 6. Proposed normalization for narrowband reference conditions.

Using this proposed normalization, all reference signals will be normalized to -26dBov after adding noise. As a consequence this clipping issue does not exist anymore as shown in Fig. 7.
[image: image7.png]
Figure 7. No clipping in i02 reference condition (named B09_SNR0 in CoolEdit) using the proposed normalization.

Furthermore, this proposal is consistent with the new normalization procedure of uplink recordings presented in section 2 of this document and will lead to a coherent P.835 subjective test, in line with EG 202 396-3 model.
Proposal 2:

Replacement of Figure 2 and Figure 3 of S4-120274 document by Fig. 5 and Fig. 6 respectively. Section 2.5 of S4-120274 may be reworded as: “For the reference conditions, the clean speech and noise signals shall be filtered with the LP35 and MSIN (for narrowband) and 78KBP (for wideband) filters available with a modified “filter” demo program from ITU-T G.191 (9) (available from ORANGE SA upon request). Appropriate resampling must be used prior to application of the filters. The necessary upsampling / downsampling are also performed through the use of ITU-T G.191 “filter” demo program. The clean speech is then processed with the spectral subtraction algorithm in Annex A at the appropriate settings and, prior to mixing, normalized to an active speech level of -26dBov. The mixing shall be performed with the appropriate ITU-T G.191 tool to obtain the SNRs described in Table 1. The SNR is defined as the ratio between active speech levels to A-weighted noise level. After noise addition, the noisy reference conditions should be normalized again to an active speech level of -26dBov. The level equalization is performed only for those sections where speech plus noise are present. Sections with only noise present are excluded from the level equalization process. A high pass pre-filter should be applied before level determination in order to decrease the impact of bass-heavy noises. An implementation of the processing for this level equalization, compliant with ITU-T P.56, is found in Appendix A. Appendix A also provides a batch script tool that can be used to generate the reference condition set and Annex B a block diagram of the necessary processing steps.”
4 Conclusion
Both proposals (1 and 2) are devoted to ensure to be more realistic and not introduce a bias in P.835 subjective tests. The mentioned issue of clipping of reference conditions will not exist anymore, even at very low SNRs.
References

[1]
VOICEBOX: Speech Processing Toolbox for MATLAB
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
Appendix: MatLab code of activlev.m
The following function is used with mode parameter equal to ‘hd’. This means a 200Hz high pass filter is applied to the signal before active speech level calculation.

function [lev,af,fso,vad]=activlev(sp,fs,mode)
%ACTIVLEV Measure active speech level as in ITU-T P.56 [LEV,AF,FSO]=(sp,FS,MODE)
%
%Usage: (1) lev=activlev(s,fs); % speech level in units of power
% (2) db=activlev(s,fs,'d'); % speech level in dB
% (3) s=activlev(s,fs,'n'); % normalize active level to 0 dB
%
%Inputs: sp is the speech signal (with better than 20dB SNR)
% FS is the sample frequency in Hz (see also FSO below)
% MODE is a combination of the following:
% r - raw omit input filters (default is 200 Hz to 5.5 kHz)
% 0 - no high pass filter (i.e. include DC)
% 4 - high pass filter at 40 Hz (but allows mains hum to pass)
% 1 - use cheybyshev 1 filter
% 2 - use chebyshev 2 filter (default)
% e - use elliptic filter
% h - omit low pass filter at 5.5 kHz
% d - give outputs in dB rather than power
% n - output a normalized speech signal as the first argument
% N - output a normalized filtered speech signal as the first argument
% l - give both active and long-term power levels
% a - include A-weighting filter
% i - include ITU-R-BS.468/ITU-T-J.16 weighting filter
%Outputs:
% If the "n" option is specified, a speech signal normalized to 0dB will be given as
% the first output followed by the other outputs.
% LEV gives the speech level in units of power (or dB if mode='d')
% if mode='l' is specified, LEV is a row vector with the "long term
% level" as its second element (this is just the mean power)
% AF is the activity factor (or duty cycle) in the range 0 to 1
% FSO is a column vector of intermediate information that allows
% you to process a speech signal in chunks. Thus:
%
% fso=fs; for i=1:inc:nsamp, [lev,fso]=activlev(sp(i:i+inc-1),fso,mode); end
%
% is equivalent to: lev=activlev(sp(1:nsamp),fs,mode)
%
% but is much slower. The two methods will not give identical results
% because they will use slightly different thresholds.
% VAD is a boolean vector the same length as sp that acts as an approximate voice activity detector
%For completeness we list here the contents of the FSO structure:
%
% ffs : sample frequency
% fmd : mode string
% nh : hangover time in samples
% ae : smoothing filter coefs
% bl : 200Hz HP filter numerator
% al : 200Hz HP filter denominator
% bh : 5.5kHz LP filter numerator
% ah : 5.5kHz LP filter denominator
% ze : smoothing filter state
% zl : 200Hz HP filter state
% zh : 5.5kHz LP filter state
% zx : hangover max filter state
% emax : maximum envelope exponent + 1
% ssq : signal sum of squares
% ns : number of signal samples
% ss : sum of speech samples (not actually used here)
% kc : cumulative occupancy counts
% aw : weighting filter denominator
% bw : weighting filter numerator
% zw : weighting filter state
% Copyright (C) Mike Brookes 2008-2011
% Version: $Id: activlev.m,v 1.14 2011/07/04 16:20:37 dmb Exp $
%
% VOICEBOX is a MATLAB toolbox for speech processing.
% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
%
%%%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You can obtain a copy of the GNU General Public License from
% http://www.gnu.org/copyleft/gpl.html or by writing to
% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.
%%%
persistent nbin thresh c25zp c15zp e5zp
if isempty(nbin)
 nbin=20; % 60 dB range at 3dB per bin
 thresh=15.9; % threshold in dB
 % High pass s-domain zeros and poles of filters with passband ripple<0.25dB, stopband<-50dB, w0=1
 % w0=fzero(@ch2,0.5); [c2z,c2p,k]=cheby2(5,50,w0,'high','s');
 % function v=ch2(w); [c2z,c2p,k]=cheby2(5,50,w,'high','s'); v= 20*log10(prod(abs(1i-c2z))/prod(abs(1i-c2p)))+0.25;
 c25zp=[0.37843443673309i 0.23388534441447i; -0.20640255179496+0.73942185906851i -0.54036889596392+0.45698784092898i];
 c25zp=[[0; -0.66793268833792] c25zp conj(c25zp)];
 % [c1z,c1p,c1k] = cheby1(5,0.25,1,'high','s');
 c15zp=[-0.659002835294875+1.195798636925079i -0.123261821596263+0.947463030958881i];
 c15zp=[zeros(1,5); -2.288586431066945 c15zp conj(c15zp)];
 % [ez,ep,ek] = ellip(5,0.25,50,1,'high','s')
 e5zp=[0.406667680649209i 0.613849362744881i; -0.538736390607201+1.130245082677107i -0.092723126159100+0.958193646330194i];
 e5zp=[[0; -1.964538608244084] e5zp conj(e5zp)];
 % w=linspace(0.2,2,100);
 % figure(1); plot(w,20*log10(abs(freqs(real(poly(c15zp(1,:))),real(poly(c15zp(2,:))),w)))); title('Chebyshev 1');
 % figure(2); plot(w,20*log10(abs(freqs(real(poly(c25zp(1,:))),real(poly(c25zp(2,:))),w)))); title('Chebyshev 2');
 % figure(3); plot(w,20*log10(abs(freqs(real(poly(e5zp(1,:))),real(poly(e5zp(2,:))),w)))); title('Elliptic');
end
if ~isstruct(fs) % no state vector given
 if nargin<3
 mode=' ';
 end
 fso.ffs=fs; % sample frequency
 if any(mode=='r') % included for backward compatibility
 mode=['0h' mode]; % abolish both filters
 elseif fs<14000
 mode=['h' mode]; % abolish lowpass filter at low sample rates
 end
 fso.fmd=mode; % save mode flags
 ti=1/fs;
 g=exp(-ti/0.03); % pole position for envelope filter
 fso.ae=[1 -2*g g^2]/(1-g)^2; % envelope filter coefficients (DC gain = 1)
 fso.ze=zeros(2,1);
 fso.nh=ceil(0.2/ti)+1; % hangover time in samples
 fso.zx=-Inf; % initial value for maxfilt()
 fso.emax=-Inf; % maximum exponent
 fso.ns=0;
 fso.ssq=0;
 fso.ss=0;
 fso.kc=zeros(nbin,1); % cumulative occupancy counts
 % s-plane zeros and poles of high pass 5'th order filter -0.25dB at w=1 and -50dB stopband
 if any(mode=='1')
 szp=c15zp; % Chebyshev 1
 elseif any(mode=='e')
 szp=e5zp; % Elliptic
 else
 szp=c25zp; % Chebyshev 2
 end
 if all(mode~='0')
 if any(mode=='4')
 fl=40; % 40 Hz cutoff
 else
 fl=200; % 200 Hz cutoff
 end
 zl=2./(1-szp*tan(fl*pi/fs))-1; % 200 Hz LF limit
 al=real(poly(zl(2,:))); % high pass filter
 bl=real(poly(zl(1,:)));
 sw=1-2*rem(0:5,2).';
 fso.bl=bl*(al*sw)/(bl*sw); % scale to give HF gain of 1
 fso.al=al;
 fso.zl=zeros(5,1); % LF filter state
 end
 if all(mode~='h')
 zh=2./(szp/tan(5500*pi/fs)-1)+1;
 ah=real(poly(zh(2,:)));
 bh=real(poly(zh(1,:)));
 fso.bh=bh*sum(ah)/sum(bh);
 fso.ah=ah;
 fso.zh=zeros(5,1);
 end
 if any(mode=='a')
 [fso.bw fso.aw]=stdspectrum(2,'z',fs);
 fso.zw=zeros(length(fso.aw)-1,1);
 elseif any(mode=='i')
 [fso.bw fso.aw]=stdspectrum(8,'z',fs);
 fso.zw=zeros(length(fso.aw)-1,1);
 end
else
 fso=fs; % use existing structure
end
md=fso.fmd;
ns=length(sp);
if ns % process this speech chunk
 % apply the input filters to the speech
 if all(md~='0')
 [sq,fso.zl]=filter(fso.bl,fso.al,sp(:),fso.zl); % highpass filter
 else
 sq=sp(:);
 end
 if all(md~='h')
 [sq,fso.zh]=filter(fso.bh,fso.ah,sq(:),fso.zh); % lowpass filter
 end
 if any(md=='a') || any(md=='i')
 [sq,fso.zw]=filter(fso.bw,fso.aw,sq(:),fso.zw); % weighting filter
 end
 fso.ns=fso.ns+ns; % count the number of speech samples
 fso.ss=fso.ss+sum(sq); % sum of speech samples
 fso.ssq=fso.ssq+sum(sq.*sq); % sum of squared speech samples
 [s,fso.ze]=filter(1,fso.ae,abs(sq(:)),fso.ze); % envelope filter
 [qf,qe]=log2(s.*s); % take efficient log2 function, 2^qe is upper limit of bin
 qe(qf==0)=-Inf; % fix zero values
 [qe,qk,fso.zx]=maxfilt(qe,1,fso.nh,1,fso.zx); % apply the 0.2 second hangover
 oemax=fso.emax;
 fso.emax=max(oemax,max(qe)+1);
 if fso.emax==-Inf
 fso.kc(1)=fso.kc(1)+ns;
 else
 qe=min(fso.emax-qe,nbin); % force in the range 1:nbin
 wqe=ones(length(qe),1);
 % below: could use kc=cumsum(accumarray(qe,wqe,nbin)) but unsure about backwards compatibility
 kc=cumsum(full(sparse(qe,wqe,wqe,nbin,1))); % cumulative occupancy counts
 esh=fso.emax-oemax; % amount to shift down previous bin counts
 if esh<nbin-1
 kc(esh+1:nbin-1)=kc(esh+1:nbin-1)+fso.kc(1:nbin-esh-1);
 kc(nbin)=kc(nbin)+sum(fso.kc(nbin-esh:nbin));
 else
 kc(nbin)=kc(nbin)+sum(fso.kc);
 end
 fso.kc=kc;
 end
end
if fso.ns % now calculate the output values
 if fso.ssq>0
 aj=10*log10(fso.ssq*(fso.kc).^(-1));
 % equivalent to cj=20*log10(sqrt(2).^(fso.emax-(1:nbin)-1));
 cj=10*log10(2)*(fso.emax-(1:nbin)-1); % lower limit of bin j in dB
 mj=aj'-cj-thresh;
 jj=find(mj*sign(mj(1))<=0); % Find threshold
 if isempty(jj)
 jj=length(mj)-1;
 jf=1;
 else
 jj=max(jj(1)-1,1); % integer part of j (>=1 in case mj(1)=0)
 jf=1/(1-mj(jj+1)/mj(jj)); % fractional part of j using linear interpolation
 end
 lev=aj(jj)+jf*(aj(jj+1)-aj(jj)); % active level in decibels
 lp=10.^(lev/10);
 if any(md=='d')
 lev=[lev 10*log10(fso.ssq/fso.ns)];
 else
 lev=[lp fso.ssq/fso.ns];
 end
 af=fso.ssq/(fso.ns*lp);
 else
 af=0;
 if all(md~='d')
 lev=[0 0];
 else
 lev=[-200 -200];
 end
 end
 if all(md~='l')
 lev=lev(1); % only output the first element of lev normally
 end
end
if nargout>3
 vad=maxfilt(s,1,fso.nh,1);
 vad=vad>(sqrt(lp)/10^(thresh/20));
end
if ~nargout
 levdb=10*log10(lp);
 clf;
 subplot(211);
 plot((1:ns)/fso.ffs,[sp s (qe<=jj)*sqrt(lp)]);
 xlabel('Time (s)');
 title(sprintf('Active Level = %.2g dB, Activity = %.0f%% (ITU-T P.56)',levdb,100*af));
 ylabel('Amplitude');
 legend('Signal','Smoothed envelope','Active Level','Location','SouthEast');
 subplot(212);
 plot(cj,repmat(levdb,nbin,1),'k:',cj,[aj(:) cj(:)+thresh cj(:)]);
 xlabel('Threshold (dB)');
 ylabel('Active Level (dB)');
 legend('Active Level','Speech Level',sprintf('Threshold+%.1f dB',thresh),'Threshold','Location','SouthEast');
elseif any(md=='n') || any(md=='N')
 fsx=fso;
 fso=af;
 af=lev;
 if any(md=='n')
 sq=sp;
 end
 if fsx.ns>0 && fsx.ssq>0
 lev=sq/sqrt(lp);
 else
 lev=sq;
 end
end
9 (14)

