Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting #64
S4-110401
11– 15, Apr, 2011
SanDiego, USA
Agenda item:
7
Source:
Huawei Technologies Co. Ltd.
Title:
MPD update in Live Service
Document for
Discussion and Approval
1 Introduction
Since SA4#59, there were a lot of discussions, online and offline, on timing of MPD update. Some input documents include S4-10589(Huawei), S4-100790(Apple) and S4-110124(Qualcom) etc., which helped to clarify some misunderstandings and obscurity. In this contribution, we first summarize the discussions, consensus reached, then further discuss the impact of attribute @minimumUpdatePeriod on live service and MPD update, and last propose to improve the live service in Release 10 specification.
Polling for MPD updates takes at a frequency indicated by @minumUpdatePeriodMPD. Note that in most circumstances, the value of @minumUpdatePeriodMPD is much smaller than the possible interval the media described in an MPD extends, since it is set taking the worst case into consideration. It is not efficient to describe the presentation as open-ended and let client to check MPD update by polling. It is proposed to signal duration of presentation that has been described up to the MPD.
2 Summary of the Previous Discussion
In this section, some key points drawn from previous discussion are summarized.
1. What triggers MPD (re)fetching for a client is media data described in current MPD is to be run out.
2. The attribute @minimumUpdatePeriod is only required if template is used(for the last Period) but not if playlist is used.

3. The server can make change to MPD and publish a new MPD instance at any time
The server promises for any MPD instance a client fetches, the client can use it for at least a period of @minimumUpdatePeriod without any MPD update. (The media described in the MPD is up to date for at least @minimumUpdatePeriod since it is fetched).

3 Discussion
1. When to re-fetch a new MPD?

The client does not need to fetch a new MPD instance once it is available. It fetches a new MPD instance when it is about to run out of media described in the MPD.

When a client is operating in live mode, the playback at client(consumption of the content) is at the same pace of the content generation but with a constant delay(at least equal to the value of @minBufferTime). In this case, the client re-fetches each MPD instance to keep pace with the live service. If operating in time-shift mode, the client may not need to re-fetch an MPD instance until it almost run out of the media described in the current MPD.
2. What does @minimumUpdatePeriod express and imply?

Since using template Period may be describes as an open-ended interval, clients do not know when the current Period ends or is the end of the presentation if it is the last Period. The client has to poll severs to check for any newly published MPD.
The high polling frequency imposes burden on both server and clients and results in unnecessary traffic in the network, in particular when there are large number of clients receiving the live service. That’s why we introduce @minimumUpdatePeriod, which limits the interval between fetches for MPD, as its name suggests.
In fact, it is incomplete to have just @minimumUpdatePeriod without a corresponding maximum value. Anyway the interval between two fetches for MPD(when the client stays tuned into live service) can not be arbitrarily large.
To ensure seamless transition between MPD updates and time shift operation, there must be some overlap in media data described in two consecutive MPD instances.
Note that a client can access the MPD at any time. The worst case happens when a client fetches an MPD just before a new one is published. If the next MPD fetch happens in the overlapping period, the client misses no MPD update. Otherwise, it does not. What implies is the minimum period of overlapped media in two consecutive MPD instances. The overlapping period is calculated from the publish time of the new MPD.
This overlapping period provides a time window for client to request MPD update. The system can take advantage of this time window to scatter requests from clients randomly within the time window to avoid surge of requests.

3. Other restriction on the value of @minimumUpdatePeriod

There is no need to update the MPD unless there are changes, whatever they are, a new period or representations are added, end of the presentation is known etc.
Though a large value for @minimumUpdatePeriod is preferred it can not be set to any value. As the minimum period of overlapped media in two consecutive MPD instances, the value of @minimumUpdatePeriod is determined by how long in advance the changes can be known and announced before it happens, or how long the delay is accepted. For sudden event, it can be very small, for example, the end time of a football game can only be known very near its end, say 30 seconds. For a client fetches an MPD at the start of the game, such a small value of @minimumUpdatePeriod means an unreasonably high polling frequency.
As explained above, the reason for the large amount of unnecessary polls is that the current period is described as an open-ended one and the value of @minimumUpdatePeriod is set to a small one based on the worst case since a client can access an MPD at any time.
If the client has knowledge how long the media described in the MPD is left from any playback time, the frequent polling can be avoided.

We use an example to illustrates this better, for an football game, the extra time is only announced one minute or seconds when close to the end of a stage, hence @minimumUpdatePeriod has to take a small value on the order of 1 minute or even smaller, but as we know the game lasts at least 90 mins. This leads to unnecessary high polling frequency for client unless it accesses the content from the last minutes! If it is signaled that media data described in the MPD is valid for 90 mins since its start, polling from clients is significantly reduced.
4. How to signal a live event in time?

There were proposals to signal live event in media segment, to signal live event in time while avoiding high polling frequency.

It may not be a good idea to mix event signaling with media data. First, the event is only associated with the live service, but not a part of media data, It is meaningful to client operating in live mode and is useful in a short time window when the event happens. A client in time-shift mode can ignore it when receive a media segment with the signaling, or it has to processed differently depending on working mode. Second, the signaling delay is restricted by the duration of a media segment. The coupling is not desired at all. And how about if the event is so sudden with time less than a media segment duration before it happens?
If we change the mind to publish MPD with certainty in media end time instead of letting client to detect the MPD update, the problem is simplified. The presentation extends to a time before which no change is expected and it is signaled in the MPD.

5. Storage of MPD

In DASH, the media data is delivered using HTTP based CDN infrastructure, it is likely that MPD is delivered in the same way. If the last media time of the presentation described in MPD is unknown, the question comes how long to keep the MPD in storage, in particular in caches of all levels in CDN? If MPD can not be cached at all, all the traffic of polling goes to the origin server.

To summarize, the contribution addresses the signalling of MPD update. It is proposed to avoid polling for MPD update. The last media time of presentation described by the MPD is signaled explicitly in the MPD. It tells at least to what time the presentation is expected to last known when the MPD is published. The last media time can be based on conservative estimation and is updated in consequent MPD instances if not known when the MPD is published. The MPD stops to be updated until the end time of the presentation is known, which is then signaled with @endPresentationDuration in the MPD. This eliminates uncertainty of MPD update for clients so that clients can request MPD update only when they are close to the signaled last media time. This signaled last media time can also serve the purpose of trouble-shooting as it identifies an MPD instance; @minimumUpdatePeriod is proposed to be set to the allowed signaling delay for any live event, It provides a time window for MPD update. The upper bond of the window is the last media time (in media timeline). A client requests MPD update at a random time within the time window, and requests from all clients are scattered in the time window, which avoids synchronous MPD update.
4 Proposal
We propose to indicate the last media time when template is used for the last Period.

1. To add an attribute to signal the last media time in UTC in the MPD, One possible way forward is to use MPD@PresentationTimeDescribed with semantic the media that has been described up to the MPD, and this attribute is allowed to be changed in each MPD.
2. At time at least @minimumUpdatePeriod before the last media time, an MPD is republished if there are any changes in MPD, e.g. extension of the current Period, announcement of new Period, mediaPrensentationDuration, new minimumUpdatePeriod etc.
3. For client operating in live mode, request for MPD update is issued randomly within time interval (LastMediaTime-minimumUpdatePeriod, LastMediaTime). LastMediaTime is signaled or derived from the MPD.
- 1/4 -

