Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 #62
S4-110046
Berlin, Germany, Jan 10-14, 2011
Agenda item:
7
Source:
Qualcomm Incorporated
Title:
QoE Metrics
Document for
Discussion and Proposal
1 Introduction
During SA4#60 and SA4#61, several use cases for Rel-10 DASH had been agreed and documented in the latest version 0.4 of “HTTP-based Streaming and Download Services - Use cases, requirements and working assumptions: Permanent Document” available in S4-AHI210.

This document specifically deals with the use cases in section 8 on QoE Reporting.
We provide background information on the work in MPEG on the matter of QoE Metrics, some relation of the MPEG work to the Use case 8 on QoE Reporting as well as a concrete proposal.
2 Background Information: QoE Metrics in MPEG DASH
2.1 Scope
The motivation for the work in MPEG DASH is as follows:

· Monitoring of user experience and HTTP performance is important to HTTP Streaming Service Providers in order to evaluate and improve the performance of their systems. It is therefore valuable to have consistency in the metrics reported by different devices.

· Actual reporting mechanisms (protocols etc.) may be service-specific (and therefore address user privacy in a service-specific way) but there is also value in standardized solutions to the reporting mechanisms themselves.
The use cases for the work additionally demonstrate that it is the quality of the service delivered to the end user and the performance of the overall system that must be monitored, and correlated, not just the performance of a single component (for example the DASH client).
A reference architecture for a DASH client is shown in Figure 1 together with 4 proposed Observation Points.

[image: image1.png]DASH segments =

DASH access
client

Media decoder

Decoded
Sample
Buffer

oP1

0P4

S

Figure 1 Reference Architecture for DASH Client with 4 Observation Points for Quality Metrics Determination.
At any Observation Point what is observed is essentially a bi-directional continuous-time flow of information. This information flow can be described at a number of levels of abstraction. For example, at the lowest level an information flow can be described as a timed flow of raw data bits. But it is often more convenient to talk in terms of higher level objects, for example a video frame or an HTTP request, i.e. a sampled version of the process or a sequence of events together with the time instance each event happens. This information flow may not necessarily represent what is finally reported, but is only an intermediate description to define the metrics that are to be reported.
The scope of work is therefore to define metrics which capture the information flows at the four identified Observation Points at an appropriate level of abstraction for reporting.
It is consider scoping the solution to this problem in the following way:
· first defining at a detailed level the information flow at each Observation Point.
· Then define the metrics using the different information flows, e.g. by identifying certain undesired events (non-continuous presentation, bit-rate starving, buffer underflow, etc.)

· consider how this information can be expressed at an appropriate level for reporting.
· Potentially address example solutions how, when and how often the information may be reported.
These metrics are not intended to record user behavior. It is assumed that the reported data is only exchanged within the scope of suitable privacy and security policies and procedures. Defining these policies and procedures is not in scope of the work.
2.2 Definition of information flows

2.2.1 Observation Point 1

The data flow at this observation point is considered to be expressed in terms of HTTP transactions, their mapping to TCP connections and some aspects of TCP performance. This is considered as the appropriate level of abstraction for the QoE metrics because:

· A lower level of abstraction (e.g. TCP segments, IP datagrams, Ethernet frames) introduces complexities, which are not relevant for DASH: the user of the information would have to aggregate reports into a higher abstraction level anyway. Furthermore, it cannot be expected that a DASH client has access to any such information.

· A higher level of abstraction would result in loss of information that is useful for analyzing the performance of a DASH-based service: for example observing purely at the HTTP layer would result in loss of information about whether and how requests were pipelined onto TCP connections, which would greatly complicate analysis of the session.

At the HTTP layer, the information flow consists of

· a sequence of transmitted HTTP requests, each defined by its transmission time and contents

· for each HTTP response, the reception time and contents of the response header and the reception time of each byte of the response body (note that the contents of the response body is fully defined by the contents of the request and response headers)
2.2.2 Observation Points 2 and 3

The information flow at Observation Points 2 and 3 consists of encoded media samples. Each encoded media sample is defined by:

· The media type
· The decoding time
· The presentation time

· The Representation from which the sample is taken from
· The delivery time at OP2 or OP3

Note that the sample is fully defined by the combination of the Representation, the presentation time and the media type (or track id).
2.2.3 Observation Point 4

The information flow at Observation Point 4 consists of decoded media samples. Each decoded media sample is defined by:

· The media type

· The presentation timestamp of the sample (media time)

· The actual presentation time of the sample (real time)

· The id of the Representation from which the sample is take (the highest dependency level if the sample was constructed from multiple Representations).

· Possibly the media type (or track id) in case multiplexed Representations are used.

2.3 Definition of metrics
2.3.1 Introduction
In this section specific metrics are considered, which capture, in a compressed form, the information flow at each Observation Point. Those are defined using a high level abstract syntax, which can be easily mapped to the concrete syntax of choice (XML etc.). Items in this abstract syntax have one of the usual primitive types (Integer, Real, Boolean, Enum, String) or one of three compound types:

· KVPs – an unordered sequence of (key, value) pairs, where the key always has string type and is unique within the sequence

· List – a ordered list of items

· Set – an unordered set of items

In addition, there are two kinds of timestamp that are needed, real time (wall-clock time) and media time.

2.3.2 Observation Point 1

For each TCP connection:

	Key
	Type
	Optionality
	Description

	dest
	String
	Mandatory
	IP Address of the destination

	tconnect
	Integer
	Mandatory
	Connect time in ms

For each HTTP request:

	Key
	Type
	Optionality
	Description

	url
	String
	Mandatory
	The URL requested

	range
	String
	Optional
	The contents of the HTTP Range header

	treq
	Real Time
	Mandatory
	The real time at which the request was sent

	tresp
	Real Time
	Mandatory
	The real time at which the first byte of the response was received

	respcode
	Integer
	Mandatory
	The HTTP Response code

	bwinterval
	Integer
	Optional
	The duration of the bandwidth trace intervals (ms)

	bwtrace
	List
	Optional
	Bandwidth trace

	
	bwentry
	KVPs
	Optional
	A single bandwidth measurement entry

	
	
	s
	Real Time
	Mandatory
	Measurement period start

	
	
	d
	Integer
	Mandatory
	Measurement period duration (ms)

	
	
	b
	List
	Mandatory
	List of integers counting the bytes received in each trace interval within the measurement period

Some means of associating each HTTP request with a TCP connection is needed.

The periods reported in bwentry should be those periods where the client was actively reading from the TCP connections (i.e. they should not include periods where the TCP connection is idle due to zero receive window).

2.3.3 Observation points 2 and 3

Encoded samples are typically stored in a media buffer to compensate jitter in the delivery variable bitrate coding, and composition offsets. Under-runs in the encoded sample buffer typically result in display problems. Suitable reporting at OP2 describes each event for which data is written in the encoded sample buffer.

	Key
	Type
	Optionality
	Description

	start
	Real Time
	Mandatory
	Timestamp of the action

	periodId
	Integer
	Optional
	The id of the period from which the bytes are taken

	repId
	Integer
	Mandatory
	The id of the representation from which the bytes are taken

	segindex
	Integer
	Mandatory
	The index of the representation from which the bytes are taken

	byteindex
	Integer
	Mandatory
	Index for first byte in the segment

	size
	Integer
	Mandatory
	Size if continuous bytes written for this action

	buffersize
	Integer
	Mandatory
	The number of bytes in the buffer after the new bytes were written

Additional specific reporting for OP3 is unnecessary given the buffersize entry above.

2.3.4 Observation point 4

Decoded samples are generally rendered in presentation time sequence, each at or close to its specified presentation time. A compact representation of the information flow at OP4 can thus be constructed from a list of time periods during which samples of a single representation were continuously delivered, such that each was presented at its specified presentation time to some specific level of accuracy (e.g. +/-10ms).

Such a sequence of periods of continuous delivery is started by a user action that requests playout to begin at a specified media time (this could be a “play”, “seek” or “resume” action) and continues until playout stops either due to a user action, the end of the content, or a permanent failure.

	Key
	Type
	Optionality
	Description

	start
	Real Time
	Mandatory
	Timestamp of the user action which triggered playout

	mstart
	Media Time
	Mandatory
	The presentation time at which playout was requested by the user action

	stopreason
	Enum
	Mandatory
	Reason for stopping: User Request, End of Content, Failure

	trace
	List
	Mandatory
	List of periods of continuous rendering of decoded samples

	
	traceentry
	KVPs
	
	Single entry in the list

	
	
	repid
	String
	Mandatory
	The id of the representation from which the samples were taken

	
	
	start
	Real Time
	Mandatory
	The time at which the first sample was rendered

	
	
	mstart
	Media Time
	Mandatory
	The presentation time of the first sample rendered

	
	
	Dur
	Integer
	Mandatory
	The duration of the continuously presented samples (which is the same in real time and media time)

The above captures a complete record of what the user saw from one user action to the next, assuming only that each sample that was rendered was correctly rendered. Some optimizations could be considered as follows:

· If the player skips a single sample, or renders that sample later than its presentation time by more than the specified accuracy level, then using the above format this would call for a new traceentry record. This could result in many records if there are many small deviations from the correct presentation times.

Instead, we could define a second accuracy level, where samples that are rendered late according to the most accurate definition, but not according to the less accurate definition are counted, without starting a new traceentry record. The same approach could be taken when there is an isolated skipped sample.

· The player may be such that it sometimes does render frames with errors. In this case the traceentry item could be augmented with an entry for the number of errored frames.

2.4 Concrete syntax

The above abstract syntax can easily be mapped to generally used concrete syntaxes, such as XML or JSON (our experience with both suggests that JSON has a substantial advantage in its simplicity and flexibility).

Coding of timestamps may be simplified by specifying all Real Times with respect to a single initial Real Time for the session. This avoids the need to include lengthy UTC time specifications in most of the records. Thus, all the Real Time entries above could be coded as integer offsets (in ms, say) and we require that the structures encapsulating the metrics defined above specific a base time for these.
3 Relevance for 3GPP Use Case

It is considered important that the solutions developed by MPEG and 3GPP for QoE Metrics and QoE Reporting are not conflicting and are aligned. Therefore, the decisions and requirements should be cross checked.
In a first scan, the following observations are made:

· There is no contraction between the first working assumptions in MPEG DASH and 3GPP general requirements in section 8.2.1 of S4-AHI210.

· The metric requirements and in section 8.2.2 may contradict to some extent with the assumptions in MPEG DASH. The main reason for this is that MPEG DASH defines more a logging process, where as 3GPP works under the assumption that the client derives metrics and reports those back to the QoE reporting server. We believe that the requirements should be reformulated such that based on the reports, the metrics in section 8.2.2 can defined.
· Furthermore, it may appropriate to define selected metrics in 3GPP based on a common logging process as defined by MPEG DASH. This avoids fragmentation and possibly duplicated implementation of different QoE reporting mechanisms.
4 Proposal

In particular we propose to

· Take into account the work of MPEG DASH on QoE Metrics in the 3GPP QoE Reporting use case. The background information in section 2 may be used as a starting point. At the same time, MPEG should be informed on the latest work of 3GPP on this subject as well as 3GPP should ask on continuous updates from MPEG on this matter.

· Adopt the DASH reference client, the observation points, and the logging process as defined in section 2 for the purpose of QoE Reporting and define any metrics based on these logs.

· Make 3GPP QoE reporting an instantiation of the MPEG DASH reporting.

- 1/7 -

