TSG-SA4#58 meeting
Tdoc S4 (10)0318
April 2010, Vancouver, Canada

Source:
Apple Inc.
Title:
On the time-stamps in the segment-index box for HTTP streaming (26.244, R9)
Document for:
Discussion

Agenda Item:
7

1 Introduction

There has been some discussion of the time-stamps in the segment index box. The following section contains a copy of the current definition, and then there is discussion of whether the definitions are correct and adequate. The timing-related texts in (2) are highlighted, for convenience.

2 Current Status

The Segment Index Box ('sidx') provides a compact index of the movie fragments and other segment index boxes in a segment. One track (normally a track in which not every sample is a random access point, such as video) is selected as a reference track. At least one movie fragment is documented by this box, and the decode time of the first sample in that first movie fragment of at least the reference track is supplied. The decode times of the first samples of other tracks may also be supplied, and the documentation of other movie fragment boxes or subsequent ‘hierarchical’ segment indexes also supplied.

The reference type defines whether the reference is to a movie fragment box or segment index box; the first reference shall be to a movie fragment box. The offset gives the distance, in bytes, from the first byte of the enclosing segment index box to the first byte of the referenced box.

Segment Index boxes ‘inherit’ a decoding time from their first movie fragment, and ‘inherit’ whether they contain a random access point if any of the references contain a random access point.

The decode time is documented for all tracks by the first segment index box after a movie box ‘moov’ should be 0. The decode times documented by subsequent segment indexes shall be the same decode times as would be calculated by accumulating the samples between the previous segment index and the segment index in question, for each track documented.
The container for 'sidx' box is the file directly, and it should be placed directly before the first 'moof' that it references.

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {

unsigned int(32) reference_track_ID;

unsigned int(16) track_count;

unsigned int(16) reference_count;

for (i=1; i<= track_count; i++)

{

unsigned int(32)
track_ID;

if (version==0)

{

unsigned int(32)
decode_time;

} else

{

unsigned int(64)
decode_time;

}

}

for(i=1; i <= reference_count; i++)

{

bit (1)

reference_type;

unsigned int(31)
reference_offset;

unsigned int(32)
reference_delta_time;

bit(1)

contains_rap;

unsigned int(31)
RAP_delta_time;

}
}

reference_track_id provides the track_ID for the used in the following information

track_count: the number of tracks indexed in the following loop; track_count must be 1 or greater;

reference_count: the number of elements indexed by second loop; reference_count must be 1 or greater;

track_ID: the ID of a track in the identified first movie fragment identified by this index; exactly one track_ID in this loop must be equal to the reference_track_id;

decode_time: The computed decode time for the first sample in the track identified by track_ID in the movie fragment identified by the first item in the reference loop;

reference_type: when set to 0 indicates that the reference is to a movie fragment (‘moof’) box; when set to 1 indicates that the reference is to a segment index (‘sidx’) box; the first item in the loop must set this bit to 0 (‘moof’ reference);

reference_offset: the distance in bytes from the first byte of the containing segment index box, to the first byte of the referenced box;

reference_delta_time: when the reference is to a movie fragment, when added to the decode_time for the track with ID reference_track_id this provides the decode time of the first sample of the track fragment for the track with ID reference_track_id; when the reference is to a segment index, this provides the same information for the first movie fragment referenced by that segment index;

contains_RAP: when the reference is to a movie fragment, then this bit may be 1 if the track fragment within that movie fragment for the track with ID reference_track_id contains at least one random access point, otherwise this bit is set to 0; when the reference is to a segment index, then this bit shall be set to 1 only if any of the references in that segment index have this bit set to 1, and 0 otherwise;

RAP_delta_time: the decoding time difference between the first random access point and the first sample identified by the reference, in the track with ID reference_track_id; only relevant if contains_RAP is 1, and reserved with the value 0 if contains_RAP is 0.

3 Discussion

3.1 Minor Points

There are some textual issues; the extra ‘is’ and some ‘should’s need to be ‘must’s, probably. The most obvious is the ‘should immediately precede’ – it’s not completely clear that the first loop is about the immediately following fragment.

Another is that clarifying that all timestamps are in the timescale of the tracks they apply to (this is nowhere stated).

3.2 Timestamps – Decode or Composition (display)?

It’s worth asking what these times are doing for the protocol and client. This box was the result of much design and re-design, up to the last minute, and is serving to meet several expressed needs. I am not sure that the following list is exhaustive; before fiddling with the specification, we should probably mutually agree on the functions the box is meeting.

Part of the problem is that this box mixes ‘local’ information (about the immediately succeeding fragment) that is important for some clients for operational setup, with ‘remote’ information (e.g. the locating of other indexes or fragments further away within the same segment, and the timing of switchable random access points).

1) The reference array provides a ‘map’ of where (some) other Movie Fragments (or groups of contiguous Movie Fragments, if not all fragments are referenced) in this Segment fall in the timeline. This map can be flat or hierarchical. This might enable the client to answer the question ‘which (group of) Movie Fragment(s) do I need if I want to be at a given time?’. However, there is no requirement to reference every Movie Fragment and so this process might find Movie Fragments before the one containing the desired time. The pointer may be to another segment index, of course, giving more ‘local’ detail for that group of movie fragments. If every Fragment is documented in the segment index then the duration of every fragment except the last is effectively provided (difference in start times). If not all Fragments are documented then the segment index effectively documents groups of Fragments and again implicitly provides the lengths of all groups except the last.
2) Equally, the map can answer the question “when exactly do I need a particular Movie Fragment to ensure smooth playout?”

3) The RAP times provide the ability to switch between representations. Given the time of the RAP in the destination stream, it’s possible to optimize the decoding of the departure stream to only present up to that time, and then switch.

4) The reference track decode-time enables the client, if it so desires, to ‘place’ this segment on the representation time-line, so that, if it is building the time-line by ‘scatter-gather’ (e.g. as the user random accesses around) it can slowly build up a ‘normal’ fragmented 3GP file (logically).

5) The array of track decode times, or the reference track decode time combined with the track-fragment adjustment box (tfad) enable the alignment of the time-lines of the tracks. (We don’t actually say that the source needs to supply one or the other or both, but maybe we should; but if they don’t, the clients won’t be in sync and they will soon fix it!).

One complication in moving to presentation times that caused by re-ordering. The easy time to document is the time of the first sample in a fragment. However, when re-ordering happens that could easily not be the earliest presentation time in the fragment. Searching for the earliest presentation time is not something we really want to do ‘at the transport layer’ (in theory this box is inserted in transport, though I think in practice many will integrate it with encoding). The decode time of the first sample probably provides a reasonable lower bound for the presentation time of the fragment. It’s unlikely that all or many the samples in a fragment have large composition offsets, and as long as one of the samples close to the beginning has a small offset, then its (small) decode delta from the beginning plus its (small) composition offset won’t be seriously misleading.

Another is the possibility that we can use presentation times, and say that the client has the composition offsets for at least the immediately succeeding fragment, and so it can back-calculate the decode times (by subtracting out the composition offset). Unfortunately, finding the composition offset for a sample means unpacking the fragment tables, which would typically be done again in a different layer (the segment index, and setting up timelines, by transport; the fragment tables, by the decoder).

Question (2) seems to be very much a decode order and timing question, as well.

The times in the movie fragment random access box (mfra) document random access point presentation times, also:

time is 32 or 64 bits integer that indicates the presentation time of the random access sample in units defined in the ‘mdhd’ of the associated track.
Given these considerations, we need to decide which times should be decode time, and which presentation.

1) I think that the RAP times (RAP_delta_time) should be presentation time; the client wants to display until the time it gets the first display from the destination track; decode order and timing does not help here. We should fix this.

2) I think the times for the immediate segment (decode_time, the first set of times) are there to ‘place’ media on the timeline (if desired). Since 3GP files use decode time as the base timeline, from which composition is derived, decode time is best here.

3) This leaves the reference_delta_time. As written, it’s possible to copy the time from a referenced (later) segment index box directly into this field. This is desirable. It might be that the client would prefer to know the composition (display) time. But we are (a) operating a ‘coarse’ look-ahead here (looking for something that precedes the time we want to be at, and then maybe refining based on what we find there) and (b) such selection of a segment is better done using the RAP_time (find a RAP that most closely precedes the time you want to start, and go to that segment, and see if there is indexing information there that gets you closer).

In summary, I think that leaving most of these times as decode times works, and is best. We should fix the RAP_time to be composition (display) time, and leave the others. I also think it’s best that times re effectively ‘copied’ from a ‘remote’ segment index into the one that points at it (i.e. that there is not a semantic difference between the times in the first loop and the reference_delta_times in the second). But discussion is welcome and needed.

3.3 Durations

Another question concerns the reference_delta_times. Would it be beneficial if they talked about the duration of the referenced data – i.e. the difference between decode time of the first sample referenced by this sidx entry and the first sample reference by the next entry in the loop? This could be done by using the time that the next indexed fragment starts, after the one pointed to by the byte_offset, for example. That effectively gives the duration of the indexed fragment or fragments, as the beginning of the first one is documented in the first loop; each entry would then tell you the end of this fragment or fragments and the beginning of the next.

But we have that effect today; the first entry in the reference array gives, effectively, an end-time for everything up to that byte_offset. It remains to document the end time of the fragment of group of fragments referenced by the last entry. We could introduce a byte_offset value of ‘unknown’ (0xFFFFFFFF) to document the hypothetical ‘next thing’ if this is important. So then, after the last ‘true’ pointer, one could have a pointer with byte_offset ‘unknown’, and a reference_delta_time of the ‘next data’, which effectively documents the duration of the last entry.
There is an interesting alternative, changing the semantics of this field from a time to a duration (rather like the way the sample tables now represent decode times as deltas). If we introduce the following two rules:

a) a segment index box documents the times of a contiguous set of sub-segments (a sub-segment is one or more movie fragments);

b) the first segment index box documents the entire segment (either directly by referring to sub-segments, or indirectly by referring to segment indexes which in turn document parts of the segment in more detail);

Then we can change the reference_delta_time to subsegment_duration. We use the following definitions, working in decode time (see below):

· The duration of a track in a movie fragment is the sum of the decode durations of its samples;
· the duration of a sub-segment is the sum of the fragment durations;

· and, as said above, the duration of a segment index is the sum of the durations of the sub-segments it references in its second loop.

The effectively documents the start times and durations of everything referenced, and indeed, the top-level segment index duration should closely follow the declared segment duration in the MPD. Anyone needing a start time can sum durations, and add them to the decode_time in the first loop (for any segment index box, as it happens).
Note that this is decode-time durations that are summed. I know that the MPD talks about presentation time, but it’s rather hard both to come up with a definition of, and to compute, a presentation duration for a portion of the timeline not bounded by random-access points – there may be samples from the previous portion of the timeline that display after the earliest display time in the portion in question, so it’s not clear what to choose as the beginning and ending times. Happily, for portions of the time-line that are bounded by RAPs, there is usually only an insignificant difference (at most) between the summed decode durations, and the presentation duration. We can note that the summed duration of the top-level segment index may be slightly different from the MPD duration reported for the segment, for this reason.
3.4 Point to fragments and indexes?

The current structure allows the ‘pointers’ to be to either a fragment, or to another index. Given that all indexes must immediately precede a fragment, we could (?) simplify here and say that all pointers are to indexes. That would mean that if you want to point at a fragment, you have to put an index in front of it.

However, it also means you cannot simply add an index to the front of a segment, and index some or all of its fragments.

It is entirely unclear to me why the first reference in the second loop is required to be to a moof; I suggest we remove this text: “the first item in the loop must set this bit to 0 (‘moof’ reference);”. This disallows hierarchical indexing, and I don’t think we need to.
There is a separate issue, that the byte_offset would be better expressed as from the beginning of the next box after the segment index box; this enables a segment index to be added to the beginning of a segment by simply calculating the offsets in that segment, and then adding the index (the size of the added segment index box itself does not come into the calculation).
3.5 Summary

1. Fix the textual issue (delete ‘is’).

2. Clarify that the first loop documents the next movie fragment in file order. This allows free space, another segment index, other extensions, and so on.

3. Clarify that all times are expressed in the timescales of the tracks they apply to.
4. Clarify that the second loop is about other fragments and other index boxes.

5. Clarify that the RAP_delta_time is composition/presentation time, i.e. includes its composition offset.

6. Change reference_delta_time to subsegment_duration, and document what subsegment duration is.
7. Delete “the first item in the loop must set this bit to 0 (‘moof’ reference);”
IVS

Page: 1/5

Page: 5/5

