3GPP TSG SA4 #51
Tdoc S4-080663
Shenzhen, P.R.O.C, November 3-7, 2008

Source:
Telefon AB LM Ericsson
Title:
MTSI Corruption Duration Analysis
Document for:
Discussion and Agreement
Agenda Item:
8
1 Introduction
The corruption duration calculation in PSS and MBMS are based on frame type information or on extra information sent to the client by the server. However, due to stringent delay requirements video coded for the MTSI service will only seldom use full I-frames, and instead use a mix of I- and P-macroblocks inside a P-frame structure. There is also no server which can send session-specific extra information to the client.

This makes it more complicated to define the corruption duration metric, and makes it especially difficult to specify a low-complex calculation method. Two low-complex methods have been discussed:

Macroblock variant: Corruption duration can be estimated by accumulating the amount of received I-macroblocks since the last corrupted frame. When the accumulated amount reaches RefreshThreshold the corruption shall be considered as ended. The optional configuration parameter RefreshThreshold can be set to define the level of refresh needed. For instance, if the QCIF video image contains 99 macroblocks, and the RefreshThreshold is set to 150%, then 149 I-macroblocks must be received before the corruption is considered as ended.

Static variant: The corruption duration is considered as ended after N milliseconds with consecutively received frames. The optional configuration parameter N can be set by the network to define the average characteristics of MTSI codecs in the network.
The question is if these two methods have different merits and accuracy, or if it is enough with only the less-complex alternative 2?
2 Simulation Setup
A quick video simulation study has been made, and the video files have been analysed to see how the two alternatives compare to each other and to the true length of the corruption duration.

All tests are done with MPEG4, QCIF, 25 Hz, 200 kbps. Three different eight-second contents were used:

· Talking head with fixed background
· Soccer game, lots of movement
· Head and shoulder with moving background

[image: image1.png] [image: image2.png] [image: image3.png]
Eight different macroblock refresh strategies were used:

· Row-by-row, average 1 intra-macroblock per frame
· Row-by-row, average 3 intra-macroblocks per frame
· Row-by-row, average 5 intra-macroblocks per frame
· Motion dependent, average 1 intra-macroblock per frame
· Motion dependent, average 3 intra-macroblocks per frame
· Motion dependent, average 5 intra-macroblocks per frame
· Round-robin, average 3 intra-macroblocks per frame
Two different error types were used:

· Slice error (22 macroblocks in the middle of the frame)

· Frame error (entire frame lost)
Thus in total 3*7*2=42 test cases were simulated.

3 Simulation Methodology
The true corruption duration for a simulated video sequence was calculated by setting the color of all lost pixels (i.e. either the whole image or the lost slice) to black. Each updated I-macroblock is then given the color white to visualise the update, but the color is then changed to grey before the frame is used for motion prediction. This means that the video image will go from black to grey over time when new I-macroblocks arrive.

Errors (black areas) can also propagate spatially into earlier updated (grey) areas due to the motion prediction, and shades between black and gray may occur due to half pixel interpolation in motion prediction. Only pure gray and white pixels have been counted as correct pixels in the analysis.
Figure 1 below shows an example of the update visualisation. Image 1a is just before the frame loss, with 100% correct pixels, while image 1b is the first frame after the loss, in this case with three updated I-macroblocks, plus some grey areas due to correct motion update from previous frames. The number in the parenthesis shows the ratio of correctly updated pixels in the image. The other images are snapshots at different time positions in the video.
[image: image4.png][image: image5.png][image: image6.png][image: image7.png]

1a:100%

 1b:5%

 1c:10%

 1d:22%

[image: image8.png][image: image9.png][image: image10.png][image: image11.png]

1e:37%

 1f:80%

 1g:90%

 1h:98%
Figure 1
Video update visualisation example (pixel update level shown under each image)
Figure 2 below shows the corresponding video image for the visualisation in Figure 1. The artifacts can be seen rather clearly in the beginning, but when about 80% or more of the image has been updated it is difficult to see any major degradation. Although this is only an example it illustrates the fact that even for a full complex calculation of the corruption duration metric it is still only an estimate of the actual disturbance length as seen by the viewer.

[image: image12.png][image: image13.png][image: image14.png][image: image15.png]

2a:100%

 2b:5%

 2c:10%

 2d:22%
[image: image16.png][image: image17.png][image: image18.png][image: image19.png]

2e:37%

 2f:80%

 2g:90%

 2h:98%

Figure 2
Video content example (pixel update level shown under each image)
4 Simulation Results

The simulations have been evaluated at six different image update levels: 80%, 90%, 95%, 98% and 100%. For each of these update levels the time until the pixels of each video had been updated to the specified level were calculated, and defined as the the true corruption duration. A corresponding estimate of the corruption duration were calculated for the two algorithms to get the time error (i.e. the difference between the true corruption duration and the estimated value). A corresponding relative error was also calculated.

For instance, if the true corruption duration was 50 frames, and the algorithm estimate was 60 frames, then the time error was 10 frames and the relative error was 20%. The absolute values of the errors (i.e. with the sign removed) were then averaged over all video files for each update level, giving the average absolute time error and the average absolute relative error for the two algorithms.

The configuration parameters (N for the Static algorithm and the RefreshThreshold for the Macroblock algorithm) were set to the values which minimized the averaged absolute time error. The same N or RefreshThreshold value were thus used for all video files within a certain update level, but different values were used for the different update levels.

Although this kind of "optimised configuration parameter setting" is only possible in a simulation and not in a realistic implementation, it is the best possible setting for each algorithm and is useful for a performance comparison between the algorithms. Note that in some cases, due to the relatively short video clips, the video was actually never restored to the specified update level, and these files have thus been excluded in the calculations.
Figure 3 below shows the performance of the two algorithms when compared to the true corruption duration for each video. The left diagram shows the absolute error, while the right diagram shows the relative error.
[image: image20.emf]0

5

10

15

20

25

30

35

40

7580859095100105

Picture update level [%]

Average absolute error [frames]

StaticMacroblock

[image: image21.emf]0

20

40

60

80

100

120

140

160

180

200

7580859095100105

Picture update level [%]

Average relative error [%]

StaticMacroblock

Figure 3
Absolute error (left) and relative error (right)
When looking at the average absolute errors, both algorithms have close performance at the higher update levels, while the Macroblock algorithm have smaller errors at lower update levels. However, the performance for the average relative errors show a significant difference, with the Static algorithm having much larger errors than the Macroblock algorithm for almost all update levels. Note that the data for the 100% update level is less reliable since almost half of the videos did not succeed to reach the 100% update level.
This indicates that the Macroblock variant can more closely follow shorter corruption durations, while still having good accuracy even for the longer ones. This is not totally surprising since the Static algorithm cannot use any information about the update rate of the picture, while the Macroblock algorithm can use this additional information to enhance the predictions. Although not shown in this limited simulation it is expected that the performance difference would be even larger if different codecs and video image sizes had been used in the simulation.
5 Proposal

Due to the different performance for the two algorithms we propose that both algorithms shall be included in the metric definition. This allows lower-end clients to use the simple Static algorithm with very low complexity, while more capable clients can benefit from the slightly more advanced, but still low-complex, Macroblock algorithm.

