TSG-SA4#42 meeting
Tdoc S4 (07)0205
29 January – 2 February, 2007, Sevilla, Spain

Source:

RealNetworks, Streamezzo, Nokia
Title:

UE Interaction with DIMS
Document for:

Discussion

Agenda Item:

13.7
Purpose

There are several areas where DIMS is dependent on the rich media engine’s interaction with the UE that have not yet been addressed in DIMS nor in OMA RME. The present document outlines potential change requests that may become necessary to add to the forthcoming DIMS specification (26.142-110) to ensure UE interactivity with DIMS scenes.
The changes presented below are illustrative and presented for discussion purposes. Final text and content of subsequent official CRs (if any) will depend on the maturation of the work split agreement between OMA RME and 3GPP-SA4.
Proposed Changes
The following changes are based on the current draft of the DIMS specification. Portions unaffected by these potential CRs have been omitted for clarity.

<BEGIN CHANGE>
3 Definitions, symbols and abbreviations
3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

[ed: these are all supplied by the editor and not yet reviewed or agreed]

	 Rich Media Engine
	The executable which receives and interprets DIMS scenes, and handles interaction with the device

	DIMS Applet
	A DIMS scene providing application functionality (e.g. mobile television selection and viewing, email client, UE shell/desktop, etc.)

	Scene:
	A complete scene, suitable for starting a session or completely replacing the current scene in a session. (Functions very similarly to an I-frame in video.)

	Scene Update
	A set of differences that make changes to the scene in the current session. (Similar to a P-frame in video).

<END CHANGE>
<BEGIN CHANGE>
4 Media-type Definition
4.1 Introduction

The DIMS media type allows spatial and temporal layout of the multimedia scene. This scene can consist of any combination of still pictures, videos, audio channels and animated graphics. It includes an update mechanism that allows for partial updates of the existing scene, as well as updating the presentation with a completely new scene and stream tune-in functionality.
4.2 Media Type Components

The DIMS media type consists of:

· Base scene description from SVG Tiny 1.2 [ref]

· Scene description extensions

· Scene commands from LASeR [ref]
4.3 Scene description

4.3.1 Base Scene Description

SVG Tiny 1.2 provides the basic DIMS scene functionality; layout, inclusion and referencing of objects, synchronization of object timelines and a rendering model.

The full syntax and semantics of SVG Tiny 1.2 shall be supported for DIMS scene functionality.
4.3.2 Scene Description Extensions

4.3.2.1 Introduction

Extensions defined here are designed so that
a) when the same functionality is present in profiles of SVG other than SVG Tiny 1.2, then the extension is compatible with that or a restricted version of that.
b) A terminal implementing both this specification and SVG (any version) can use a common implementation of the DOM tree, scene graph, rendering model etc. without having variant handling that depends on whether the scene was built using DIMS or SVG.
c) No extensions are required to be present in all documents; content authored to the SVG Tiny 1.2 specification may be used as the initial scene of a stream designed to this specification.
[Editors note: SA4 agrees to work towards aligning these extensions with W3C SVG specification]
The following extensions are defined here. The namespace called ‘dims:’ here is associated with the URN <TBD>.
4.3.2.2 Rectangular clipping of a graphical object

The lsr:rectClip mechanism provides pixel aligned clipping defined as a transformable rectangle

The lsr:rectClip element SHALL be supported. The definition of lsr:rectClip is defined in subclause 6.8.36.2 of [3].

<<ed note: Note: There is ongoing discussion with MPEG on modifying the syntax (for e.g. changing size attribute to x, y. width, height attributes).>>

4.3.2.3 Fullscreen video

The fullscreen video feature consists of a new attribute lsr:fullscreen on the SVG video element.

The lsr:fullscreen element SHALL be supported. The lsr:fullscreen attribute is defined in subclause 6.8.40.2 of [3].
4.3.2.4 Fullscreen svg

The fullscreen svg feature consists of an attribute ‘fullscreen’ to the <svg> element to hint that the scene should be rendered on the full screen. With the attribute set to true the DIMS UE should negotiate the rendering area with its parent UE and get as large part of the screen as possible for the DIMS canvas.
<<ed Note: namespace of ‘fullscreen’ attribute on <svg> is TBD.>> <<clean up>>
4.3.2.5 Attributes clipBegin and clipEnd
Attribute clipBegin defined in sub clause 7.5.1 of [SMIL2] and clipEnd defined in sub clause 7.5.1 of [SMIL2] SHALL be supported on the following elements: video, audio, animation, and “updateThing” element as described in section 0.
4.3.2.6 Update Streams

This specification defines a new element ‘updateThing’ to link secondary streams of updates to a scene. All SMIL timing attributes defined in [W3C SVGT12] section 16.2.7 are defined for this element, except the "fill" attribute. This element has an implicit “simple duration” of 'indefinite'. The synchronization attributes defined in SVG Tiny 1.2 section 12.6 can be used with this element.

<<ed: this element may be a proper subset of LASeR updateSource, and if so, a common name and namespace should be used>>
Attribute definitions:
xlink:href = "<iri>"

An IRI reference to an update document or a DIMS stream/file. this attribute specifies the location of the stream of updates. In the absence of this attribute, this element does not have any effect. In the absence of this attribute, this element does not have any effect. This attribute is not animatable and not inheritable.
smil:clipBegin = “npt”
This attribute is defined in subclause 7.5.1 of [SMIL2]. The value represents a normal play time. The value of clipBegin is taken into account when the media element is activated. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect. This attribute is not animatable and not inheritable.

smil:clipEnd = “npt”
This attribute is defined in subclause 7.5.1 of [SMIL2]. The value represents a normal play time. The play time of some streams cannot be controlled, and under these circumstances, this attribute has no effect. This attribute is not animatable and not inheritable.

<<ed: lsr:syncRef – TBD from ISO/IEC 14496-20/AMD1>>

4.3.2.7 Screen Orientation and Subsequent Softkey Re-alignment
Two events and two feature strings are defined that make it possible for scenes to adapt to the screen layout. The events are:

· ScreenOrientationPortrait

· ScreenOrientationLandscape

They are in the <<ed: TBD>> namespace. Whenever the terminal detects a change of orientation, angle, or screen size, one of these two events is dispatched. A portrait event is dispatched if the screen is taller than it is wide, and a landscape event is dispatched if the screen is wider than it is tall. It is the responsibility of the system below the scene to orient the screen buffer to user; the DIMS scene author does not do this.
Most mobile UE have two or more softkeys adjacent to the screen. Rotation of the screen changes their position relative to the DIMS scene and must be reported to the rich media engine. For this reason each time the screen is rotated, the new position of every softkey on the UE is sent with the ScreenOrientationPortrait or ScreenOrientationLandscape event.
The position of each softkey represents the center of each key in relation to the edge of the screen. Figure Y below shows a UE with two softkeys. In this example, in portrait mode, the primary softkey (which returns event ‘Softkey_0’ when pressed) is on the right and the secondary softkey (which returns event ‘Softkey_1’ when pressed) is on the right. In the example below, when in portrait mode, Softkey_1 is at position (112,200) and Softkey_0 at (38,200)
Rotating the phone 90 degrees to the right triggers the UE to go into landscape mode (either automatically or via user selection). The softkeys are now on the left edge with Softkey_1 on the top. The UE sends ScreenOrientationLandscape to the Rich Media Engine which includes the position of each softkey on the device. The positions for the softkeys returned are now (0,112) for Softkey_0 and (0,38) for Softkey_1. Similarly, rotating -90 degrees (or +270 degrees) puts us in landscape again but with the keys on the right side of the device. This again results in ScreenOrientationLandscape being sent from the UE, but this time the positions returned for the softkeys are now (200,38) for Softkey_0 and (200,112) for Softkey_1
[image: image1.png]200

Softkey_1

ScreenOrientationPortrait Details=

{

0 38 112 150

Height = 200
Width = 150
SoftkeyOrientation= [

('Softkey_0', 112, 200),
('Softkey_1', 38, 200)]

Softkey_ 1 0 200

| "
L

—150

Softkey_0 screencrientationLandscape Detils=
{
Height = 150
Width = 200
SoftkeyOrientation= [
(Softkey_0', 0, 112),
(Softkey 1 0. 38)]

Softkey_0

0_ |
38

112
150

ScreenOrientationLandscape.Details= Softkey_1
{
Height = 150
Width = 200
SoftkeyOrientation= [
('Softkey_0', 200, 38),
('Softkey_1', 200, 112)]

While this example shows a UE with only two softkeys, DIMS supports an unlimited number of softkeys. Since key positions are reported as absolute coordinates by the UE for each and every softkey, any number of softkeys can be accommodated as shown in Figure Z
[image: image2.png]0 500

0 I !
== =
=
== =
Softkey 9 | =
0,68) == =

4001
Softkey_1 Softkey_0

(0,400) (400,500)

Because of the unlimited number of softkeys, the SoftkeyOrientation are all sent at once along with the portrait or landscape events. This allows DIMS scene authors to cope with the new key locations in a single repaint.

The angle between the long (primary) axis of the screen and vertical is reported in degrees in screenAngle, to the best of the terminal’s capability. This angle is measured clockwise from vertical (see diagram) and would normally be close to 0 or 180 in portrait events, and close to 90 or 270 in landscape events.

[image: image3.wmf]

scree

n

 pr

im

ar

y

a

x

i

s

v

er

t

i

ca

l

a

Figure 5‑1: Screen Orientation

These events have the following interface.

The screen orientation events SHALL be supported in DIMS. If the UE has an orientation sensor, or other physical adaptation that causes the available screen drawing area to change (e.g. a partial cover), events shall be generated whenever the terminal detects a change in any of the parameters to these events. These events may be used in the following circumstances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.

2) Timed Elements that can be defined to begin or end based on screen orientation events.

The following feature strings must also be supported, in order to allow the use of the switch element:

· urn:<tbd>:orientLandscape for typical ‘landscape’ orientation

· urn:<tbd>:orientPortrait for typical ‘portrait’ orientation

If the most recent event generated was a portrait event, then the portrait feature tests as true; if the most recent event was a landscape event, the landscape feature tests as true. At any time, exactly one of these features must test as true.

An example use of these feature strings is as follows:

<switch>

<g requiredExtensions=” urn:<tbd>:orientPortrait”>

… layout for portrait …

</g>

<g requiredExtensions=” urn:<tbd>:orientLandscape”>

… layout for landscape…

</g>
</switch>
<END CHANGE>

:<BEGIN CHANGE>

5 Interaction, Scripting and State Management

5.1 Local interaction

The supported local events and their management in DIMS are built upon the DOM Level 3 events model.

They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) general XML events (user events, timing, key, and pointer events) and system events and notifications, (battery level, signal strength, mail indicators)
5.1.1 UE Event Handling
Figure X below illustrates event handling in DIMS.
[image: image4.jpg]DIMS Scene
<INPUT

Softkey_Left="Play’ SVGT Engine
Events
Translated
Rich Media to DOML3 LUDOM
Engine e.g.‘Play’

Non DOM L3 Input Events
e.g. ‘Softkey_0’

DOM Level 3 Input Event
e.g. ‘Enter’, ‘3’, ‘Back’

Operating System

Device

Figure X: System Event Handling in DIMS
5.1.2 UE Event Reception

5.1.2.1 DOM Level 3 Event Reception

All DOM Level 3 events supported by μDOM shall be scriptable/actionable events in DIMS scenes . The DOM Level 3 events and their description can be obtained from the SVG Tiny 1.2 draft specification [ref].
All UE system events that have a corresponding DOM Level 3 Events are reported directly to SVG-T/ μDOM by the UE where they become actionable/scriptable events in SVG-T and hence, available to DIMS scenes for action.
5.1.2.2 Non-DOM Level 3 Events
It is anticipated that the Rich Media Engine and associated DIMS applets will run on devices such as mobile phones, personal computers, set top boxes, PDAs and other internetworking consumer electronics. With these devices come UE events from keyboards, joysticks and mice and dedicated hardware keys. While many of these events can be reported as DOM Level 3 events, several critical events are, to date, unsupported.
Events that are not returned directly from the UE to the uDOM/SVG-T subsystem shall be trapped and processed by the Rich Media Engine. Events that can be translated back to DOM Level 3 events shall be re
 This is illustrated in Figure X by the reception of ‘Softkey_0’ by the Rich Media Engine
Table of Additional UE events supported by the Rich Media Engine
The following additional events shall be supported by the Rich Media Engine:
	Key Identifier
	Description
	Default Translation to DOM Level 3 Event

	‘Softkey_0’
	The primary softkey. Located on the left or right softkey in the Mobile Phone profile
	N/A

	‘Softkey_1’
	The secondary softkey. Located on the left or right softkey in the Mobile Phone profile
	N/A

	‘Softkey_3’
	Optional softkey. The middle softkey in the Mobile Phone profile
	N/A

	‘Softkey_n’
	Additional optional softkeys 4 and beyond where n indicates the number.
	N/A

	Joystick_Left
	Rocker/5-way switch support. Required for Mobile Phone profile.
	‘Left’

	Joystick_Right
	Rocker/5-way switch support. Required for Mobile Phone profile.
	‘Right’

	Joystick_Up
	Rocker/5-way switch support. Required for Mobile Phone profile.
	‘Up’

	Joystick_Down
	Rocker/5-way switch support. Required for Mobile Phone profile.
	‘Down’

	BatteryLevel
	Indicates the Battery has n % charge remaining, where n is passed in the Event Detail
	N/A

	SignalLevel
	Indicates the quality of the UE signal strength as % n where n is passed in the Event Detail
	N/A

	Fullscreen
	Indicates the UE wishes the application (rich media engine) to take focus of entire available screen.

the new height and width of the screen are sent In the event Details, followed by a subsequent ScreenOrientation portrait landscape event
	N/A

	ScreenOrientationPortrait
	Indicates the UE has determined the screen is taller than it is wide. The new screen height and width are sent in the event details along with the SoftkeyOrientation enumeration
	N/A

	ScreenOrientationLandscape
	Indicates the UE has determined the screen is wider than it is tall. The new screen height and width are sent in the event details along with the SoftkeyOrientation enumeration
	N/A

Events for streaming:

[ed: Note: The streaming events will be completed based on the W3C Streaming Events specification if it is released in the DIMS timeframe.]

5.2 Remote interaction

Client-server communication is possible in the DIMS system using three different mechanisms:

· The client can open a suitable URL. The set of valid URL forms is not specified in DIMS, and includes protocols such as HTTP, RTSP or MailTo. [ed: this could usefully be re-phrased]
· By establishing a socket connection between the client and the server using the Connection API in the uDOM [ref]

· By using the HTTP specific uDOM methods getURL or postURL [ref]

[ed: Maybe add examples of when and how to use the different methods.]
5.3 Scripting

SVG Tiny 1.2 contains a uDOM interface that provides linkage to a script engine and adds the possibility to modify the DOM representation of the scene from scripts.

ECMAScript mobile profile (MP) [xx] can be used in conjunction with the script and handler elements and SVG µDOM API (Appendix A of [w3c svgt 1.2]) in order to provide more powerful DOM manipulation, and interaction.

UEs supporting the DIMS media type shall support ECMAScript mobile profile (MP) [xx].

5.4 State and Preferences Management

[ed: there are requirements to manage user state and preferences on a persistent basis]

Laser commands “Save”, “restore”, and “clean” as defined in [ref] shall be supported.
<END CHANGE>

:<BEGIN CHANGE>

6 Resource usage and device capabilities

6.1 Capability Exchange (UAProf etc.)

6.2 Profile

A profile indicator in a stream indicates which features (also known as tools) are required to be supported on a terminal.

Profile indications are 8-bit integers. Only one profile is defined by this specification; other profiles may be defined in future or by other bodies [ed: how?].

Mobile Profile : Profile Indicator Value 10. This version of this specification also requires support of the referenced specifications below [ed: we should take the precise definitions of versions etc. of these to match other sub-systems in release 7].

· Graphics and spatial layout from SVG Tiny 1.2

· The DIMS scene extensions [ed: if any]

· ECMAScript [ed: some profile or version of it]

· The Laser commands [insert the precise required commands, so that the profile remains stable even if we later add more commands after the first specification is published]

· …
A Rich Media Engine supporting the Mobile Profile shall report events to the DOM for system and key events common to mobile terminals:

· Dialpad keys 0-9, * and #

· Joystick/rocker navigation events: Left, Right, Up, Down, Select/Enter

· Softkeys:Softkey_1 (Primary) and Softkey_2 (Secondary) are mandatory. If a Mobile Phone has a middle softkey the Rich Media Engine shall support Softkey_3. Additional softkeys not having an explicit DOM 3 event should be enumerated as specified in section
· Device Status: Battery and Signal strength indicators shall be supported.
6.3 Level

Level indicators provide a way to measure the degree of support required in a terminal to render a given scene or scene stream satisfactorily. Levels are measured on the following axes:

1 Bitrate of the scene stream, including the initial scene, embedded graphics, audio, video etc. (That is, the minimum bit-rate channel over which the scene could be delivered in a real-time fashion).

2 The size of the DOM tree. This is measured by the number of nodes in the tree; the number of attributes, or the size of their values, is not calculated.

3 Required frame rate for animations.

4 The maximum number of simultaneously playing video streams.

5 The maximum number of simultaneously playing audio streams.

6 The maximum number of animations that run concurrently.

7 The minimum screen space needed to display the scene.

The following levels are defined:

	Level
	Rate
	DOM nodes
	Frame rate
	#Video
	#Audio
	#Anims
	Screen size

	10
	256 kbit/s
	300
	15
	1
	1
	10
	160x120

	20
	2 mbit/s
	1200
	30
	1
	1
	30
	320x240

[ed: clearly these are placeholder values; as the spec. advances, we may need to tinker with the axes, and surely with the points along them. On memory usage, the ideal would be to have reference software for DIMS and measure the memory use of the DOM tree by that software, and set limits for that.]
<END CHANGE>

:<BEGIN CHANGE>

7 Open issues and considerations

7.1 Interaction outside the multimedia sub-system
7.1.1 Input modalities
7.1.2 Ed. Note: Delete this section. It is now covered in 6.1
7.1.3 Interface with existing applications and sub-systems

Ed. Note: This section will address interfacing with device apps such as email editing, sending/receiving SMS, etc. for DIMS applets wishing to skin native UE applications.
7.1.4 Notifications

Ed. Note: Put battery and signal strength in section 6, other native UE notificatons? Messaging handled as app events…needs to draw on UAProf
7.2 Extensibility considerations

Ed. Note: This is for invoking other executables and APIs on the UE from DIMS scenes. (e.g. launching a game, the camera, etc.
<END CHANGE>

e.g.‘Play’

<INPUT

Softkey_0=’Play’

μDOM

Translated

 Events

Non DOM L3 Input Events

e.g. ‘Softkey_0’

DOM Level 3 Input Events

e.g. ‘Enter’, ‘3’, ‘Back’

Device

DIMS Scene

Operating System

SVGT Engine

DIMS Runtime

Engine

3GPP

_1105635054.doc

vertical

screen primary axis

a

