3GPP TSG SA4#42 meeting
 Tdoc S4-07150
28th January to-2nd of February, 2007

Sevilla, Spain

Source:
Streamezzo
Title:
Conditional element for DIMS
Document for:
Approval
Agenda:

13.7
1. Introduction

This document complements the contribution S4-060630 (included in section 2, 3 and 4) and answers the following questions:

· Is conditional usable in XML?
The conditional element definition in LASeR was clarified as follows, in order to make clear its usage in XML form:

The children of a conditional element are not accessible through DOM or LASeR Commands.

As a result, there is nothing barring the use of the conditional element in DIMS.
2. Relation between conditional and other means
The Conditional element is a container for a set of dynamic updates. Conditional can be applied to any dynamic update mechanism. Upon reception of an ‘activate’ event, the updates contained in the Conditional element are executed as if they had been received by streaming from a server with a presentation time equal to the current scene time. The Conditional element also has a begin attribute similar to that of other timed elements. This begin attribute can be used to specify the triggering of the Conditional element by other events, possibly with delays, as well as simple time values.

Comparison with the SVG handler:

The conditional element is a SVG handler with two extensions. For conformance purposes we followed the advice of the SVG WG to use a different element in the LASeR namespace instead of extending the SVG handler element. Indeed, we needed two extensions:

· triggering the activation of the handler element on a time or event

· using updates inside the handler instead of ECMA Script code which is a limitation of the handler.

The conditional element cannot be replaced by script which has different semantics. It cannot be replaced by handler which has similar basic semantics, but different content and missing attributes. The Conditional element is part of the scene description.
The conditional element allows implementations to keep not-yet-needed data compressed until the end-user interaction. This feature is meaningful with any compression format (binary, gzip, deflate). The content of the Conditional is not decoded, processed or executed when parsing the DOM tree, which would be the case for an update. A collection of Conditionals can be used for instance to play an animation while waiting for a server request (after a click on a URL link).
With its features and extensions, the conditional element is required by the extension conformance requirements of SVGT1.2 because of extended semantics and attributes. Even with just extended semantics and no extended attributes, it would still be required by those requirements. Since it obeys those requirements, the conditional element is compatible with SVG.
3. Comparison

In addition to our requirement and compatibility analysis, we have made an implementation of handler, script and conditional within a dual SVG/LASeR engine. This test environment features a partial but optimised uDOM implementation and an ECMA-Script engine based on spiderMonkey. The environment has been run on a PC and on a relatively low-end phone (Nokia 3650). We have measured a difference of 9x to 30x between the execution of conditional and script on a PC (measured on two independent implementations), and 80x on a phone. The handler execution is always a bit slower than the script, since the text content of a handler may change and the handler execution needs to check for changes of its text content and possibly take the changes into account (when script does all of that on load only).

It is easy to explain such differences: conditional executes instructions which have been “compiled” into C/C++, whereas script uses an interpreted language with text manipulation, duck typing etc… Differences between 10x and 100x are coherent with the state of the art.

Such significant differences in resource usage may be crucial to allow to run mobile services at an acceptable frame rate, or to allow running rich-media applications in the background (e.g. screen saver).

4. Usage of conditional
We think the conditional element will be widely used. Here are some examples on Streamezzo usage of the conditional:
· Scenes with content that are provided in advance for end-user selection contain conditional;
· Mobile TV services feature scenes with an average of 10 to 100 conditionals.
· Interactive scenes with conditionals accounts for 80% of the scenes.
With an It has also been said that “conditional is not useful because you can move objects inside/outside of the screen as you need them”. This is a particularly primitive and inefficient way of managing scenes:

all the objects inside the scene are impacting the frame rate, whether they are actually rendered or not. The scene tree needs to be walked at each rendering cycle, so having more objects in the scene tree slows down that phase. The scene tree also takes more memory if it contains useless objects. Both of these drawbacks do not exist with scenes managed with conditionals, as the conditionals keep their content in compressed form and their content is not part of the scene tree, so it does not impact rendering time or memory footprint.
some elements are active whether they are visible or not:

animate* elements are active whether they are visible or not, and even whether their target is visible or not; the animation itself may not take place, but some processing needs to be done at each frame, if only to update the internal state of the animation with respect to the SMIL timing model.

ev:listener elements are also “active” whether they are visible or not, and if the event that they listen to is the same as that of another listener in the scene, there is a conflict. The frequent example is that of listening to accessKey(‘FIRE’): multiple parts of the scene, e.g. multiple tabs, may each contain interactivity needing validation through the use of the FIRE key, in which case each tab has a listener for accessKey(‘FIRE’). Using conditionals allows to keep only one listener element at a time in the scene.
5. Text for DIMS specification

We proposed the conditional element to be part of the DIMS specification

a. Section 5.3.2
The conditional element defined in ISO/IEC 14496-20:2006/COR1 section 6.8.10, SHALL be supported.
The conditional element allows sets of updates and/or commands to be inserted in the scene, for later execution upon activation by time or through events.
