3GPP TSG SA4#42 meeting
 Tdoc S4-070035
29th january-2 February, 2007

Scvilla, Spain

Source:

Streamezzo
Title:
Screen orientation management in DIMS.
Agenda Item:
6.5.1, 13.7
Document for:
Discussion and approval
1 Introduction

This contribution complete our previous contribution in the screen orientation and in particular answers the concerns of initial conditions and defined interfaces between the scene and the events.

New mobile phones/embedded devices have screens that can be rotated, manually or even automatically. This creates two problems:

· create scenes that can adapt to a screen orientation set by the user, statically or when it changes during scene playback

· create scenes that can request a modification of the orientation, either automatically or by a user action

We propose to resolve the more frequent first problem.

2 Dynamic adaptation

We propose to add four events:

	“screenOrientation0”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to typical ‘landscape’ orientation
	No
	No

	“screenOrientation90”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to typical ‘portrait’ orientation
	No
	No

	“screenOrientation180”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to inverted ‘landscape’ orientation
	No
	No

	“screenOrientation270”
	urn:mpeg:mpeg4:laser:2005
	The screen orientation has changed to inverted ‘portrait’ orientation
	No
	No

Typical usage is to have a animation triggered by one of these events, the animation changing the position/rotation of a group of scene elements to match the new screen orientation:

<animateTransform begin=”lsr:screenOrientation90” to=”…” xlink:href=”#object1” dur=”1s”/>
<animateTransform begin=”urn:mpeg:mpeg4:laser:2005:screenOrientation90” to=”…” xlink:href=”#object2” dur=”1s”/>
<animateTransform begin=”urn:mpeg:mpeg4:laser:2005:screenOrientation90” to=”…” xlink:href=”#object3” dur=”1s”/>

…
<animateTransform begin=”urn:mpeg:mpeg4:laser:2005:screenOrientation0” to=”…” xlink:href=”#object1” dur=”1s”/>
<animateTransform begin=”urn:mpeg:mpeg4:laser:2005:screenOrientation0” to=”…” xlink:href=”#object2” dur=”1s”/>
<animateTransform begin=”urn:mpeg:mpeg4:laser:2005:screenOrientation0” to=”…” xlink:href=”#object3” dur=”1s”/>

…
3 Screen orientation static adaptation (initial conditions)
We propose to add four feature strings, in order to allow the use of the switch element:

· urn:mpeg:mpeg4:LASeR:2006:orient0 for typical ‘landscape’ orientation

· urn:mpeg:mpeg4:LASeR:2006:orient90 for typical ‘portrait’ orientation

· urn:mpeg:mpeg4:LASeR:2006:orient180

· urn:mpeg:mpeg4:LASeR:2006:orient270
Typical usage is:

<switch>

<g requiredExtensions=”urn:mpeg:mpeg4:LASeR:2006:orient90”>

… layout for portrait …

</g>

<g requiredExtensions=”urn:mpeg:mpeg4:LASeR:2006:orient0”>

… layout for landscape…

</g>

</switch>

4 Rationale for 4 orientations rather than 2

There is a need to have 4 types of event because this is the only way to fully cope with devices that allow full screen rotation in 4 modes.
Consider the following example :

[image: image1.emf]label1label2

sk1sk2

sk1

sk2

sk1

sk2

label1

label1

label2

label2

FIG A

FIG B

FIG C

Fig A show a sample phone that show a simple scene with 2 labels above each SoftKey.

This phone offers an extra key that can rotate its screen in place (Qtek S110 phone). This allows the screen to be rotated to be handier for left-handed people or right-handed people. The scene has to adapt to scene rotation by moving the label to make it face the right softKey.

We can see that the scene has to behave differently when if it rotates of 90° or 270°.

The FIG Cbis shows the bogus scene that would result in having only 2 modes instead of 4.

[image: image2.emf]label1label2

sk1sk2

sk1

sk2

sk1

sk2

label1

label2

label1

label2

FIG A

FIG B

FIG C bis

Of course the same demonstration could be done for a rotation of 0° and a rotation of 180°

The actual presence of softkeys is not determinant: take a phone with an accelerometer detecting screen orientation changes (such as the announced Apple iPhone). It is obvious that depending on whether the user is left handed or right handed, the phone will be turned from figure A to figure C or figure B respectively. With just 2 orientations, there is no way to discriminate the two, and realistically, the left handed user will see a scene which is upside down…
5 Notes
The event interface below was taken verbatim from a Nokia contribution, as we agree that such an interface is missing. The Nokia contribution also criticizes the names of the events: if there is consensus that the events are useful but that their names are blocking their approval, we would agree to find more consensual names.
6 Text for DIMS specification

For dynamic screen orientation adaptation, the 4 screen orientation events from ISO/IEC 14496-20:2006/AMD1, subclause 6.5.4 SHALL be supported in DIMS specification section 6.1.

For static screen orientation adaptation, the 4 screen orientation feature strings from ISO/IEC 14496-20:2006/AMD1, subclause 6.5.4 SHALL be supported in DIMS specification section 6.1.
The following ScreenOrientationEvent interface SHALL be supported in DIMS:

ScreenOrientationEvent interface provides the contextual information related to screen orientation changes. This interface is designed around and based on DOM Level 3 events specification. Note that this interface extends the `Event’ interface which contains the basic event information such as the event target, and event type information.

interface ScreenOrientationEvent : Event

{

const unsigned short SOFTKEYS_LEFT
= 1;

const unsigned short SOFTKEYS_RIGHT
= 2;
const unsigned short SOFTKEYS_TOP
= 3;

const unsigned short SOFTKEYS_BOTTOM= 4;

readonly attribute long screenWidth;

readonly attribute long screenHeight;

readonly attribute unsigned short softKeysLayout;

}
SOFTKEYS_LEFT – indicates that the device soft keys are to the left of the screen in the current screen orientation.

SOFTKEYS_RIGHT - indicates that the device soft keys are to the right of the screen in the current screen orientation.

SOFTKEYS_TOP - indicates that the device soft keys are at the top of the screen in the current screen orientation.

SOFTKEYS_BOTTOM - indicates that the device soft keys at the bottom of the screen in the current screen orientation.
screenWidth - contains the new screen display or viewport width reflecting the new orientation.
screenHeight -contains the new screen display or viewport height reflecting the new orientation.
softKeysLocation - indicates the location of the device soft keys in response to the orientation change. The possible values are SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, and SOFTKEYS_BOTTOM.

The screen orientations events SHALL be supported in DIMS in the following instances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.

2) Timed Elements that can be defined to begin or end based on screen orientation events.

_1214227972.ppt

label1

label2

label1

label1

label2

label2

FIG A

FIG B

FIG C

sk1

sk2

sk1

sk2

sk1

sk2

_1231067701.ppt

label1

label2

label1

label2

FIG A

FIG B

FIG C bis

sk1

sk2

sk1

sk2

sk1

sk2

label1

label2

