TSG-SA4#40 meeting
Tdoc S4 (06)0491
28 August – 01 September, 2006, Sophia Antipolis, France

Source:
Nokia

Title:
An updated proposal for fixed jitter buffer management algorithm
Document for:
Discussion & approval
Agenda Item:
6, 13.9.1
1 Introduction

In SA4#39 in Dallas there was a proposal [1] for reference fixed jitter buffering algorithm to be used in the testing involved in the characterisation of the adaptive jitter management performance WI. However, there was a request to clarify the functionality of the proposed algorithm. This document provides a more detailed description of this algorithm.

2 The buffering algorithm
Note that the primary role of this algorithm is to provide a reference to the adaptive algorithm(s) for the testing purposes: if the fixed buffering is set to provide delay that is comparable to evaluated adaptive buffering scheme, we can find out the voice quality gain provided by the adaptive approach. On the other hand, if the buffering is tuned to provide voice quality equal to that of the adaptive system, we can find out the delay gain provided by the adaptive system.
The following subsections provide the description of the proposed algorithm.
2.1 High-level description
The high-level functionality of the algorithm is described below.

· The first frame of the session is stored into the buffer and the decoding time is set to the reception time plus the chosen initial buffering time
· If a subsequent frame arrives before its decoding time, it is stored into the buffer to wait for decoding. If there is no room for a new frame in the buffer, the frame is discarded and recorded as a loss due to buffer overflow. If a subsequent frame arrives after is decoding time, it is discarded and recorded as a late loss.

· If a frame is available in the buffer at its decoding time, it is decoded normally. If a frame is not available in the buffer at its decoding time, the frame is replaced by using the error concealment.
· Note that the buffer arranges the incoming frames into decoding order according to their timestamps. Furthermore, in case of duplicate frames (two or more frames with the same timestamp) only the frame with the largest size (representing the highest encoding mode) is kept.

· Also the data collection for later performance analysis proposed in [2] is supported. Two separate log files are created – one for keeping track on reception events, and another one covering the decoding events. For each received frame the collected data includes time of occurrence (TIME in the pseudo code), RTP timestamp of the frame (RTP_TS), and the reception event indication (RX_STATUS). For each decoded frame the tracked data includes time of occurrence (TIME), reception time (RX_TIME), RTP timestamp (RTP_TS), and the decoding event indication (DEC_STATUS).
2.2 Detailed description

The simulation model is based on three loops – a main loop and two inner loops inside the main loop:

1. The main loop models the passing of time – at each execution of this loop the simulated “wall clock time” is increased by one clock tick. Furthermore, the other two loops – reception loop and the decoding loop – are implemented inside the main loop.

2. The reception loop is executed as many times as needed to process the new packets available at the packet input at/before current time.

3. The decoding loop is executed as many times as needed to process all frames in the buffer scheduled for decoding at/before current time.
The pseudo-code below describes the functionality of the proposed fixed buffering scheme. Furthermore, Table 1 summarises the purpose of the variables used in the pseudo code.
Table 1: Variables used in the pseudo code.

	Variable
	Purpose
	Description / usage

	current_time
	Current simulation time as clock ticks at 8 kHz
	The current time is initialised to random value – indicated by “NOW” in the pseudo code. The value is increased by one at the each execution of the main loop to simulate the passing of time.

	rx_time
	Reception time (as clock ticks at 8 kHz) of the current/next RTP packet
	The reception time is initialised to the same value as current_time. The value is updated each time a new packet is available in the packet input.

	dec_time
	Decoding time (as clock ticks at 8 kHz) of the next frame
	The value is initialised by adding the value of desired buffering delay BUFFER_DELAY for the initial value of the current_time. This variable is updated after each decoded frame by increasing the value by 160.

	rtp_ts
	RTP timestamp of the current/next RTP packet in samples
	The value is updated each time a new input packet is captured

	frame_ts
	RTP timestamp of the current (received) frame in samples
	The frame timestamp value is set/updated when parsing a packet (containing several frames)

	next_ts
	RTP timestamp of the frame to be decoded next in samples
	The variable is used both to request the next frame in decoding order from the buffer and to detect the frames that arrive late

	end_of_input
	Indication of input speech data status
	A status variable that is initialised to value FALSE – the value is set to TRUE when the end of the input packet file is encountered.

	buffer_occupancy
	Buffer fill level in number of frames
	A variable that is used to indicate buffering status – needed for detecting the end of the simulation and to detect buffer overflows.

/* INITIALISATION */

Read the first input frame, initialise variables
 /* Time measured in speech samples at 8 kHz */

 rx_time = current_time = NOW

 dec_time = current_time + BUFFER_DELAY

 next_ts = rtp_ts

 end_of_input = FALSE

 buffer_occupancy = 0
/* MAIN LOOP */

WHILE end_of_input == FALSE OR buffer_occupancy > 0
{

 /* RECEPTION LOOP */

 WHILE end_of_input == FALSE AND rx_time <= current_time

 {

 /* Set RTP timestamp for the frame */

 frame_ts = rtp_ts

 /* Loop over all frames in the packet */

 WHILE more frames in this packet

 {

 /* Check frame arrival time */

 IF frame_ts < next_ts

 {

 Discard the frame because it arrived late
 Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = late_loss
 }

 ELSE

 {

 /* Check buffer occupancy */

 IF buffer_occupancy == MAX_BUFFER_OCCUPANCY
 {

 Discard the frame because the buffer is full

 Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = overflow
 }

 ELSE

 {

 Store the frame into the buffer

 Update RX log: TIME = rx_time; RTP_TS = frame_ts; RX_STATUS = ok
 buffer_occupancy++
 }

 }

 /* Update RTP timestamp for the next frame */

 frame_ts += 160

 }

 Read the next input packet
 IF new packet available

 {

 Update variables

 rx_time
 rtp_ts

 }

 ELSE

 {

 end_of_input = TRUE

 }

 }

 /* DECODING LOOP */

 WHILE dec_time <= current_time

 {

 Request frame having the RTP timestamp value next_ts from the buffer, note that also the value of “rcv_time” indicating the reception time of the frame is obtained from the buffer
 IF requested frame found

 {

 Decode speech or generate comfort noise (SID or SID_FIRST frame) normally

 Update DEC log: TIME = dec_time; RX_TIME = rcv_time; RTP_TS = next_ts; DEC_STATUS = ok
 buffer_occupancy--
 }

 ELSE

 {

 IF in speech state

 {

 /* Lost frame */

 Invoke error concealment

 Update DEC log: TIME = dec_time; RX_TIME = rcv_time; RTP_TS = next_ts; DEC_STATUS = missing_frame

 }

 ELSE

 {

 /* DTX */

 Continue comfort noise generation
 }

 }

 Update variables for decoding the next frame
 dec_time += 160
 next_ts += 160

 }

 /* CLOCK/TIMER UPDATE */

 current_time++
}
3 Conclusions

We propose to adopt the buffering scheme described above to be used as the reference fixed jitter buffer algorithm for the characterisation of the adaptive jitter management performance for VoIP services. Nokia volunteers to provide the AMR decoder implementation equipped with the buffering scheme as described above to be used as the test tool.
4 References

[1]
Tdoc S4-060255, “A proposal for jitter buffer management algorithm”, Nokia.
[2]
Tdoc S4-060441, “On jitter buffer management characterisation”, Nokia.

