3GPP TSG-SA WG4 Meeting #39
Tdoc S4-060303
May 15-19, 2006

Dallas, USA

Source:
Nokia, Ericsson
Title:
MORE answers to DIMS Functional Components
Document for:
Discussion
Agenda Item:
13.3
1 Introduction
MORE is an open suite of W3C, OMA, 3GPP and IETF technologies combined to meet the requirements for formatting, packaging, compressing, transporting, rendering and interacting with rich media files and streams. The system leverages the respective components of existing W3C, 3GPP, MPEG, OMA solutions such as the SVG Mobile 1.2 Profile, MBMS, ISO Media File Format and browsing enablers. As JCP has played an important role in developing the uDOM API and addressing interoperability issues, it is important to coordinate with JCP to ensure full compatibility with their specifications. Hence, the MORE solution is also compatible with the Mobile Java Environment via the common DOM definition found in JSR-226.

The scene update syntax in MORE will rely on the REX (Remote Events for XML) initiative in W3C that is spear-headed by SVG WG in an effort to meet the requirements of RME/DIMS specifications. The proposed XML update specification will be based on a set of requirements that are intended to maintain compatibility with DOM events, declarative in nature, and integrates well with the WWW architecture. The current charter of the Web Applications API will be responsible for maintaining this specification. Note that the syntax for update mechanism is not limited only to SVG but also extensible to other mark-ups, besides being very efficient and light weight for platforms that are already capable of supporting mobile SVG standard.
As the underlying presentation format for rich media in both OMA-RME and 3GPP-DIMS work-items is SVG based, MORE provides a solution to embed vector graphics content such as SVG into the existing 3GPP ISO Base Media File Format for streaming of live rich media content over MMS/PSS/MBMS services. This method will allow the container format to be used for packaging rich media content (graphics, video, text, and images), enabling streaming servers to generate RTP packets, and clients to interact, realize, play, or render rich media content.

MORE provides the ability to support interaction among the rich media clients and servers. Mechanisms for interactivity include provisions for local (client side) and remote interaction (server-client), as well as for real time and non-real time feedback over various broadcast and peer-to-peer transport protocols. Local interaction mechanisms in MORE are based on SVG Mobile 1.2 event model, designed after the W3C XML events and DOM Level 3 Events model. For remote interaction, MORE provides a framework and message format syntax for client feedback. For more details for each section, please refer document TDoc S4-060225.
2 Functional Components

[image: image1.emf]Rich Media Server

Rich Media

Content (SVG

scenes and scene

updates, discrete

and continuous

media)

Optional

Container

Format/

Transport

Packets

Transport Mechanisms

Remote Interaction Mechanisms

Forward Transmission

(Unicast and Multicast/Broadcast

Download and Streaming Protocols)

Rich Media Client

SVG Based Local

Interaction

Mechanisms

Rich Media Player

Is the player’s request

remote in nature?

Send request

No

Yes

Figure 1: General Architecture of the Rich Media System
The rich media system can be perceived as client-server architecture, comprising 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 1 illustrates the general architecture. The server takes as input, rich media content comprised of SVG, discrete (e.g. images) and continuous (e.g. audio, video) media. SVG content is represented as scenes and can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios as described in Section 2.11. Although the transport protocols may be quite different from one another (e.g. MBMS is different from MMS), at the application level these differences are transparent. The content is played on the client, allowing for local and remote interactivity of feedback and data requests. The MORE system is based on a non-monolithic architecture emphasizing a strong separation of interfaces and layers. This allows the flexibility of choosing the best of breed approach for a particular use case, and to change over time if necessary. It also minimizes the dependency on services in one layer to achieve performance in a higher layer.

2.1 Scene description, graphical format

A scene describes the spatial organization of scene elements, the temporal organization of scene elements, synchronization information, and interaction among the elements. The scene presentation format and the rendering model are based on the Scalable Vector Graphics (SVG) Tiny 1.2 format, a W3C Recommendation for representing two-dimensional graphics in XML language. Besides representation of graphics, SVG also supports a rich interaction based on DOM Level 3 Events and a complex animation model borrowed from SMIL specification.
A scene is a representation of a fully complaint SVG document that may or have been updated over time. The only addition to the SVG Mobile 1.2 presentation format proposed in MORE is the clipping functionality borrowed from SVG Full.
MORE uses SVG to control the different media streams including interactivity between the streams. However, MORE can also be used in the context of 3GP or SMIL using the timing information specified in 3GP/SMIL.

2.2 Scene update mechanism

Scene updates are incremental updates to the SVG Micro Document Object Model (uDOM). These updates include element addition, element deletion; element replacement and element attribute updates. Element replacement can even be used to replace an entire scene.
Note that the updates are often a combination of one or more of these operations depending on the desire of content provider.
6.2.1
Scene Update Syntax
The scene update syntax in MORE will follow the REX (Remote Events for XML) initiative in W3C that is spear-headed by SVG WG in an effort to meet the requirements of RME/DIMS specification. This is evident with the creation of a new Task Force (TF) in conjunction with Web Apps API WG to fast track this activity to meet the DIMS/RME requirements. The current draft specification is available at http://www.w3.org/TR/rex/ . The update syntax is compatible to the SVG and uDOM APIs as defined by SVG Mobile 1.2 specification.

2.3 Overall timing model

Temporal management of scenes and scene updates is performed on the transport/storage layer. Every scene and scene update sample is associated with a timestamp that refers to the time at which the scene/scene update is to be rendered on the client. The resolution of this timestamp (TSfreq) is defined by the content creator.
For example, the timestamp of the first scene is TS1 and it is rendered at time TpresStart. If a succeeding scene update sample has a time stamp of T SU1, it is rendered at time TpresStart + (TS1-T SU1.)/TSfreq.

Figure 2: Time Sequence Diagram for Temporal Management of Scene and Scene updates
In case of non-real time delivery, for e.g. delivered over reliable protocols, the scene updates are applied in the order they are received.

A rich media session comprises several media streams, and in the case of RTP, each is transported via a separate RTP session. Synchronization is first performed on the transport level (e.g. by using RTP and NTP timestamps) and used as input to synchronization at the application level (SMIL based synchronization). At the application level, MORE utilizes the run-time synchronization functionality that SVG Mobile 1.2 inherits from SMIL 2.0. These attributes are syncBehavior, syncTolerance and syncMaster attributes, specified on the 'audio', 'video' and 'animation' elements, and syncBehaviorDefault and syncToleranceDefault attributes specified on the SVG element.

Delivering media streams separately and resynchronizing them at the receiver, rather than being delivered bundled together has several inherent advantages: This model better reflects the preferences of the server or receiver. For example, in a video conference application, participants often prefer audio to video. In addition, different media can be assigned priority levels for differing levels of error correction. In the case of bundled transport, all receivers would receive all media, which often is an issue for multiparty sessions using multicast distribution.

2.4 Local User Interaction, Scripting

The supported local events and their management in MORE are derived from SVG Mobile 1.2 and the DOM Level 3 events model. They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events (user events, timing, key, and pointer events). The complete list of events and their description can be obtained from the SVG Mobile 1.2 draft specification: http://www.w3.org/TR/SVGMobile12/interact.html#SVGEvents.

Recommended scripting language in MORE is ECMA-MP. This work should be coordinated with OMA.

2.5 Remote Interaction

During a rich media presentation, the client can request more information, update the content, or even send information back to the server. SVG provides local interaction through declarative animation and scripting. SVG Mobile 1.2 supports remote interaction via the Connection interface API [14] for socket-level communication. The API can be used for unicast based feedback over the HTTP/TCP protocol. Note that the Connection API in conjunction with uDOM support can also offer AJAX-like functionality.

Rather than advocating a particular transport mechanism for feedback, the MORE system focuses on a broader set of solutions particularly for remote interaction and mechanism for mapping local interactivity into remote commands for feedback and forward transmission. In the subsections below, details of the user events during interaction of rich media have been identified. These events are processed either locally or remotely, and be sent with either high delay or low delay, depending on the demand of application.

Different transport schemes have different capabilities and their usage depends on the nature of the rich media application. Depending on the demand of the specific application, different methods can be used in the feedback transmission.

	
	Property
	Methods for Supporting Feedback

	SMS
	Suitable for simple text based feedback.
	Transmission of feedback payload in the message body.

	MMS
	Suitable for simple Multimedia based feedback.
	Transmission of feedback payload in the message body.

	HTTP
	Suitable for PtP connection over IP networks.
	GET, PUT, POST

	RTSP
	Suitable for mainly Unicast control of presentation over IP networks.
	PLAY, PUT, POST, PSS Base Vocabulary, PSS QoE, RTP/AVPF, SDP

Table 1: Various Protocols for Feedback
When client-server feedback is required, the client opens a URL (e.g. HTTP, Mailto, MMS, SMS, RTSP etc.), and uses the corresponding methods provided by the protocol invoked.
2.6 Compression

The use of compression and content specific encoding techniques are economically driven decisions. Rich media content consists of SVG scenes and scene updates along with other referenced media. For streaming purposes, existing compression methods can be used for referenced media. However, compressing small sized SVG does not yield high benefits with the available bandwidth in today’s networks. For large content, MORE recommends using Gzip as it results in high compression ratio. Hence, there is no specific need for introducing a new compression mechanism for rich media. Note however, that MORE does not preclude application of a specific encoding scheme that is widely adopted in the industry. This approach may be modified depending upon the outcome of the W3C work on XML compression as it tries to address compression for arbitrary XML data and not schema specific. In any case, it is important to view any encoding and compression decisions as orthogonal and separable from any base design decisions
2.7 Container/Delivery Format

SVG supports media elements similar to Synchronized Multimedia Integration Language (SMIL) media elements. The continuous media elements in particular, contain their own pre-defined frame based timing. The server is responsible for generating and transmitting packets containing rich media data to the clients in a temporally compliant manner with low delay request.

A container format provides the efficient packaging of different media, provides timing synchronization, and enables clients to realize, play, or render rich media content. The actual container used for rich media services depends on the nature of the application (download, progressive download, streaming for example).

Multipart MIME (MMIME) has recently taken on an important role in Web applications for HTTP based Unicast services. This MIME type defines how multiple data parts can be included within a single message. These parts can be regular text files, HTML documents, or binary data (such as images), where the multipart specification defines how these messages are combined together, as well as how binary data are encoded within the message. The different parts are placed in a single message, one after the other, separated by a special divider. This divider or boundary is a text string, defined in the MIME multipart content-type header field that precedes the entire message.

ISO defines ISO Base Media File Format as a basis for developing a media container with various usages (download, progressive download and streaming). 3GPP and 3GPP2 derive file formats from the ISO Base File Format with differences being in the types of codecs supported in these formats. In MORE, we define some simple extensions the ISO Base Media File Format, conforming to the box semantics defined in it. This is only one of many choices provided for rich media services when a container format is needed. Provisions could then be explored on possible derivations to 3GPP and 3GPP2 file formats.
As of today, there are no solutions for embedding graphics media (SVG) into a track of a 3GPP ISO Base Media File Format, for progressive download or streaming of rich media content. Although previous work for transmitting a multimedia presentation comprising of several media objects within a container exist, the current solutions for vector graphics in 3GPP are only limited to download and play or otherwise known as HTTP streaming. MORE extends the file format’s box hierarchy by adding relevant boxes to incorporate SVG as a new media. By adding an additional media track, leveraging the use of time synchronization along with existing audio and video track information, the solution is relatively simple and is extensible to other media formats if needed.
MORE does not recommend multiplexing for the following reasons.
1) Creates additional layer, thereby increasing complexity

2) Loss of characteristics of the individual media (specific payload formats, buffer handling, adaptation, jitter handling, etc.)
2.8 Error Resilience

Rich media content can be transmitted using HTTP over TCP/IP. TCP provides reliable, full-duplex connections and reliable service by ensuring that data is resubmitted when transmission results in an error (end-to-end error detection and correction). However, this scenario cannot be used for real time data or for broadcast. In such cases the data is transmitted over UDP (User Datagram Protocol). UDP is an unreliable, connectionless datagram protocol. "Unreliable" merely means that the protocol has no technique for verifying that the data reached the other end of the network correctly. Therefore, in order to ensure that critical content is delivered reliably to the client, mechanisms for the following three processes are identified:

Error Detection: Being able to detect packet losses either at the server/client side. The sequence numbers in the RTP headers is mainly used to detect losses. Sequence numbers increase by one for each RTP packet transmitted

Error Recovery: Providing actual packet recovery by several methods such as packet redundancy (e.g. using FEC in MBMS, retransmission (e.g. PSS). Random access points can also be used as recovery points.

Error Concealment: In case of severe loss and traditional error recovery mechanisms fail, provision should be made to minimize the appearance of loss in information to the client as much as possible. Our solution includes mechanisms for computing similarity in SVG content on the client and the incoming scene/scene update. Based on the degree of similarity, the client could either repair the SVG uDOM or choose to retransmit the missing packet.

At the media level, we use the random access points as specified in the MORE proposals.
2.9 Tune In, New streams and Re-synchronization

During a rich media service, it is important for the clients to be able to connect and access the current streamed content, i.e. tune-in with minimal latency and data inaccuracy. Such methods can also be used for file navigation, e.g. fast forward and rewind. MORE has several mechanisms to aid this purpose:

Random access points:

More defines two types of random access points (RAP), ‘redundant’ and ‘required’ RAPs. Redundant RAPs are to be ignored during normal playback, whereas required RAPs are to be always decoded.

A DIMS unit can be identified by the client to be a random access point by the random access bit (`A’) set to 1 in the RTP payload header or from the sync sample box

The required RAPs can be either SVG scenes or scene updates. In the case of scene updates, only an update which replaces the entire SVG document can be a random access point.
MORE defines a redundant RAP that has a low overhead. It is referred to as a Distributed Random Access Point (DRAP) and is based upon a SVG scene that utilizes information from surrounding scene updates.

2.10 Data Management (e.g. Pre-loading and Post-caching)
MORE recommends aligning data management features such as caching, user preferences, and persistent storage with existing enablers in other SDOs (for e.g. OMA).
2.11 Transport
[image: image2.png]
Figure 3: TRANSPORT SCENARIOS HANDLED BY MORE

2.11.1 Overview
The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging with UDP being unreliable. Therefore, the RTP design should provide some error resilience tools to help the media decoder cope up with unreliable transport.
SVG is traditionally considered to be a discrete media and hence no RTP payload format has been defined. It has been transported only in download and progressive download mode. With increasing richness and dynamism in the SVG presentations, it can now be considered as a continuous media. Consequently, we define an RTP payload format for SVG. Rich media is a combination of continuous media and discrete media and relevant transport mechanisms for these two media types should be used. Rich media streaming is thus naturally realized by (a) streaming continuous media like SVG, video and audio (b) downloading the discrete media like images.

2.11.2 RTP Payload Syntax

This subsection specifies the RTP payload format to enable rich media streaming. The RTP payload format defines three basic packet structures; Single SVG units, fragmentation units and aggregation units. SVG units can be in the form of an SVG or REX document, encoding information, or resilience data. Depending on the underlying network and the SVG document size, it may be desirable to split SVG units or aggregate them. Fragmentation and aggregation units have been defined for this purpose.

An SVG unit MUST contain one complete unit of the types defined in TYPE1- TYPE4 below. A TYPE1 unit contains one or more than one sample description. A TYPE2 unit contains a complete SVG scene sample and TYPE3 contains a REX scene update sample. A TYPE4 unit contains sample dissimilarity information.

Aggregation units are defined in TYPE5 and contain two or more SVG units as defined above.

Fragmentation units are defined in TYPE6 and contain a fragment of an SVG unit.

	Type
	Description

	0
	Distributed Random Access Point

	1
	Sample Description

	2
	Scene

	3
	Scene Update

	4
	Sample Dissimilarity Information

	5
	Aggregation Packet

	6
	Fragmentation Unit

	7
	Undefined

Table 2: Summary of RTP Payload Types and Descriptions

Note: An aggregation or fragmentation unit MUST NOT contain other aggregation of fragmentation units.

2.11.3 Transmission of discrete referenced media

The discrete referenced media files (e.g. images) can be transmitted by either (1) sending them to the UE in advance via a FLUTE session; (2) sending the discrete media to each client on a point-to-point bearer before the streaming session, in a manner similar to the way security keys are sent to clients prior to an MBMS session; (3) having a parallel FLUTE transmission session independent of the RTP transmission session, or (4) having non-parallel transmission sessions to transmit all of the data. Each transmission session contains either FLUTE data or RTP data.

In the option 4 above, the data inside of each transmission session is relatively independent from the data from other transmission session.

2.11.4 Quality Feedback Metrics

During a rich media application, a client can often report the quality of transmission and presentation to the server. Such information is quite useful for the server to make optimal decisions about adjusting the transport scheme and synchronization mechanisms. Currently, higher-layer frameworks such as PSS, MBMS are widely used in multimedia applications to address this issue and several such QoS parameters are defined. However, these solutions mainly concern continuous data and do not cater specifically to rich media applications. We therefore need to define and provide for additional QoS metrics allowing rich media clients to send quality-related rich media feedback data back to server.
2.12 Resource Usage and Device capabilities
Since MORE is building on existing technologies, it relies on the MIME types defined in the owner specification. For e.g. image/svg+xml for SVG.
2.13 Carriage of DIMS in Existing Sub-systems

2.13.1 MBMS

MORE must be specified as new codec for DIMS.
2.13.2 PSS

MORE must be specified as new codec for DIMS, and the payload format defined in the transport section should be taken into use.

2.13.3 MMS

MORE must be specified as new codec for DIMS.

References
[1] MORE Proposal for DIMS – S4-060255

SU

TS=150

S

TS=0

SU

TS=300

S

TS=600

SU

TS=750

SU

TS=900

Rendering

(Local Time)

10:30:00

10:30:15

10:30:30

10:30:45

10:31:00

10:31:15

10:31:30

New Document

SVG Time → 0

New Document

SVG Time → 0

Abbreviations:

S – Scene

SU – Scene Update

TS - Timestamp

Example: Rendering time of S(TS=600)

TpresStart=10:30:00

TS1 = 0

TS= 600

TSfreq=10Hz

Rendering time = TpresStart + (TS1-T S)/TSfreq

= 10:30:00 + 60s = 10:31:00

DIMS functional areas
1/11
3GPP

_1205311178.vsd
Rich Media Server

Rich Media Content (SVG scenes and scene updates, discrete and continuous media)

Optional
Container Format/Transport Packets

Transport Mechanisms

